1
|
Jiao J, Saxena R, Morotti R. Hepatoblastoma: Comprehensive Review With Recent Updates. Adv Anat Pathol 2025:00125480-990000000-00143. [PMID: 40178831 DOI: 10.1097/pap.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Hepatoblastoma (HB), the most common primary malignant liver tumor of childhood, demonstrates remarkable histologic heterogeneity and can be classified into epithelial or mixed epithelial-mesenchymal subtypes. This review summarizes updates in histologic classification, molecular signatures, staging, and risk stratification of HB. The Children's Hepatic tumors International Collaboration represents an international effort to standardize the study of rare pediatric liver tumors; emphasis continues to remain on improving risk stratification by a combination of clinical, histologic, and molecular features to tailor treatment in a bid to reduce toxicity while maintaining or improving efficacy. Pure fetal HB is cured by complete resection without the need for adjuvant chemotherapy. Malignant rhabdoid tumors have been parsed out from small cell undifferentiated HBs by negative INI-1 staining on immunohistochemistry; these tumors require a distinct and more aggressive chemotherapeutic regimen. The significance of recently characterized "blastema" component in HB remains to be elucidated. Hepatocellular neoplasm, not otherwise specified, is a provisional diagnostic category for tumors exhibiting either intermediate or a combination of both HB and hepatocellular carcinoma histologic features. The Children's Hepatic tumors International Collaboration risk stratification algorithm includes age as an important discriminator of risk, in addition to AFP, metastasis, and PreTreatment EXTent of disease stage and its annotations.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
2
|
Wang W, Zhang N, Chen L, Zhao X, Shan Y, Yang F, Wang B, Gao H, Xu M, Tang P, Qin S, Gu S. Whole-genome sequencing and RNA sequencing analysis reveals novel risk genes and differential expression patterns in hepatoblastoma. Gene 2024; 897:147991. [PMID: 37972697 DOI: 10.1016/j.gene.2023.147991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Hepatoblastoma (HB) is an uncommon malignant liver cancer primarily affecting infants and children, characterized by the presence of tissue that resembling fetal hepatocytes, mature liver cells or bile duct cells. The primary symptom in affected children is abdominal lumps. HB constitutes approximately 28% of all liver tumors and two-thirds of liver malignancies in the pediatric and adolescent population. Despite its high prevalence, the underlying mechanism of HB pathogenesis remain largely unknown. To reveal the genetic alternations associated with HB, we conducted a comprehensive genomic study using whole-genome sequencing (WGS) and RNA sequencing (RNA-seq) techniques on five HB patients. We aimed to use WGS to identify somatic variant loci associated with HB, including single nucleotide polymorphisms (SNPs), insertions and deletions (Indels), and copy number variations (CNVs). Notably, we found deleterious mutation in CTNNB1, AXIN2 and PARP1, previously implicated in HB. In addition, we discovered multiple novel genes potentially associated with HB, including BRCA2 and GPC3 which require further functional validation to reveal their contributions to HB development. Furthermore, the American College of Medical Genetics and Genomics (ACMG) analysis identified the ABCC2 gene was the pathogenic gene as a potential risk gene linked with HB. To study the gene expression patterns in HB, we performed RNA-seq analysis and qPCR validation to reveal differential expression of four candidate genes (IGF1R, METTL1, AXIN2 and TP53) in tumors compared to nonneoplastic liver tissue in HB patients (P-Val < 0.01). These findings shed lights on the molecular mechanisms underlying HB development and facilitate to advance future personalized diagnosis and therapeutic interventions of HB.
