1
|
Sztankovics D, Moldvai D, Petővári G, Dankó T, Szalai F, Miyaura R, Varga V, Nagy N, Papp G, Pápay J, Krencz I, Sebestyén A. mTOR hyperactivity and RICTOR amplification as targets for personalized treatments in malignancies. Pathol Oncol Res 2024; 30:1611643. [PMID: 38515456 PMCID: PMC10954904 DOI: 10.3389/pore.2024.1611643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.
Collapse
|
2
|
Szalai F, Sztankovics D, Krencz I, Moldvai D, Pápay J, Sebestyén A, Khoor A. Rictor-A Mediator of Progression and Metastasis in Lung Cancer. Cancers (Basel) 2024; 16:543. [PMID: 38339294 PMCID: PMC10854599 DOI: 10.3390/cancers16030543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Lung carcinoma is one of the most common cancer types for both men and women. Despite recent breakthroughs in targeted therapy and immunotherapy, it is characterized by a high metastatic rate, which can significantly affect quality of life and prognosis. Rictor (encoded by the RICTOR gene) is known as a scaffold protein for the multiprotein complex mTORC2. Among its diverse roles in regulating essential cellular functions, mTORC2 also facilitates epithelial-mesenchymal transition and metastasis formation. Amplification of the RICTOR gene and subsequent overexpression of the Rictor protein can result in the activation of mTORC2, which promotes cell survival and migration. Based on recent studies, RICTOR amplification or Rictor overexpression can serve as a marker for mTORC2 activation, which in turn provides a promising druggable target. Although selective inhibitors of Rictor and the Rictor-mTOR association are only in a preclinical phase, they seem to be potent novel approaches to reduce tumor cell migration and metastasis formation. Here, we summarize recent advances that support an important role for Rictor and mTORC2 as potential therapeutic targets in the treatment of lung cancer. This is a traditional (narrative) review based on Pubmed and Google Scholar searches for the following keywords: Rictor, RICTOR amplification, mTORC2, Rictor complexes, lung cancer, metastasis, progression, mTOR inhibitors.
Collapse
Affiliation(s)
- Fatime Szalai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (F.S.); (D.S.); (I.K.); (D.M.); (J.P.); (A.S.)
| | - Andras Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
PD-L1/pS6 in Circulating Tumor Cells (CTCs) during Osimertinib Treatment in Patients with Non-Small Cell Lung Cancer (NSCLC). Biomedicines 2022; 10:biomedicines10081893. [PMID: 36009440 PMCID: PMC9405335 DOI: 10.3390/biomedicines10081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
The PD-1/PD-L1 axis provides CTCs an escape route from the immune system. Phosphorylation of the ribosomal protein S6 is implicated in the same pathway, following mTOR activation. The aim of the study was to investigate the expression of PD-L1 and pS6 in CTCs from NSCLC patients under Osimertinib treatment at a single cell level. CTCs were isolated using ISET from NSCLC patients’ blood [37 at baseline, 25 after the 1st cycle, and 23 at the end of treatment (EOT)]. Staining was performed using immunofluorescence. Cytokeratin-positive (CK+) CTCs were detected in 62% of patients. CK+PD-L1+CD45− and CK+pS6+ phenotypes were detected in 38% and 41% of the patients at baseline, in 28% and 32% after 1st cycle, and in 30% and 35% at EOT, respectively. Spearman’s analysis revealed statistically significant correlations between PD-L1 and pS6 phenotypes at all time points. Survival analysis revealed that CK+pS6+ (p = 0.003) and CKlowpS6+ (p = 0.021) phenotypes after 1st cycle were related to significantly decreased one-year progression-free survival (PFS12m) and PFS, respectively. CK+PD-L1+CD45−phenotype at baseline and after 1st cycle showed a trend for decreased PFS12m. Increased expression of PD-L1/pS6 in CTCs of Osimertinib-treated NSCLC patients implies the activation of the corresponding pathway, which is potentially associated with poor clinical outcomes.
