1
|
Birch R, Eltit F, Xie D, Wang Q, Dea N, Fisher CG, Cox ME, Ng T, Charest-Morin R, Wang R. Denosumab treatment of giant cell tumors in the spine induces woven bone formation. JBMR Plus 2025; 9:ziaf063. [PMID: 40390810 PMCID: PMC12087960 DOI: 10.1093/jbmrpl/ziaf063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 05/21/2025] Open
Abstract
Giant cell tumors of bone (GCTB) are rare but aggressive, locally destructive tumors. They typically affect young people, significantly reducing their quality of life and increasing mortality rates. Giant cell tumors of bone are composed of osteoclast-like giant cells that respond to increased secretion of RANKL by stromal cells, triggering osteolysis. For over a decade, denosumab, a monoclonal antibody targeting this receptor activator, has been approved as a neo-adjuvant to facilitate surgical resection or in the setting of inoperable tumors. Denosumab treatment has shown rapid pain improvement and tumor size reduction in the spine. Although variable degrees of tumor mineralization have been observed in clinical applications of this drug, the nature of this newly formed mineralized tissue has yet to be determined. To characterize both mineralization and collagen organization in the newly formed bone, we conducted extensive analyses on 4 posttreatment giant cell tumor vertebral samples, involving quantitative backscattered imaging, electron probe microanalysis, and a novel method for determining the alignment of collagen fibrils using second harmonic generation. Additionally, biological mechanisms involved in bone mineralization and matrix formation were analyzed using histological staining and mass spectroscopy. Our results concluded that denosumab treatment after giant cell tumor of bone in the spine was associated with the formation of woven bone and increased mineral density in a matrix of disorganized collagen fibers characterized by increased collagen III content, with the response appearing to depend on patient age and extension of treatment. To our knowledge, this is the first comprehensive material-based study on the bone formed during denosumab treatment for GCTB, providing valuable information on how denosumab affects bone quality and how the reported methodology can be applied to similar studies.
Collapse
Affiliation(s)
- Robyn Birch
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Dennis Xie
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Qiong Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nicolas Dea
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Charles G Fisher
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Michael E Cox
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Raphaële Charest-Morin
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Rizhi Wang
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Aging SMART, Vancouver, BC V5Z 1M9, Canada
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
He S, Hu R, Yao X, Cui J, Liu H, Zhu M, Ning L. The effects of heat and hydrogen peroxide treatment on the osteoinductivity of demineralized cortical bone: a potential method for preparing tendon/ligament repair scaffolds. Regen Biomater 2024; 11:rbae116. [PMID: 39398284 PMCID: PMC11471265 DOI: 10.1093/rb/rbae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
Recent studies have indicated that demineralized cortical bone (DCB) may be used to repair tendons and ligaments, such as the patellar tendon and anterior cruciate ligament (ACL). Hydrogen peroxide (H2O2) has been shown to reduce the osteoinductivity of DCB, and heat treatment may also decrease the osteoinductivity of DCB. The purpose of this study was (i) to determine whether heat treatment reduces the osteoinductivity of DCB and (ii) to compare the effectiveness of heat treatment and H2O2 treatment on BMP-2 inactivation. DCB was prepared by immersion in 0.6 N hydrochloric acid, and DCB-H and DCB-HO were prepared by heat treatment (70°C for 8 h) and H2O2 treatment (3% H2O2 for 8 h), respectively. The surface topographies, elemental distributions and histological structures of the scaffolds were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and histological staining. The viability and osteogenic differentiation of TDSCs cultured on the scaffolds were evaluated via live/dead cell staining and Cell Counting Kit-8 (CCK-8) testing, real-time polymerase chain reaction (RT-PCR) and western bolt (WB) analysis, alkaline phosphatase activity (ALP) and alizarin red S (ARS) staining. The intramuscular implantation of the scaffolds in rats was also used to evaluate the effect of heat treatment and H2O2 treatment on the osteoinductivity of DCB. Our results demonstrated that both treatments removed BMP-2 and osteocalcin (OCN) within the DCB and that DCB-H and DCB-HO had good cytocompatibility and reduced the osteogenic differentiation of TDSCs. Moreover, the in vivo results indicated that the DCB-H and DCB-HO groups had smaller areas of osteoid formation than did the DCB group, and the DCB-HO group had the smallest area among the three groups. Our study demonstrated that heat treatment could reduce the osteoinductivity of DCB, and that H2O2 treatment was more effective than heat treatment.