Collapse
Affiliation(s)
- Wuqian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Jiaxing Maternity and Children Health Care Hospital, Affiliated Women and Children Hospital Jiaxing University, Jiaxing, Zhejiang, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xianglong Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuhua Shan
- Department of General Surgery, Shanghai Children's Medical Center, (National Children's Medical Center), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Research Center for Lin He Academician New Medicine, Institutes for Shanghai Pudong Decoding Life, Shanghai, China
| | - Bo Wang
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongxiang Gao
- Department of General Surgery, Shanghai Children's Medical Center, (National Children's Medical Center), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Xu
- Department of General Surgery, Shanghai Children's Medical Center, (National Children's Medical Center), School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Tang
- Jiaxing Maternity and Children Health Care Hospital, Affiliated Women and Children Hospital Jiaxing University, Jiaxing, Zhejiang, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Song Gu
- Department of General Surgery, Shanghai Children's Medical Center, (National Children's Medical Center), School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Wang HS, Lao J, Jiang RS, Wang B, Ma XP, Wang JY. Summary of biological research on hepatoblastoma: a scoping review. Front Pediatr 2024; 12:1309693. [PMID: 38390281 PMCID: PMC10881832 DOI: 10.3389/fped.2024.1309693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Hepatoblastoma is the most prevalent primary hepatic malignancy in children, comprising 80% of pediatric hepatic malignancies and 1% of all pediatric malignancies. However, traditional treatments have proven inadequate in effectively curing hepatoblastoma, leading to a poor prognosis. Methods A literature search was conducted on multiple electronic databases (PubMed and Google Scholar). A total of 86 articles were eligible for inclusion in this review. Result This review aims to consolidate recent developments in hepatoblastoma research, focusing on the latest advances in cancer-associated genomics, epigenetic studies, transcriptional programs and molecular subtypes. We also discuss the current treatment approaches and forthcoming strategies to address cancer-associated biological challenges. Conclusion To provide a comprehensive summary of the molecular mechanisms associated with hepatoblastoma occurrence, this review highlights three key aspects: genomics, epigenetics, and transcriptomics. Our review aims to facilitate the exploration of novel molecular mechanisms and the development of innovative clinical treatment strategies for hepatoblastoma.
Collapse
Affiliation(s)
- Huan-sheng Wang
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Jing Lao
- Department of General Surgery, Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong Province, China
| | - Ren-sen Jiang
- Department of General Surgery, Shenzhen Children’s Hospital of ShanTou University, Shenzhen, Guangdong Province, China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Xiao-peng Ma
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| | - Jian-yao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
4
|
Zhou S, Sarabia SF, Estrine D, Ostrow D, Schmidt RJ, Warren M, Raca G, Shillingford N, Wang L, Pawel B, Stein JE, Biegel JA, Lopez-Terrada D, Mascarenhas L, Ji J. Comparative Clinicopathologic and Genomic Analysis of Hepatocellular Neoplasm, Not Otherwise Specified, and Hepatoblastoma. Mod Pathol 2024; 37:100385. [PMID: 37992967 DOI: 10.1016/j.modpat.2023.100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.
Collapse
Affiliation(s)
- Shengmei Zhou
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Dolores Estrine
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Dejerianne Ostrow
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Ryan J Schmidt
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mikako Warren
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Nick Shillingford
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Larry Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James E Stein
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Leo Mascarenhas
- Keck School of Medicine, University of Southern California, Los Angeles, California; Division of Hematology/Oncology, Department of Pediatrics, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California; Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
6
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Zhou P, Gao S, Hu B. Exploration of Potential Biomarkers and Immune Landscape for Hepatoblastoma: Evidence from Machine Learning Algorithm. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2417134. [PMID: 35958911 PMCID: PMC9357682 DOI: 10.1155/2022/2417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the immune landscape in hepatoblastoma (HB) based on deconvolution methods and identify a biomarkers panel for diagnosis based on a machine learning algorithm. Firstly, we identified 277 differentially expressed genes (DEGs) and differentiated and functionally identified the modules in DEGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and GO (gene ontology) were used to annotate these DEGs, and the results suggested that the occurrence of HB was related to DNA adducts, bile secretion, and metabolism of xenobiotics by cytochrome P450. We selected the top 10 genes for our final diagnostic panel based on the random forest tree method. Interestingly, TNFRSF19 and TOP2A were significantly down-regulated in normal samples, while other genes (TRIB1, MAT1A, SAA2-SAA4, NAT2, HABP2, CYP2CB, APOF, and CFHR3) were significantly down-regulated in HB samples. Finally, we constructed a neural network model based on the above hub genes for diagnosis. After cross-validation, the area under the ROC curve was close to 1 (AUC = 0.972), and the AUC of the validation set was 0.870. In addition, the results of single-sample gene-set enrichment analysis (ssGSEA) and deconvolution methods revealed a more active immune responses in the HB tissue. In conclusion, we have developed a robust biomarkers panel for HB patients.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| | - Shanshan Gao