Collapse
|
4
|
Dankó T, Petővári G, Raffay R, Sztankovics D, Moldvai D, Vetlényi E, Krencz I, Rókusz A, Sipos K, Visnovitz T, Pápay J, Sebestyén A. Characterisation of 3D Bioprinted Human Breast Cancer Model for In Vitro Drug and Metabolic Targeting. Int J Mol Sci 2022; 23:ijms23137444. [PMID: 35806452 PMCID: PMC9267600 DOI: 10.3390/ijms23137444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Monolayer cultures, the less standard three-dimensional (3D) culturing systems, and xenografts are the main tools used in current basic and drug development studies of cancer research. The aim of biofabrication is to design and construct a more representative in vivo 3D environment, replacing two-dimensional (2D) cell cultures. Here, we aim to provide a complex comparative analysis of 2D and 3D spheroid culturing, and 3D bioprinted and xenografted breast cancer models. We established a protocol to produce alginate-based hydrogel bioink for 3D bioprinting and the long-term culturing of tumour cells in vitro. Cell proliferation and tumourigenicity were assessed with various tests. Additionally, the results of rapamycin, doxycycline and doxorubicin monotreatments and combinations were also compared. The sensitivity and protein expression profile of 3D bioprinted tissue-mimetic scaffolds showed the highest similarity to the less drug-sensitive xenograft models. Several metabolic protein expressions were examined, and the in situ tissue heterogeneity representing the characteristics of human breast cancers was also verified in 3D bioprinted and cultured tissue-mimetic structures. Our results provide additional steps in the direction of representing in vivo 3D situations in in vitro studies. Future use of these models could help to reduce the number of animal experiments and increase the success rate of clinical phase trials.
Collapse
Affiliation(s)
- Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Gábor Petővári
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Regina Raffay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Enikő Vetlényi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - András Rókusz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Krisztina Sipos
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (T.D.); (G.P.); (R.R.); (D.S.); (D.M.); (E.V.); (I.K.); (A.R.); (K.S.); (J.P.)
- Correspondence: or
| |
Collapse
|
5
|
Liu JQ, Geng XR, Hu TY, Mo LH, Luo XQ, Qiu SY, Liu DB, Liu ZG, Shao JB, Liu ZQ, Yang PC. Glutaminolysis is required in maintaining immune regulatory functions in B cells. Mucosal Immunol 2022; 15:268-278. [PMID: 35013572 DOI: 10.1038/s41385-021-00481-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
IL-10-expressing regulatory B cells (B10 cells) are dysfunctional in patients with many immune disorders. The underlying mechanism remains to be further elucidated. Glutamine is an essential nutrient for cell metabolism. This study aims to elucidate the role of glutaminolysis in maintaining the immune regulatory capacity in B10 cells. Peripheral blood samples were collected from 50 patients with allergic rhinitis and 50 healthy control subjects. B cells were isolated from blood samples by cell sorting with flow cytometry. The role of glutaminolysis in regulating B10 cell activities was assessed by immunological and biochemical approaches. The results showed that B cells from patients with allergic rhinitis expressed low levels of the transporter of glutamine and neutral amino acid. Glutaminolysis was required in the IL-10 expression in B cells. The glutamine catabolism was required in B10 cell generation. The mTOR activation mediated the glutaminolysis-associated B10 cell induction, and the suppression of the B cell glycogen synthase kinase-3 (GSK3) activation. GSK3 activation suppressed IL-10 expression in B cells. Inhibition of GSK3 enhanced IL-10 expression in B cells and alleviated experimental allergic rhinitis by generating immune competent type 1 regulatory T cells.
Collapse
Affiliation(s)
- Jiang-Qi Liu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Xiao-Rui Geng
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Li-Hua Mo
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Xiang-Qian Luo
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shu-Yao Qiu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Da-Bo Liu
- Department of Pediatric Otolaryngology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhi-Gang Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China.,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China
| | - Jian-Bo Shao
- Department of Otolaryngology, Beijing Children Hospital, Beijing, China
| | - Zhi-Qiang Liu
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China.
| | - Ping-Chang Yang
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen, China. .,Institute of Allergy & Immunology, Shenzhen University School of Medicine, State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
7
|
Evans JF, Obraztsova K, Lin SM, Krymskaya VP. CrossTORC and WNTegration in Disease: Focus on Lymphangioleiomyomatosis. Int J Mol Sci 2021; 22:ijms22052233. [PMID: 33668092 PMCID: PMC7956553 DOI: 10.3390/ijms22052233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.