Collapse
Affiliation(s)
- Shukun He
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedics, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ruonan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuan Yao
- Department of Clinical Hematology, Faculty of Laboratory Medicine, Army Medical University, Chongqing, 400038, China
| | - Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huimin Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
4
|
McMullan P, Maye P, Root SH, Yang Q, Edie S, Rowe D, Kalajzic I, Germain-Lee EL. Hair follicle-resident progenitor cells are a major cellular contributor to heterotopic subcutaneous ossifications in a mouse model of Albright hereditary osteodystrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599506. [PMID: 38948860 PMCID: PMC11213030 DOI: 10.1101/2024.06.18.599506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO). AHO is caused by heterozygous inactivation of GNAS, the gene that encodes the α-stimulatory subunit (Gαs) of G proteins. Previously, we had shown using our laboratory's AHO mouse model that SCOs develop around hair follicles (HFs). Here we show that SCO formation occurs due to inappropriate expansion and differentiation of HF-resident stem cells into osteoblasts. We also show in AHO patients and mice that Secreted Frizzled Related Protein 2 (SFRP2) expression is upregulated in regions of SCO formation and that elimination of Sfrp2 in male AHO mice exacerbates SCO development. These studies provide key insights into the cellular and molecular mechanisms contributing to SCO development and have implications for potential therapeutic modalities not only for AHO patients but also for patients suffering from HOs with other etiologies.
Collapse
Affiliation(s)
- Patrick McMullan
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Peter Maye
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Sierra H. Root
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Qingfen Yang
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | | | - David Rowe
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
| | - Emily L. Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT
- Albright Center, Division of Endocrinology & Diabetes, Connecticut Children’s, Farmington, CT
| |
Collapse
|
5
|
Carbone G, Andreasi V, De Nardi P. Intra-abdominal myositis ossificans - a clinically challenging disease: A case report. World J Orthop 2023; 14:362-368. [PMID: 37304193 PMCID: PMC10251263 DOI: 10.5312/wjo.v14.i5.362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Myositis ossificans (MO) is an uncommon disorder characterized by heterotopic ossification within soft tissues. Only a few cases of intra-abdominal MO (IMO) have been described in the literature. Histology could be difficult to understand and a wrong diagnosis could lead to an improper cure. CASE SUMMARY We herein report the case of IMO in a healthy 69-year-old man. The patient presented with an abdominal mass in the left lower quadrant. A computed tomography scan showed an inhomogeneous mass with multiple calcifications. The patient underwent radical excision of the mass. Histopathological findings were compatible with MO. Five months later the patient showed a recurrence causing hemorrhagic shock due to intractable intralesional bleeding. The patients eventually died within three months since recurrence. CONCLUSION The case described could be classified as post-traumatic MO that developed close to the previously fractured iliac bone. The subsequent surgical procedure was ineffective and the disease rapidly recurred. The misleading intraoperative diagnosis led to improper surgical treatment with a dramatic evolution.