- Department of Ultrasound, Zibo Forth People's Hospital, Zibo, China
| | - Bin Hu
- Department of Pediatric, Maternal and Child Health Hospital, Zibo, China
| |
Collapse
|
8
|
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS One 2022; 17:e0264138. [PMID: 35294956 PMCID: PMC8926248 DOI: 10.1371/journal.pone.0264138] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
FoundationOne®CDx (F1CDx) is a United States (US) Food and Drug Administration (FDA)-approved companion diagnostic test to identify patients who may benefit from treatment in accordance with the approved therapeutic product labeling for 28 drug therapies. F1CDx utilizes next-generation sequencing (NGS)-based comprehensive genomic profiling (CGP) technology to examine 324 cancer genes in solid tumors. F1CDx reports known and likely pathogenic short variants (SVs), copy number alterations (CNAs), and select rearrangements, as well as complex biomarkers including tumor mutational burden (TMB) and microsatellite instability (MSI), in addition to genomic loss of heterozygosity (gLOH) in ovarian cancer. CGP services can reduce the complexity of biomarker testing, enabling precision medicine to improve treatment decision-making and outcomes for cancer patients, but only if test results are reliable, accurate, and validated clinically and analytically to the highest standard available. The analyses presented herein demonstrate the extensive analytical and clinical validation supporting the F1CDx initial and subsequent FDA approvals to ensure high sensitivity, specificity, and reliability of the data reported. The analytical validation included several in-depth evaluations of F1CDx assay performance including limit of detection (LoD), limit of blank (LoB), precision, and orthogonal concordance for SVs (including base substitutions [SUBs] and insertions/deletions [INDELs]), CNAs (including amplifications and homozygous deletions), genomic rearrangements, and select complex biomarkers. The assay validation of >30,000 test results comprises a considerable and increasing body of evidence that supports the clinical utility of F1CDx to match patients with solid tumors to targeted therapies or immunotherapies based on their tumor's genomic alterations and biomarkers. F1CDx meets the clinical needs of providers and patients to receive guideline-based biomarker testing, helping them keep pace with a rapidly evolving field of medicine.
Collapse
Affiliation(s)
- Coren A. Milbury
- Department Product Development, Cambridge, MA, United States of America
| | - James Creeden
- Global Medical Affairs, Basel, MA, United States of America
| | - Wai-Ki Yip
- Department Product Development, Cambridge, MA, United States of America
| | - David L. Smith
- Department of Franchise Development, Cambridge, MA, United States of America
| | - Varun Pattani
- Department Product Development, Cambridge, MA, United States of America
| | - Kristi Maxwell
- Department of Health Economic and Outcomes Research & Payer Policy, Reimbursement, Cambridge, MA, United States of America
| | - Bethany Sawchyn
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Ole Gjoerup
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Wei Meng
- Department Product Development, Cambridge, MA, United States of America
| | - Joel Skoletsky
- Department Product Development, Cambridge, MA, United States of America
| | | | - Yanhua Tang
- Department Product Development, Cambridge, MA, United States of America
| | - Xiaobo Bai
- Department Product Development, Cambridge, MA, United States of America
| | - Ninad Dewal
- Department Product Development, Cambridge, MA, United States of America
| | - Pei Ma
- Department Product Development, Cambridge, MA, United States of America
| | - Shannon T. Bailey
- Department Product Development, Cambridge, MA, United States of America
| | - James Thornton
- Department Product Development, Cambridge, MA, United States of America
| | - Dean C. Pavlick
- Department of Cancer Genomics, Cambridge, MA, United States of America
| | | | - Daniel Lieber
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Jared White
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Christine Burns
- Department Product Development, Cambridge, MA, United States of America
| | - Christine Vietz
- Department Product Development, Cambridge, MA, United States of America
| |
Collapse
|
9
|
Johnston ME, Rivas MP, Nicolle D, Gorse A, Gulati R, Kumbaji M, Weirauch MT, Bondoc A, Cairo S, Geller J, Tiao G, Timchenko N. Olaparib Inhibits Tumor Growth of Hepatoblastoma in Patient-Derived Xenograft Models. Hepatology 2021; 74:2201-2215. [PMID: 34037269 PMCID: PMC8463483 DOI: 10.1002/hep.31919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL. RESULTS We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells. CONCLUSIONS In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
Collapse
Affiliation(s)
- Michael Edward Johnston
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| | - Maria Prates Rivas
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | | | | | - Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Stefano Cairo
- XenTech 4Évry‐CourcouronnesFrance,Istituto di Ricerca PediatricaPaduaItaly
| | - James Geller
- Department of OncologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| |
Collapse
|
10
|
Tsai HL, Yeh YC, Yu TY, Lee CY, Hung GY, Yeh YT, Liu CS, Yen HJ. Complete and durable response to immune checkpoint inhibitor in a patient with refractory and metastatic hepatoblastoma. Pediatr Hematol Oncol 2021; 38:385-390. [PMID: 33641599 DOI: 10.1080/08880018.2020.1853859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We herein report the case of a girl with PRETEXT III hepatoblastoma (HB) developing recurrent lung metastases despite multiple chemotherapy regimens, aggressive tumor excision, multiple lung metastasectomies, and autologous peripheral blood stem cell transplantation. High tumor mutation burden (TMB) was identified through targeted next-generation sequencing, and pembrolizumab was administered post-operatively as a last resort. A complete and sustained response to the immune checkpoint inhibitor was achieved for 22 months. Although the majority of HB have a low TMB, immune checkpoint inhibitor therapy may be useful for patients with refractory HBs with a high TMB.