Collapse
|
8
|
Petővári G, Dankó T, Tőkés AM, Vetlényi E, Krencz I, Raffay R, Hajdu M, Sztankovics D, Németh K, Vellai-Takács K, Jeney A, Kulka J, Sebestyén A. In Situ Metabolic Characterisation of Breast Cancer and Its Potential Impact on Therapy. Cancers (Basel) 2020; 12:cancers12092492. [PMID: 32899149 PMCID: PMC7563878 DOI: 10.3390/cancers12092492] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
In spite of tremendous developments in breast cancer treatment, the relatively high incidence of relapsing cases indicates a great need to find new therapeutic strategies in recurrent, metastatic and advanced cases. The bioenergetic needs of growing tumours at the primary site or in metastases-accumulating genomic alterations and further heterogeneity-are supported by metabolic rewiring, an important hallmark of cancer. Adaptation mechanisms as well as altered anabolic and catabolic processes balance according to available nutrients, energy, oxygen demand and overgrowth or therapeutic resistance. Mammalian target of rapamycin (mTOR) hyperactivity may contribute to this metabolic plasticity and progression in breast carcinomas. We set out to assess the metabolic complexity in breast cancer cell lines and primary breast cancer cases. Cellular metabolism and mTOR-related protein expression were characterised in ten cell lines, along with their sensitivity to specific mTOR and other metabolic inhibitors. Selected immunohistochemical reactions were performed on ~100 surgically removed breast cancer specimens. The obtained protein expression scores were correlated with survival and other clinicopathological data. Metabolic and mTOR inhibitor mono-treatments had moderate antiproliferative effects in the studied cell lines in a subtype-independent manner, revealing their high adaptive capacity and survival/growth potential. Immunohistochemical analysis of p-S6, Rictor, lactate dehydrogenase A, glutaminase, fatty acid synthase and carnitine palmitoyltransferase 1A in human samples identified high mTOR activity and potential metabolic plasticity as negative prognostic factors for breast cancer patients, even in subtypes generally considered as low-risk. According to our results, breast cancer is characterised by considerable metabolic diversity, which can be targeted by combining antimetabolic treatments and recent therapies. Alterations in these pathways may provide novel targets for future drug development in breast cancer. We also propose a set of immunostainings for scoring metabolic heterogeneity in individual cases in order to select patients who may benefit from more accurate follow-up and specific therapies.
Collapse
Affiliation(s)
- Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary; (A.-M.T.); (J.K.)
| | - Enikő Vetlényi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Regina Raffay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Melinda Hajdu
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Dániel Sztankovics
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Krisztina Németh
- MS Metabolomics Laboratory, Core Facility, Research Centre for Natural Sciences, Magyar Tudósok Blvd 2, H-1117 Budapest, Hungary;
| | - Krisztina Vellai-Takács
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary;
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091 Budapest, Hungary; (A.-M.T.); (J.K.)
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary; (G.P.); (T.D.); (E.V.); (I.K.); (R.R.); (M.H.); (D.S.); (A.J.)
- Correspondence: or
| |
Collapse
|
9
|
Sarkadi B, Meszaros K, Krencz I, Canu L, Krokker L, Zakarias S, Barna G, Sebestyen A, Papay J, Hujber Z, Butz H, Darvasi O, Igaz P, Doczi J, Luconi M, Chinopoulos C, Patocs A. Glutaminases as a Novel Target for SDHB-Associated Pheochromocytomas/Paragangliomas. Cancers (Basel) 2020; 12:E599. [PMID: 32150977 PMCID: PMC7139890 DOI: 10.3390/cancers12030599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 01/08/2023] Open
Abstract
Pheochromocytoma/paragangliomas (Pheo/PGL) are rare endocrine cancers with strong genetic background. Mutations in the SDHB subunit of succinate dehydrogenase (SDH) predispose patients to malignant disease with limited therapeutic options and poor prognosis. Using a host of cellular and molecular biology techniques in 2D and 3D cell culture formats we show that SDH inhibition had cell line specific biological and biochemical consequences. Based on our studies performed on PC12 (rat chromaffin cell line), Hela (human cervix epithelial cell line), and H295R (human adrenocortical cell line) cells, we demonstrated that chromaffin cells were not affected negatively by the inhibition of SDH either by siRNA directed against SDHB or treatment with SDH inhibitors (itaconate and atpenin A5). Cell viability and intracellular metabolite measurements pointed to the cell line specific consequences of SDH impairment and to the importance of glutamate metabolism in chromaffin cells. A significant increase in glutaminase-1 (GLS-1) expression after SDH impairment was observed in PC12 cells. GLS-1 inhibitor BPTES was capable of significantly decreasing proliferation of SDH impaired PC12 cells. Glutaminase-1 and SDHB expressions were tested in 35 Pheo/PGL tumor tissues. Expression of GLS1 was higher in the SDHB low expressed group compared to SDHB high expressed tumors. Our data suggest that the SDH-associated malignant potential of Pheo/PGL is strongly dependent on GLS-1 expression and glutaminases may be novel targets for therapy.