Collapse
Affiliation(s)
- Gabriele Carbone
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Valentina Andreasi
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| | - Paola De Nardi
- Department of Gastrointestinal Surgery, IRCCS San Raffaele Hospital, Milan 20132, Italy
| |
Collapse
|
6
|
Kesavan C, Gomez GA, Pourteymoor S, Mohan S. Development of an Animal Model for Traumatic Brain Injury Augmentation of Heterotopic Ossification in Response to Local Injury. Biomedicines 2023; 11:943. [PMID: 36979922 PMCID: PMC10046150 DOI: 10.3390/biomedicines11030943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
Heterotopic ossification (HO) is the abnormal growth of bone in soft connective tissues that occurs as a frequent complication in individuals with traumatic brain injury (TBI) and in rare genetic disorders. Therefore, understanding the mechanisms behind ectopic bone formation in response to TBI is likely to have a significant impact on identification of novel therapeutic targets for HO treatment. In this study, we induced repetitive mild TBI (mTBI) using a weight drop model in mice and then stimulated HO formation via a local injury to the Achilles tendon or fibula. The amount of ectopic bone, as evaluated by micro-CT analyses, was increased by four-fold in the injured leg of mTBI mice compared to control mice. However, there was no evidence of HO formation in the uninjured leg of mTBI mice. Since tissue injury leads to the activation of hypoxia signaling, which is known to promote endochondral ossification, we evaluated the effect of IOX2, a chemical inhibitor of PHD2 and a known inducer of hypoxia signaling on HO development in response to fibular injury. IOX2 treatment increased HO volume by five-fold compared to vehicle. Since pericytes located in the endothelium of microvascular capillaries are known to function as multipotent tissue-resident progenitors, we determined if activation of hypoxia signaling promotes pericyte recruitment at the injury site. We found that markers of pericytes, NG2 and PDGFRβ, were abundantly expressed at the site of injury in IOX2 treated mice. Treatment of pericytes with IOX2 for 72 h stimulated expression of targets of hypoxia signaling (Vegf and Epo), as well as markers of chondrocyte differentiation (Col2α1 and Col10α1). Furthermore, serum collected from TBI mice was more effective in promoting the proliferation and differentiation of pericytes than control mouse serum. In conclusion, our data show that the hypoxic state at the injury site in soft tissues of TBI mice provides an environment leading to increased accumulation and activation of pericytes to form endochondral bone.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gustavo A. Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
7
|
Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, Fan C. Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification. Inflammation 2023; 46:202-216. [PMID: 35986177 DOI: 10.1007/s10753-022-01723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-β signaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.
Collapse
Affiliation(s)
- Bing Tu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Tongtong Zhang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
8
|
Qin Q, Lee S, Patel N, Walden K, Gomez-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med 2022; 54:1844-1849. [PMID: 36446849 PMCID: PMC9722927 DOI: 10.1038/s12276-022-00899-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian skeletal system is densely innervated by both neural and vascular networks. Peripheral nerves in the skeleton include sensory and sympathetic nerves. The crosstalk between skeletal and neural tissues is critical for skeletal development and regeneration. The cellular processes of osteogenesis and angiogenesis are coupled in both physiological and pathophysiological contexts. The cellular and molecular regulation of osteogenesis and angiogenesis have yet to be fully defined. This review will provide a detailed characterization of the regulatory role of nerves and blood vessels during bone regeneration. Furthermore, given the importance of the spatial relationship between nerves and blood vessels in bone, we discuss neurovascular coupling during physiological and pathological bone formation. A better understanding of the interactions between nerves and blood vessels will inform future novel therapeutic neural and vascular targeting for clinical bone repair and regeneration.
Collapse
Affiliation(s)
- Qizhi Qin
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seungyong Lee
- grid.260024.20000 0004 0627 4571Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308 USA ,grid.412977.e0000 0004 0532 7395Department of Physical Education, Incheon National University, Incheon, 22012 South Korea
| | - Nirali Patel
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Kalah Walden
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Mario Gomez-Salazar
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Benjamin Levi
- grid.267313.20000 0000 9482 7121Departments of Surgery, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Aaron W. James
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
9
|
The Kinesin Gene KIF26B Modulates the Severity of Post-Traumatic Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23169203. [PMID: 36012474 PMCID: PMC9409126 DOI: 10.3390/ijms23169203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.