Collapse
Affiliation(s)
- Hsin-Lien Tsai
- Department of Pediatrics, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chen Yeh
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Yen Yu
- Department of Pediatrics, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Pediatrics, Far Eastern Memorial Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Ying Lee
- Department of Pediatrics, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Ting Yeh
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chin-Su Liu
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
11
|
Liu J, Gao C, Wang L, Jian X, Ma M, Li T, Hao X, Zhang Q, Chen Y, Zhao J, Niu H, Zhu C, Zhao J, Xia N, Li Z, Dong Q. Trans-Ancestry Mutation Landscape of Hepatoblastoma Genomes in Children. Front Oncol 2021; 11:669560. [PMID: 33968779 PMCID: PMC8096978 DOI: 10.3389/fonc.2021.669560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant tumor in the liver of infants and young children. The incidence rate varies among different populations. However, genetic differences in HB patients with different epidemiological and ancestral backgrounds have not been found. In this study, we aim to analyze data from 16 patients treated at our center and collected published data from whole-exome sequencing studies on HB, and to explore the genetic differences between races. Data from a total of 75 HB patients of three races (24 Asian, 37 Caucasian and 14 Hispanic) were analyzed. We identified 16 genes with recurrent somatic mutations and 7 core pathway modules. Among them, the Wnt/β-catenin pathway had the highest mutation rate, and the mutation frequency in Caucasians and Hispanics was approximately twice as high as that in Asians. In addition, this study compared the characteristics of gene mutations between patients who underwent preoperative chemotherapy and those who did not and found that there was no significant difference in gene mutations between the two groups. We also preliminarily verified the function of cancer-associated candidate genes (CTNNB1 and KMT2D). In conclusion, we found ethnic differences in HB biology at the genomic level, which expands our understanding of the genetics of HB in children.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wannan Medical College, Wuhu, China
| | - Chengwen Gao
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Mingdi Ma
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tong Li
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - XiWei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qian Zhang
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
| | - Jie Zhao
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| | - Nan Xia
- Institute of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-assisted Surgery, Qingdao University, Qingdao, China
- Shandong College Collaborative Innovation Center of Digital Medicine Clinical Treatment and Nutrition Health, Qingdao University, Qingdao, China
| | - Zhiqiang Li
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Grabski DF, Ratan A, Gray LR, Bekiranov S, Rekosh D, Hammarskjold ML, Rasmussen SK. Upregulation of human endogenous retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers. J Pediatr Surg 2021; 56:286-292. [PMID: 32682541 DOI: 10.1016/j.jpedsurg.2020.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Hepatoblastoma is the most common liver malignancy in children. In order to advance therapy against hepatoblastoma, novel immunologic targets and biomarkers are needed. Our purpose in this investigation is to examine hepatoblastoma transcriptomes for the expression of a class of genomic elements known as Human Endogenous Retrovirus (HERVs). HERVs are abundant in the human genome and are biologically active elements that have been associated with multiple malignancies and proposed as immunologic targets in a subset of tumors. A sub-family of HERVs, HERV-K(HML-2) (HERV-K), have been shown to be tightly regulated in fetal development, making investigation of these elements in pediatric tumors paramount. METHODS We first created a HERVK-FASTA file utilizing 91 previously described HML-2 proviruses. We then concatenated the file onto the GRCh38.95 cDNA library from Ensembl. We used this reference database to evaluate existing RNA-seq data from 10 hepatoblastoma tumors and 3 normal liver controls (GEO accession ID: GSE8977575). Quantification and differential proviral expression analysis between hepatoblastoma and normal liver controls was performed using the pseudo-alignment program Salmon and DESeq2, respectively. RESULTS HERV-K mRNA was expressed in hepatoblastoma from multiple proviral loci. All expressed HERV-K proviral loci were upregulated in hepatoblastoma compared to normal liver controls. Five