1
|
Vachiraarunwong A, Gi M, Kiyono T, Suzuki S, Fujioka M, Qiu G, Guo R, Yamamoto T, Kakehashi A, Shiota M, Wanibuchi H. Characterizing the toxicological responses to inorganic arsenicals and their metabolites in immortalized human bladder epithelial cells. Arch Toxicol 2024; 98:2065-2084. [PMID: 38630284 DOI: 10.1007/s00204-024-03750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/21/2024] [Indexed: 06/13/2024]
Abstract
Arsenic is highly toxic to the human bladder. In the present study, we established a human bladder epithelial cell line that closely mimics normal human bladder epithelial cells by immortalizing primary uroplakin 1B-positive human bladder epithelial cells with human telomerase reverse transcriptase (HBladEC-T). The uroplakin 1B-positive human bladder epithelial cell line was then used to evaluate the toxicity of seven arsenicals (iAsV, iAsIII, MMAV, MMAIII, DMAV, DMAIII, and DMMTAV). The cellular uptake and metabolism of each arsenical was different. Trivalent arsenicals and DMMTAV exhibited higher cellular uptake than pentavalent arsenicals. Except for MMAV, arsenicals were transported into cells by aquaglyceroporin 9 (AQP9). In addition to AQP9, DMAIII and DMMTAV were also taken up by glucose transporter 5. Microarray analysis demonstrated that arsenical treatment commonly activated the NRF2-mediated oxidative stress response pathway. ROS production increased with all arsenicals, except for MMAV. The activating transcription factor 3 (ATF3) was commonly upregulated in response to oxidative stress in HBladEC-T cells: ATF3 is an important regulator of necroptosis, which is crucial in arsenical-induced bladder carcinogenesis. Inorganic arsenics induced apoptosis while MMAV and DMAIII induced necroptosis. MMAIII, DMAV, and DMMTAV induced both cell death pathways. In summary, MMAIII exhibited the strongest cytotoxicity, followed by DMMTAV, iAsIII, DMAIII, iAsV, DMAV, and MMAV. The cytotoxicity of the tested arsenicals on HBladEC-T cells correlated with their cellular uptake and ROS generation. The ROS/NRF2/ATF3/CHOP signaling pathway emerged as a common mechanism mediating the cytotoxicity and carcinogenicity of arsenicals in HBladEC-T cells.
Collapse
Affiliation(s)
- Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Division of Collaborative Research and Development, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Guiyu Qiu
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Runjie Guo
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
2
|
Kaczmarek K, Plage H, Furlano K, Hofbauer S, Weinberger S, Ralla B, Franz A, Fendler A, de Martino M, Roßner F, Schallenberg S, Elezkurtaj S, Kluth M, Lennartz M, Blessin NC, Marx AH, Samtleben H, Fisch M, Rink M, Slojewski M, Ecke T, Hallmann S, Koch S, Adamini N, Minner S, Simon R, Sauter G, Weischenfeldt J, Klatte T, Schlomm T, Horst D, Zecha H. Loss of Upk1a and Upk1b expression is linked to stage progression in urothelial carcinoma of the bladder. Int Urol Nephrol 2024; 56:499-508. [PMID: 37777995 PMCID: PMC10808463 DOI: 10.1007/s11255-023-03800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Uroplakin-1a (Upk1a) and uroplakin-1b (Upk1b) have recently been identified as diagnostic markers for the distinction of urothelial carcinomas from other solid tumor entities. Both proteins play an important role in the stabilization and strengthening of epithelial cells that line the bladder. METHODS To evaluate the prognostic role of uroplakin expression in urothelial carcinomas, more than 2700 urothelial neoplasms were analyzed in a tissue microarray format by immunohistochemistry. To further assess the diagnostic role of uroplakin immunohistochemistry, results were compared with preexisting GATA3 data. RESULT The fraction of Upk1a/Upk1b positive cases decreased slightly from pTaG2 low-grade (88% positive for Upk1a/87% positive for Upk1b) and pTaG2 high-grade (92%/89%) to pTaG3 (83%/88%; p > 0.05) and was lower in muscle-invasive (pT2-4) carcinomas (42%/64%; p < 0.0001/p < 0.0001 for pTa vs. pT2-4). Within pT2-4 carcinomas, high expression of Upk1a and Upk1b was linked to nodal metastasis and lymphatic vessel infiltration (p < 0.05) but unrelated to patient outcome. There were significant associations between Upk1a, Upk1b and GATA3 immunostaining (p < 0.0001 each), but 11% of GATA3 negative cancers were Upk1a/b positive and 8% of Upk1a/b negative cancers were GATA3 positive. Absence of GATA3/Upk1a/b staining was significantly linked to poor patient survival in the subgroup of 126 pT4 carcinomas (p = 0.0004) but not in pT2 and pT3 cancers. CONCLUSIONS In summary, the results of our study demonstrate that Upk1a and/or Upk1b immunohistochemistry can complement GATA3 for the distinction of urothelial carcinomas. Furthermore, a progressive loss of Upk1a/b expression during stage progression and a prognostic role of the combination GATA3/Upk1a/Upk1b in pT4 carcinomas is evident.