Collapse
|
10
|
Negri S, Wang Y, Li Z, Qin Q, Lee S, Cherief M, Xu J, Hsu GCY, Tower RJ, Presson B, Levin A, McCarthy E, Levi B, James AW. Acetabular Reaming Is a Reliable Model to Produce and Characterize Periarticular Heterotopic Ossification of the Hip. Stem Cells Transl Med 2022; 11:876-888. [PMID: 35758541 PMCID: PMC9397657 DOI: 10.1093/stcltm/szac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Abstract
Heterotopic ossification (HO) is a pathologic process characterized by the formation of bone tissue in extraskeletal locations. The hip is a common location of HO, especially as a complication of arthroplasty. Here, we devise a first-of-its-kind mouse model of post-surgical hip HO and validate expected cell sources of HO using several HO progenitor cell reporter lines. To induce HO, an anterolateral surgical approach to the hip was used, followed by disclocation and acetabular reaming. Animals were analyzed with high-resolution roentgenograms and micro-computed tomography, conventional histology, immunohistochemistry, and assessments of fluorescent reporter activity. All the treated animals' developed periarticular HO with an anatomical distribution similar to human patients after arthroplasty. Heterotopic bone was found in periosteal, inter/intramuscular, and intracapsular locations. Further, the use of either PDGFRα or scleraxis (Scx) reporter mice demonstrated that both cell types gave rise to periarticular HO in this model. In summary, acetabular reaming reproducibly induces periarticular HO in the mouse reproducing human disease, and with defined mesenchymal cellular contributors similar to other experimental HO models. This protocol may be used in the future for further detailing of the cellular and molecular mediators of post-surgical HO, as well as the screening of new therapies.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert Joel Tower
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Bradley Presson
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, Verona, Italy
| | - Adam Levin
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Levi
- Center for Organogenesis Research and Trauma, University of Texas Southwestern, Dallas, TX, USA
| | - Aaron W James
- Corresponding author: Aaron W. James, 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, USA. Tel: +1 410 502 4143; Fax: +1 410 955 9777;
| |
Collapse
|
11
|
Lin J, Yang Y, Zhou W, Dai C, Chen X, Xie Y, Han S, Liu H, Hu Y, Tang C, Bunpetch V, Zhang D, Chen Y, Zou X, Chen D, Liu W, Ouyang H. Single cell analysis reveals inhibition of angiogenesis attenuates the progression of heterotopic ossification in Mkx -/- mice. Bone Res 2022; 10:4. [PMID: 34996891 PMCID: PMC8741758 DOI: 10.1038/s41413-021-00175-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Tendon heterotopic ossification (HO) is characterized by bone formation inside tendon tissue, which severely debilitates people in their daily life. Current therapies fail to promote functional tissue repair largely due to our limited understanding of HO pathogenesis. Here, we investigate the pathological mechanism and propose a potential treatment method for HO. Immunofluorescence assays showed that the Mohawk (MKX) expression level was decreased in human tendon HO tissue, coinciding with spontaneous HO and the upregulated expression of osteochondrogenic and angiogenic genes in the tendons of Mkx-/- mice. Single-cell RNA sequencing analyses of wild-type and Mkx-/- tendons identified three cell types and revealed the excessive activation of osteochondrogenic genes during the tenogenesis of Mkx-/- tendon cells. Single-cell analysis revealed that the gene expression program of angiogenesis, which is strongly associated with bone formation, was activated in all cell types during HO. Moreover, inhibition of angiogenesis by the small-molecule inhibitor BIBF1120 attenuated bone formation and angiogenesis in the Achilles tendons of both Mkx mutant mice and a rat traumatic model of HO. These findings provide new insights into the cellular mechanisms of tendon HO and highlight the inhibition of angiogenesis with BIBF1120 as a potential treatment strategy for HO.
Collapse
Affiliation(s)
- Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yuwei Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chao Dai
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yuanhao Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shan Han
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Huanhuan Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yejun Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Tang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishan Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xiaohui Zou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China.,Clinical Research Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China.,Center for Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanlu Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, and Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Hangzhou, China. .,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
12
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
13
|
Hu Y, Wang Z. Rapamycin prevents heterotopic ossification by inhibiting the mTOR pathway and oxidative stress. Biochem Biophys Res Commun 2021; 573:171-178. [PMID: 34419763 DOI: 10.1016/j.bbrc.2021.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Rapamycin (RAPA), which was first described as an anti-fungal agent, is a potent immunosuppressant that suppresses tumors and inhibits the mTOR signaling pathway. Heterotopic ossification (HO) is abnormal bone formation outside the skeletal system (e.g., in muscles, tendons, articular capsules and other soft tissues), often due to trauma or injury. There are currently no drugs available to treat traumatic HO, largely due to limited understanding of the disease. In this study, we focused on the role of oxidative stress (OS) in the early stage of traumatic HO, and explored the underlying mechanism of traumatic HO by using RAPA to specifically inhibit the mTOR pathway, which is known to play a role in the pathogenesis of HO. To assess the effects of RAPA in traumatic HO, we used an NSE-BMP4 transgenic mouse model that develops ossification in response to traumatic injury and intramuscular injection of cardiotoxin to initiate injury. These mice were then treated with RAPA or vehicle intraperitoneally every other day for 2 weeks. Our results demonstrate that RAPA can inhibit HO through a number of different mechanisms. We show that OS and a strong inflammatory response contribute to the hypoxia associated with the early stages of HO, and that RAPA inhibits these responses. Furthermore, RAPA reduces the vascularization triggered by mTOR signaling that leads to HO formation. Therefore, we believe that RAPA could be an effective treatment for the early stages of HO.