HERV-K proviruses (1q21.3, 3q27.2, 7q22.2, 12q24.33 and 17p13.1) were significantly differentially expressed (p-adjusted value <0.05, |log2 fold change| > 1.5) across conditions. The provirus at 17p13.1 had an approximately 300-fold increased expression in hepatoblastoma as compared to normal liver. This was in part due to the near absence of HERV-K mRNA at the 17p13.1 locus in fully differentiated liver samples. CONCLUSIONS Our investigation demonstrates that HERV-K is expressed from multiple loci in hepatoblastoma and that the expression is increased for several proviruses compared to normal liver controls. Our results suggest that HERV-K mRNA expression may be useful as a biomarker in hepatoblastoma, given the large differential expression profiles in hepatoblastoma, with very low mRNA levels in liver control samples.
Collapse
Affiliation(s)
- David F Grabski
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia; Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia
| | - Aakrosh Ratan
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Laurie R Gray
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sara K Rasmussen
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia; Seattle Children's Hospital, Division of Transplantation, University of Washington Department of Surgery, 4800 Sand Point Way, Seattle, WA 98105.
| |
Collapse
|
13
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Hu H, Zhang W, Zhi T, Li J, Wen Y, Li F, Mei Y, Huang D. Genotypic Characteristics of Hepatoblastoma as Detected by Next Generation Sequencing and Their Correlation With Clinical Efficacy. Front Oncol 2021; 11:628531. [PMID: 34426785 PMCID: PMC8379014 DOI: 10.3389/fonc.2021.628531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/20/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatoblastoma (HB) is the most common malignant embryonic liver tumor type in children under 3 years of age. In the present study, the next generation sequencing (NGS) method was used to detect the genotype characteristics of HB and summarize the correlation between the common mutation genotypes noted in this disease and the clinical treatment and prognosis. The results may aid clinical prognosis and the successful application of targeted drugs. METHODS Initially, DNA was extracted from tumor tissue specimens and peripheral blood derived from 19 pediatric patients with HB. Subsequently, DNA panel and NGS methods were used to detect tumor diagnosis and the expression levels of treatment-associated genes, followed by the summary of genotype characteristics. In addition, in order to further assess the application of immunotherapy in HB, immunohistochemical detection of programmed cell death 1 ligand 1 (PDL1) was performed in combination with tumor mutation burden (TMB) and DNA mismatch repair status analysis. Furthermore, the clinical treatment effect and prognosis of the pediatric patients were statistically analyzed according to the characteristics of the genotype. Overall prognosis and prognostic analyses in different groups were performed by Kaplan-Meier and log-rank tests, respectively. Finally, expression validation and diagnostic analysis of commonly reported genes were performed in the GSE75271 dataset, which was obtained from the Gene Expression Omnibus (GEO) database. RESULTS In the present study, certain mutated genes, including nuclear factor erythroid 2-related factor 2 (NFE2L2), catenin β1 (CTNNB1), MYCN, tumor protein p53, axis inhibition protein 1 (AXIN1) and adenomatous polyposis coli (APC) were associated with the pathogenesis of HB. During TMB and DNA mismatch repair status analyses, pediatric patients had a low TMB. All of them did not present with microsatellite instability. The immunohistochemical results indicated lower expression levels of PDL1 in HB. The complete remission (CR) rate of pediatric patients in the gene abnormality group was lower than that of the non-reported disease-associated gene abnormality group. The 2-year overall survival rate and disease-free survival rate of 19 pediatric patients with HB were 72.1% and 42.4%, respectively. Receiver operating characteristic (ROC) analysis demonstrated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and insulin growth factor 2 (IGF2) may be potential biomarkers that could be used for the diagnosis of HB. CONCLUSION The genotype changes in HB were more common and the CR rate of the pediatric patients with an altered genotype was lower than that of pediatric patients without an altered genotype. In addition, pediatric patients with HB exhibited lower TMB compared with adult patients. Moreover, the data indicated that CTNNB1, NFE2L2, AXIN1, APC, MYCN and IGF2 may be potential biomarkers that can be used for the diagnosis of HB.