Collapse
Affiliation(s)
- Balazs Sarkadi
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
| | - Katalin Meszaros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Ildiko Krencz
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Lilla Krokker
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Sara Zakarias
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
| | - Gabor Barna
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Anna Sebestyen
- Bionics Innovation Center, 1088 Budapest, Hungary;
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Judit Papay
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Zoltan Hujber
- 1st Department of Pathology and Experimental Cancer, Semmelweis University, 1085 Budapest, Hungary; (I.K.); (G.B.); (J.P.); (Z.H.)
| | - Henriett Butz
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| | - Otto Darvasi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Bionics Innovation Center, 1088 Budapest, Hungary;
| | - Peter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary; (B.S.); (S.Z.); (P.I.)
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Judit Doczi
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.)
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary; (J.D.); (C.C.)
| | - Attila Patocs
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary; (K.M.); (L.K.); (H.B.); (O.D.)
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
- Bionics Innovation Center, 1088 Budapest, Hungary;
- Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
10
|
Abstract
With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN, STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR pathway inhibitors into the clinical setting.
Collapse
|
11
|
Liu J, Zhao W, Ou X, Zhao Z, Hu C, Sun M, Liu F, Deng J, Gu W, An J, Zhang Q, Zhang X, Xie J, Li S, Chen R, Yu S, Zhong N. Mutation spectrums of TSC1 and TSC2 in Chinese women with lymphangioleiomyomatosis (LAM). PLoS One 2019; 14:e0226400. [PMID: 31856217 PMCID: PMC6922431 DOI: 10.1371/journal.pone.0226400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Abstract
The aim of our study was to elucidate the landscapes of genetic alterations of TSC1 and TSC2 as well as other possible non-TSC1/2 in Lymphangioleiomyomatosis (LAM) patients. Sixty-one Chinese LAM patients’ clinical information was collected. Tumor biopsies and matched leukocytes from these patients were retrospectively analyzed by next generation sequencing (NGS), chromosomal microarray analysis (CMA), and multiplex ligation-dependent probe amplification (MLPA). Eighty-six TSC1/2 variants were identified in 46 of the 61 LAM patients (75.4%) in which TSC2 and TSC1 variants were 88.37% and 11.63% respectively. The 86 variants are composed of (i) 52 single nucleotide variants (SNVs) (including 30 novel variants), (ii) 23 indels (including 21deletions, and 2 insertions), (iii) a germline duplication of exon 31–42 of TSC2, (iv) a 2.68 Mb somatic duplication containing TSC2, and (v) 9 regions with copy-neutral loss of heterogeneity (CN-LOHs) present only in the LAM patients with single TSC1/2 mutations. Sixty-one non-TSC1/2 variants in 31 genes were identified in 37 LAM patients. Combined applications of different techniques are necessary to achieve maximal detection rate of TSC1/2 variants in LAM patients. Thirty novel TSC1/2 variants expands the spectrum of TSC1/2 in LAM patients. Identification of 61 non-TSC1/2 variants suggests that alternative genes might have contributed to the initiation and progression of LAM.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Weiwei Zhao
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, Guangdong, China
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Xiaohua Ou
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Zhen Zhao
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Changming Hu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
| | - Mingming Sun
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Feifei Liu
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
| | - Junhao Deng
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
| | - Weili Gu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Jiaying An
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Qingling Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiaoxian Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
| | - Jiaxing Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Shihui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd, Guangzhou, Guangdong, China
- Clinical Genome Center, KingMed Center for Clinical Laboratory Co., Ltd, Guangzhou, Guangdong, China
- KingMed College of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou KingMed Translational Medicine Institute Co., Ltd, Guangzhou, Guangdong, China
- KingMed JianShi Innovation Institute (Guangzhou) Co., Ltd, Guangzhou, Guangdong, China
- * E-mail: (SY); (NZ)
| | - Nanshan Zhong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Institute for Respiratory Health, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, Guangdong, China
- National Clinical Research Center for Respiratory Disease, Guangzhou, Guangdong, China
- * E-mail: (SY); (NZ)