Collapse
Affiliation(s)
- Yangyang Hu
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of the University of Science and Technology of China, 230002, Hefei, Anhui, China.
| | - Zhe Wang
- Department of Pathology, Anhui Provincial Hospital, The First Affiliated Hospital of the University of Science and Technology of China, 230002, Hefei, Anhui, China.
| |
Collapse
|
14
|
Vasuri F, Valente S, Motta I, Degiovanni A, Ciavarella C, Pasquinelli G. ETS-Related Gene Expression in Healthy Femoral Arteries With Focal Calcifications. Front Cell Dev Biol 2021; 9:623782. [PMID: 34222223 PMCID: PMC8242207 DOI: 10.3389/fcell.2021.623782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Bone development-related genes are enriched in healthy femoral arteries, which are more prone to calcification, as documented by the predominance of fibrocalcific plaques at the femoral location. We undertook a prospective histological study on the presence of calcifications in normal femoral arteries collected from donors. Since endothelial-to-mesenchymal transition (EndMT) participates in vascular remodeling, immunohistochemical (IHC) and molecular markers of EndMT and chondro-osteogenic differentiation were assessed. Transmission electron microscopy (TEM) was used to describe calcification at its inception. Two hundred and fourteen femoral arteries were enrolled. The mean age of the donors was 39.9 ± 12.9 years; male gender prevailed (M: 128). Histology showed a normal architecture; calcifications were found in 52 (24.3%) cases, without correlations with cardiovascular risk factors. Calcifications were seen on or just beneath the inner elastic lamina (IEL). At IHC, SLUG was increasingly expressed in the wall of focally calcified femoral arteries (FCFA). ETS-related gene (ERG), SLUG, CD44, and SOX-9 were positive in calcifications. RT-PCR showed increased levels of BPM-2, RUNX-2, alkaline phosphatase, and osteocalcin osteogenic transcripts and increased expression of the chondrogenic marker, SOX-9, in FCFA. TEM documented osteoblast-like cells adjacent to the IEL, releasing calcifying vesicles from the cell membrane. The vesicles were embedded in a proteoglycan-rich matrix and were entrapped in IEL fenestrations. In this study, ERG- and CD44-positive cell populations were found in the context of increased SLUG expression, thus supporting the participation of EndMT in FCFA; the increased transcript expression of osteochondrogenic markers, particularly SOX-9, reinforced the view that EndMT, osteochondrogenesis, and neoangiogenesis interact in the process of arterial calcification. Given its role as a transcription factor in the regulation of endothelial homeostasis, arterial ERG expression can be a clue of endothelial dysregulation and changes in IEL organization which can ultimately hinder calcifying vesicle diffusion through the IEL fenestrae. These results may have a broader implication for understanding arterial calcification within a disease context.