Collapse
|
15
|
Sindhi R, Rohan V, Bukowinski A, Tadros S, de Ville de Goyet J, Rapkin L, Ranganathan S. Liver Transplantation for Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12030720. [PMID: 32204368 PMCID: PMC7140094 DOI: 10.3390/cancers12030720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Unresectable hepatocellular carcinoma (HCC) was first removed successfully with total hepatectomy and liver transplantation (LT) in a child over five decades ago. Since then, children with unresectable liver cancer have benefitted greatly from LT and a confluence of several equally important endeavors. Regional and trans-continental collaborations have accelerated the development and standardization of chemotherapy regimens, which provide disease control to enable LT, and also serve as a test of unresectability. In the process, tumor histology, imaging protocols, and tumor staging have also matured to better assess response and LT candidacy. Significant trends include a steady increase in the incidence of and use of LT for hepatoblastoma, and a significant improvement in survival after LT for HCC with each decade. Although LT is curative for most unresectable primary liver sarcomas, such as embryonal sarcoma, the malignant rhabdoid tumor appears relapse-prone despite chemotherapy and LT. Pediatric liver tumors remain rare, and diagnostic uncertainty in some settings can potentially delay treatment or lead to the selection of less effective chemotherapy. We review the current knowledge relevant to diagnosis, LT candidacy, and post-transplant outcomes for these tumors, emphasizing recent observations made from large registries or larger series.
Collapse
Affiliation(s)
- Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
- Correspondence: ; Tel.: +1-412-692-7123
| | - Vinayak Rohan
- Medical University of South Carolina, Charleston, SC 29403, USA;
| | - Andrew Bukowinski
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Sameh Tadros
- Hillman Center for Pediatric Transplantation, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; (A.B.); (S.T.)
| | - Jean de Ville de Goyet
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), 90127 Palermo, Italy;
| | - Louis Rapkin
- Department of Hematology/Oncology, UPMC-Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| | - Sarangarajan Ranganathan
- Department of Pathology, Children’s Hospital Medical Center of Cincinnati, Cincinnati, OH 45229, USA;
| |
Collapse
|
16
|
Wnt/β-catenin signaling as a useful therapeutic target in hepatoblastoma. Biosci Rep 2019; 39:BSR20192466. [PMID: 31511432 PMCID: PMC6757184 DOI: 10.1042/bsr20192466] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatoblastoma is a malignant tumor in the liver of children that generally occurs at the age of 2–3 years. There have been ample evidence from the preclinical as well as clinical studies suggesting the activation of Wnt/β-catenin signaling in hepatoblastoma, which is mainly attributed to the somatic mutations in the exon 3 of β-catenin gene. There is increased translocation of β-catenin protein from the cell surface to cytoplasm and nucleus and intracellular accumulation is directly linked to the severity of the cancer. Accordingly, the alterations in β-catenin and its target genes may be used as markers in the diagnosis and prognosis of pediatric live tumors. Furthermore, scientists have reported the therapeutic usefulness of inhibition of Wnt/β-catenin signaling in hepatoblastoma and this inhibition of signaling has been done using different methods including short interfering RNA (siRNA), miRNA and pharmacological agents. Wnt/β-catenin works in association with other signaling pathways to induce the development of hepatoblastoma including Yes-associated protein (YAP)1 (YAP-1), mammalian target of rapamycin (mTOR) 1 (mTOR-1), SLC38A1, glypican 3 (GPC3), nuclear factor κ-light-chain-enhancer of activated B cells (NF-kB), epidermal growth factor receptor, ERK1/2, tumor necrosis factor-α (TNF-α), regenerating islet-derived 1 and 3 α (REG1A and 3A), substance P (SP)/neurokinin-1 receptor and PARP-1. The present review describes the key role of Wnt/β-catenin signaling in the development of hepatoblastoma. Moreover, the role of other signaling pathways in hepatoblastoma in association with Wnt/β-catenin has also been described.