| |
Collapse
|
12
|
Krencz I, Sebestyen A, Papay J, Lou Y, Lutz GF, Majewicz TL, Khoor A. Correlation between immunohistochemistry and RICTOR fluorescence in situ hybridization amplification in small cell lung carcinoma. Hum Pathol 2019; 93:74-80. [PMID: 31454632 DOI: 10.1016/j.humpath.2019.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/23/2022]
Abstract
Small cell lung carcinoma (SCLC) accounts for approximately 15% of all lung cancers and remains a challenging disease, with no significant improvement in the field of targeted therapies. The RICTOR gene (rapamycin-insensitive companion of mTOR [mammalian target of rapamycin]), which encodes a key structural (scaffold) protein of mTOR complex 2), has recently been identified as one of the most frequently amplified genes and a potential therapeutic target in SCLC. The aim of this study was to compare immunohistochemical (IHC) expression of Rictor and phospho-Akt (a downstream target of mTOR complex 2) with RICTOR amplification as detected by fluorescence in situ hybridization (FISH) in SCLC. RICTOR FISH and Rictor and phospho-Akt IHC staining were performed on 100 formalin-fixed, paraffin-embedded SCLC samples. RICTOR amplification was detected in 15 samples (15%). IHC positivity for Rictor and phospho-Akt was observed in 37 (37%) and 42 (42%) samples, respectively. Considering FISH as the diagnostic standard, the sensitivity and specificity of Rictor IHC were 93% and 73%, whereas the sensitivity and specificity of phospho-Akt IHC were 80% and 65%, respectively. Rictor expression was higher in distant metastases than in primary tumor samples and lymph node metastases. There was no association between RICTOR amplification and clinical outcome. However, high expression of either Rictor or phospho-Akt was associated with significantly decreased overall survival. In conclusion, IHC expression of Rictor correlates highly with RICTOR amplification. Therefore, Rictor IHC can be used as a cost-effective method to select patients for RICTOR FISH and, potentially, for mTORC1/2 inhibitor therapy.
Collapse
Affiliation(s)
- Ildiko Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Anna Sebestyen
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Judit Papay
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary H-1085
| | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, Jacksonville, FL 32224
| | - Gabrielle F Lutz
- Clinical Research Internship Study Program, Mayo Clinic, Jacksonville, FL 32224
| | - Tracy L Majewicz
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224
| | - Andras Khoor
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224.
| |
Collapse
|
13
|
de la Cruz López KG, Toledo Guzmán ME, Sánchez EO, García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front Oncol 2019; 9:1373. [PMID: 31921637 PMCID: PMC6923780 DOI: 10.3389/fonc.2019.01373] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Continuous proliferation of tumor cells requires constant adaptations of energy metabolism to rapidly fuel cell growth and division. This energetic adaptation often comprises deregulated glucose uptake and lactate production in the presence of oxygen, a process known as the "Warburg effect." For many years it was thought that the Warburg effect was a result of mitochondrial damage, however, unlike this proposal tumor cell mitochondria maintain their functionality, and is essential for integrating a variety of signals and adapting the metabolic activity of the tumor cell. The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of numerous cellular processes implicated in proliferation, metabolism, and cell growth. mTORC1 controls cellular metabolism mainly by regulating the translation and transcription of metabolic genes, such as peroxisome proliferator activated receptor γ coactivator-1 α (PGC-1α), sterol regulatory element-binding protein 1/2 (SREBP1/2), and hypoxia inducible factor-1 α (HIF-1α). Interestingly it has been shown that mTORC1 regulates mitochondrial metabolism, thus representing an important regulator in mitochondrial function. Here we present an overview on the role of mTORC1 in the regulation of mitochondrial functions in cancer, considering new evidences showing that mTORC1 regulates the translation of nucleus-encoded mitochondrial mRNAs that result in an increased ATP mitochondrial production. Moreover, we discuss the relationship between mTORC1 and glutaminolysis, as well as mitochondrial metabolites. In addition, mitochondrial fission processes regulated by mTORC1 and its impact on cancer are discussed. Finally, we also review the therapeutic efficacy of mTORC1 inhibitors in cancer treatments, considering its use in combination with other drugs, with particular focus on cellular metabolism inhibitors, that could help improve their anti neoplastic effect and eliminate cancer cells in patients.
Collapse
Affiliation(s)
- Karen Griselda de la Cruz López
- Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Alejandro García Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México & Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- *Correspondence: Alejandro García Carrancá
| |
Collapse
|