Collapse
Affiliation(s)
- Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sabrina Valente
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Ilenia Motta
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Alessio Degiovanni
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Carmen Ciavarella
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| | - Gianandrea Pasquinelli
- Experimental, Diagnostic and Specialty Medicine Department (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
16
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
17
|
Hildebrandt S, Kampfrath B, Fischer K, Hildebrand L, Haupt J, Stachelscheid H, Knaus P. ActivinA Induced SMAD1/5 Signaling in an iPSC Derived EC Model of Fibrodysplasia Ossificans Progressiva (FOP) Can Be Rescued by the Drug Candidate Saracatinib. Stem Cell Rev Rep 2021; 17:1039-1052. [PMID: 33410098 PMCID: PMC8166717 DOI: 10.1007/s12015-020-10103-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Balanced signal transduction is crucial in tissue patterning, particularly in the vasculature. Heterotopic ossification (HO) is tightly linked to vascularization with increased vessel number in hereditary forms of HO, such as Fibrodysplasia ossificans progressiva (FOP). FOP is caused by mutations in the BMP type I receptor ACVR1 leading to aberrant SMAD1/5 signaling in response to ActivinA. Whether observed vascular phenotype in human FOP lesions is connected to aberrant ActivinA signaling is unknown. Blocking of ActivinA prevents HO in FOP mice indicating a central role of the ligand in FOP. Here, we established a new FOP endothelial cell model generated from induced pluripotent stem cells (iECs) to study ActivinA signaling. FOP iECs recapitulate pathogenic ActivinA/SMAD1/5 signaling. Whole transcriptome analysis identified ActivinA mediated activation of the BMP/NOTCH pathway exclusively in FOP iECs, which was rescued to WT transcriptional levels by the drug candidate Saracatinib. We propose that ActivinA causes transcriptional pre-patterning of the FOP endothelium, which might contribute to differential vascularity in FOP lesions compared to non-hereditary HO. ![]()
Collapse
Affiliation(s)
- Susanne Hildebrandt
- Institute of Chemistry/Biochemistry, Thielallee 63, Freie Universität Berlin, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité, Universitätsmedizin Berlin, Föhrer Str. 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Branka Kampfrath
- Institute of Chemistry/Biochemistry, Thielallee 63, Freie Universität Berlin, 14195, Berlin, Germany
| | - Kristin Fischer
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Stem Cell Core Facility, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Laura Hildebrand
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité, Universitätsmedizin Berlin, Föhrer Str. 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Julia Haupt
- Institute of Chemistry/Biochemistry, Thielallee 63, Freie Universität Berlin, 14195, Berlin, Germany
| | - Harald Stachelscheid
- Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Stem Cell Core Facility, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry, Thielallee 63, Freie Universität Berlin, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité, Universitätsmedizin Berlin, Föhrer Str. 15, 13353, Berlin, Germany.
| |
Collapse
|
18
|
Hsu GCY, Marini S, Negri S, Wang Y, Xu J, Pagani C, Hwang C, Stepien D, Meyers CA, Miller S, McCarthy E, Lyons KM, Levi B, James AW. Endogenous CCN family member WISP1 inhibits trauma-induced heterotopic ossification. JCI Insight 2020; 5:135432. [PMID: 32484792 DOI: 10.1172/jci.insight.135432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Heterotopic ossification (HO) is defined as abnormal differentiation of local stromal cells of mesenchymal origin, resulting in pathologic cartilage and bone matrix deposition. Cyr61, CTGF, Nov (CCN) family members are matricellular proteins that have diverse regulatory functions on cell proliferation and differentiation, including the regulation of chondrogenesis. However, little is known regarding CCN family member expression or function in HO. Here, a combination of bulk and single-cell RNA sequencing defined the dynamic temporospatial pattern of CCN family member induction within a mouse model of trauma-induced HO. Among CCN family proteins, Wisp1 (also known as Ccn4) was most upregulated during the evolution of HO, and Wisp1 expression corresponded with chondrogenic gene profile. Immunohistochemistry confirmed WISP1 expression across traumatic and genetic HO mouse models as well as in human HO samples. Transgenic Wisp1LacZ/LacZ knockin animals showed an increase in endochondral ossification in HO after trauma. Finally, the transcriptome of Wisp1-null tenocytes revealed enrichment in signaling pathways, such as the STAT3 and PCP signaling pathways, that may explain increased HO in the context of Wisp1 deficiency. In sum, CCN family members, and in particular Wisp1, are spatiotemporally associated with and negatively regulate trauma-induced HO formation.