Collapse
|
17
|
The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers (Basel) 2019; 11:cancers11101406. [PMID: 31547062 PMCID: PMC6826653 DOI: 10.3390/cancers11101406] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common form of primary liver malignancy found in pediatric populations. HB is considered to be clonal and arises from hepatoblasts, or embryonic liver progenitor cells. These less differentiated tumor-initiating progenitor cells, or cancer stem cells (CSCs), may contribute to tumor recurrence and resistance to therapies, and have high metastatic abilities. Phenotypic heterogeneity, undesired genetic and epigenetic alterations, and dysregulated signaling pathways provide CSCs with a survival advantage over current therapies. The molecular and cellular basis of HB and the mechanism of CSC induction are not fully understood. The Wnt/beta-catenin pathway is one of the major developmental pathways and is believed to play an important role in the pathogenesis of HB and CSC formation. This review summarizes the cellular and molecular characteristics of HB with a specific emphasis on CSCs and Wnt/beta-catenin signaling.
Collapse
|
18
|
The Role of MicroRNAs in Hepatoblastoma Tumors. Cancers (Basel) 2019; 11:cancers11030409. [PMID: 30909459 PMCID: PMC6468899 DOI: 10.3390/cancers11030409] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common hepatic malignancy during childhood. However, little is still known about the molecular mechanisms that govern the development of this disease. This review is focused on the recent advances regarding the study of microRNAs in hepatoblastoma and their substantial contribution to improv our knowledge of the pathogenesis of this disease. We show here that miRNAs represent valuable tools to identify signaling pathways involved in hepatoblastoma progression as well as useful biomarkers and novel molecular targets to develop alternative therapeutic strategies in this disease.
Collapse
|
19
|
Hepatoblastoma-The Evolution of Biology, Surgery, and Transplantation. CHILDREN-BASEL 2018; 6:children6010001. [PMID: 30577683 PMCID: PMC6352070 DOI: 10.3390/children6010001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
The most common primary malignant liver tumor of childhood, hepatoblastoma has increased in incidence over the last 30 years, but little is still known about its pathogenesis. Discoveries in molecular biology provide clues but have yet to define targeted therapies. Disease-free survival varies according to stage, but is greater than 90% in favorable risk populations, in part due to improvements in chemotherapeutic regimens, surgical resection, and earlier referral to liver transplant centers. This article aims to highlight the principles of disease that guide current treatment algorithms. Surgical treatment, especially orthotopic liver transplantation, will also be emphasized in the context of the current Children's Oncology Group international study of pediatric liver cancer (AHEP-1531).
Collapse
|
20
|
PARP1 activation increases expression of modified tumor suppressors and pathways underlying development of aggressive hepatoblastoma. Commun Biol 2018; 1:67. [PMID: 30271949 PMCID: PMC6123626 DOI: 10.1038/s42003-018-0077-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HBL) is a pediatric liver cancer that affects children under the age of three. Reduction of tumor suppressor proteins (TSPs) is commonly seen in liver cancer. However, in our studies we find that aggressive, chemo-resistant HBLs exhibit an elevation of TSPs. HBL patients with a classic phenotype have reduced TSP levels, but patients with aggressive HBL express elevated TSPs that undergo posttranslational modifications, eliminating their tumor suppression activities. Here we identify unique aggressive liver cancer domains (ALCDs) that are activated in aggressive HBL by PARP1-mediated chromatin remodeling leading to elevation of modified TSPs and activation of additional cancer pathways: WNT signaling and β-catenin. Inhibition of PARP1 blocks activation of ALCDs and normalizes expression of corresponding genes, therefore reducing cell proliferation. Our studies reveal PARP1 activation as a mechanism for the development of aggressive HBL, further suggesting FDA-approved PARP1 inhibitors might be used for treatment of patients with aggressive HBL. Leila Valanejad et al. report increased expression of modified tumor suppressor proteins (TSPs) with loss of tumor suppressor activity in aggressive, chemotherapy-resistant hepatoblastoma. They find that TSP upregulation occurs via PARP1-mediated chromatin remodeling, leading to activation of multiple cancer-associated pathways.
Collapse
|