Collapse
Affiliation(s)
| | - Simone Marini
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chase Pagani
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Hwang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - David Stepien
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Carolyn A Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Miller
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Edward McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Karen M Lyons
- Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Benjamin Levi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA.,Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
Supreeth S, Al-Barwani A, Al Habsi I, Al Ghanami S, Al Abri Z, Al-Adawi K. A Rare Case of Heterotopic Ossification of the Patella Tendon in an Adolescent Presenting with Tendon Rupture. JOINTS 2020; 7:131-134. [PMID: 34195541 PMCID: PMC8236332 DOI: 10.1055/s-0040-1712114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/13/2020] [Indexed: 11/02/2022]
Abstract
Heterotopic ossification is the abnormal formation of mature, lamellar bone in nonosseous tissue such as tendons, ligaments, muscles, and soft tissue. We discuss a rare case of a young adolescent with patellar tendon rupture postheterotopic ossification. A 13-year-old male presented to us with knee pain and inability to extend for 6 weeks following trivial trauma. Preliminary radiological investigations revealed a high riding patella with ossification in the patella tendon. The magnetic resonance scan confirmed the same with patellar tendon disruption and heterogeneous ossification. He underwent surgery with patella tendon repair, augmentation with autograft, and had complete recovery at 6 months' follow-up.
Collapse
Affiliation(s)
- Sam Supreeth
- Department of Orthopaedics, Khoula Hospital, Muscat, Oman
| | | | | | | | - Zahra Al Abri
- Department of Pathology, Khoula Hospital, Muscat, Oman
| | | |
Collapse
|
20
|
Cui Y, Lv X, Wang F, Kong J, Zhao H, Ye Z, Si C, Pan L, Liu P, Wen J. Geometry of the Carotid Artery and Its Association With Pathologic Changes in a Chinese Population. Front Physiol 2020; 10:1628. [PMID: 32038300 PMCID: PMC6985580 DOI: 10.3389/fphys.2019.01628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Carotid artery geometry influences blood flow disturbances and is thus an important risk factor for carotid atherosclerosis. Extracellular matrix (ECM) and yes-associated protein (YAP) expression may play essential roles in the pathophysiology of carotid artery stenosis, but the effect of blood flow disturbances of carotid bifurcation location on the ECM is unknown. We hypothesized that carotid artery anatomy and geometry are independently associated with the ECM and YAP expression. METHODS In this cross-sectional study, 193 patients were divided into two groups: an asymptomatic group (n = 111) and a symptomatic group (n = 82), symptomatic patients presenting with ischemic attack, amaurosis fugax, or minor non-disabling stroke. For all subjects before surgery, carotid bifurcation angle and internal artery angle were measured with computed tomography angiography (CTA), and laminar shear stress was measured with ultrasonography. After surgery, pathology of all plaque specimens was analyzed using hematoxylin and eosin (HE) staining and Movat special staining. Immunohistochemistry was performed to detect expression of YAP in a subset of 30 specimens. RESULTS Symptomatic patients had increased carotid bifurcation angle and laminar shear stress compared to asymptomatic patients (P < 0.05), although asymptomatic patients had increased internal carotid angle compared to symptomatic patients (P < 0.001). Relative higher bifurcation angles were correlated with increased carotid bifurcation, decreased internal angle, and decreased laminar shear stress. For each change in intervertebral space or one-third of vertebral body height, carotid bifurcation angle changed 4.76°, internal carotid angle changed 6.91°, and laminar shear stress changed 0.57 dynes/cm2. Pathology showed that average fibrous cap thickness and average narrowest fibrous cap thickness were greater in asymptomatic patients than symptomatic patients (P < 0.05). Expression of proteoglycan and YAP protein in symptomatic patients was higher than in asymptomatic patients (P < 0.001), while collagen expression was lower in symptomatic patients than asymptomatic patients (P < 0.05). CONCLUSION Geometry of the carotid artery and position relative to cervical spine might be associated with ECM and YAP protein expression, which could contribute to carotid artery stenosis.
Collapse
Affiliation(s)
- Yiyao Cui
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Kong
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Hao Zhao
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res 2019; 7:36. [PMID: 31840004 PMCID: PMC6904752 DOI: 10.1038/s41413-019-0075-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.
Collapse
|
22
|
Myositis ossificans traumatica of the piriformis muscle: a rare mature case in an adult African male. Surg Radiol Anat 2019; 41:1513-1517. [PMID: 31586233 DOI: 10.1007/s00276-019-02349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Myositis ossificans traumatica (MOT) is a common form of heterotopic ossification associated to trauma. Rare mature manifestations and topographically atypical presentations of MOT are often misdiagnosed as osteosarcoma. This case study discusses a rare, mature case of MOT of the piriformis muscle, potentially clinically associated with piriformis syndrome. The ossification was observed on a dry sacral bone of an adult skeleton belonging to a South African male during routine inventory of the Raymond A. Dart Collection of Human Skeletons, the University of the Witwatersrand, Johannesburg. The MOT was located on the anterior aspect of the sacrum at a site corresponding to the upper portion of the origin of the muscle and extended laterally towards the greater trochanter, beyond the greater sciatic notch. It was cylindrical in shape and measured approximately 52.70 mm in length and 12.10 mm in diameter. Micro-focus CT revealed an extensive and mature bony development of the piriformis muscle with distinct outer cortical and inner trabecular bone. In addition, the skeleton showed widespread healed skeletal trauma, suggesting a history of trauma. The MOT was completely fused to the sacral bone excluding the possibility of congenital anomalies. Information on the MOT of the piriformis muscle is vital to clinicians and radiographers to aid in successful diagnosis and management of the piriformis syndrome and sciatica in the gluteal region. This case also provides a rare example to biological anthropologists, paleoanthropologists and bioarchaeologists of the representation of pathologies like these on a dry bone sample.
Collapse
|
23
|
Ware AD, Brewer N, Meyers C, Morris C, McCarthy E, Shore EM, James AW. Differential Vascularity in Genetic and Nonhereditary Heterotopic Ossification. Int J Surg Pathol 2019; 27:859-867. [PMID: 31250694 DOI: 10.1177/1066896919857135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction. Nonhereditary heterotopic ossification (NHO) is a common complication of trauma. Progressive osseous heteroplasia (POH) and fibrodysplasia ossificans progressiva (FOP) are rare genetic causes of heterotopic bone. In this article, we detail the vascular patterning associated with genetic versus NHO. Methods. Vascular histomorphometric analysis was performed on patient samples from POH, FOP, and NHO. Endpoints for analysis included blood vessel (BV) number, area, density, size, and wall thickness. Results. Results demonstrated conserved temporal dynamic changes in vascularity across all heterotopic ossification lesions. Immature areas had the highest BV number, while the more mature foci had the highest BV area. Most vascular parameters were significantly increased in genetic as compared with NHO. Discussion. In sum, both genetic and NHO show temporospatial variation in vascularity. These findings suggest that angiogenic pathways are potential therapeutic targets in both genetic and nonhereditary forms of heterotopic ossification.
Collapse
|
24
|
Qing Q, Zhang YJ, Yang JL, Ning LJ, Zhang YJ, Jiang YL, Zhang Y, Luo JC, Qin TW. Effects of hydrogen peroxide on biological characteristics and osteoinductivity of decellularized and demineralized bone matrices. J Biomed Mater Res A 2019; 107:1476-1490. [PMID: 30786151 DOI: 10.1002/jbm.a.36662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 02/05/2023]
Abstract
Due to the similar collagen composition and closely physiological relationship with soft connective tissues, demineralized bone matrices (DBMs) were used to repair the injured tendon or ligament. However, the osteoinductivity of DBMs would be a huge barrier of these applications. Hydrogen peroxide (H2 O2 ) has been proved to reduce the osteoinductivity of DBMs. Nevertheless, the biological properties of H2 O2 -treated DBMs have not been evaluated completely, while the potential mechanism of H2 O2 compromising osteoinductivity is also unclear. Hence, the purpose of this study was to characterize the biological properties of H2 O2 -treated DBMs and search for the proof that H2 O2 could compromise osteoinductivity of DBMs. Decellularized and demineralized bone matrices (DCDBMs) were washed by 3% H2 O2 for 12 h to fabricate the H2 O2 -treated DCDBMs (HPTBMs). Similar biological properties including collagen, biomechanics, and biocompatibility were observed between DCDBMs and HPTBMs. The immunohistochemistry staining of bone morphogenetic protein 2 (BMP-2) was negative in HPTBMs. Furthermore, HPTBMs exhibited significantly reduced osteoinductivity both in vitro and in vivo. Taken together, these findings suggest that the BMP-2 in DCDBMs could be the target of H2 O2 . HPTBMs could be expected to be used as a promising scaffold for tissue engineering. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Quan Qing
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Faculty of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie-Liang Yang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|