Collapse
Affiliation(s)
- Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Henning Plage
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Kira Furlano
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Antonia Franz
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michela de Martino
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, Marienhospital Hamburg, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Steffen Hallmann
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Joachim Weischenfeldt
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Biotech Research & Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Tobias Klatte
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Henrik Zecha
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| |
Collapse
|
3
|
Mo G, Long X, Cao L, Tang Y, Yan Y, Guo T. A Six-gene Prognostic Model Based on Neutrophil Extracellular Traps (NETs)-related Gene Signature for Lung Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1969-1983. [PMID: 38357943 DOI: 10.2174/0113862073282003240119064337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant cancers. Neutrophil extracellular traps (NETs) have been discovered to play a crucial role in the pathogenesis of LUAD. We aimed to establish an innovative prognostic model for LUAD based on the distinct expression patterns of NETs-related genes. METHODS The TCGA LUAD dataset was utilized as the training set, while GSE31210, GSE37745, and GSE50081 were undertaken as the verification sets. The patients were grouped into clusters based on the expression signature of NETs-related genes. Differentially expressed genes between clusters were identified through the utilization of the random forest and LASSO algorithms. The NETs score model for LUAD prognosis was developed by multiplying the expression levels of specific genes with their corresponding LASSO coefficients and then summing them. The validity of the model was confirmed by analysis of the survival curves and ROC curves. Additionally, immune infiltration, GSEA, mutation analysis, and drug analysis were conducted. Silencing ABCC2 in A549 cells was achieved to investigate its effect. RESULTS We identified six novel NETs-related genes, namely UPK1B, SFTA3, GGTLC1, SCGB3A1, ABCC2, and NTS, and developed a NETs score signature, which exhibited a significant correlation with the clinicopathological and immune traits of the LUAD patients. High-risk patients showed inhibition of immune-related processes. Mutation patterns exhibited variability among the different groups. AZD3759, lapatinib, and dasatinib have been identified as potential candidates for LUAD treatment. Moreover, the downregulation of ABCC2 resulted in the induction of apoptosis and suppression of migration and invasion in A549 cells. CONCLUSION Altogether, this study has identified a novel NET-score signature based on six novel NET-related genes to predict the prognosis of LUAD and ABCC2 and has also explored a new method for personalized chemo-/immuno-therapy of LUAD.
Collapse
Affiliation(s)
- Guiyan Mo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Xuan Long
- Department of Respiratory and Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Limin Cao
- Department of Respiratory and Critical Care Medicine, Lianyungang Second People's Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yuling Tang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Yusheng Yan
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| | - Ting Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410005, Hunan, China
| |
Collapse
|
4
|
Goda H, Nakashiro KI, Sano Y, Adachi T, Tokuzen N, Kuribayashi N, Hino S, Uchida D. KRT13 and UPK1B for differential diagnosis between metastatic lung carcinoma from oral squamous cell carcinoma and lung squamous cell carcinoma. Sci Rep 2023; 13:22626. [PMID: 38114532 PMCID: PMC10730515 DOI: 10.1038/s41598-023-49545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
Oral squamous cell carcinomas unusually show distant metastasis to the lung after primary treatment, which can be difficult to differentiate from primary squamous cell carcinoma of the lung. While the location and number of tumor nodules is helpful in diagnosing cases, differential diagnosis may be difficult even with histopathological examination. Therefore, we attempted to identify molecules that can facilitate accurate differential diagnosis. First, we performed a comprehensive gene expression analysis using microarray data for OSCC-LM and LSCC, and searched for genes showing significantly different expression levels. We then identified KRT13, UPK1B, and nuclear receptor subfamily 0, group B, member 1 (NR0B1) as genes that were significantly upregulated in LSCC and quantified the expression levels of these genes by real-time quantitative RT-PCR. The expression of KRT13 and UPK1B proteins were then examined by immunohistochemical staining. While OSCC-LM showed no KRT13 and UPK1B expression, some tumor cells of LSCC showed KRT13 and UPK1B expression in 10 of 12 cases (83.3%). All LSCC cases were positive for at least one of these markers. Thus, KRT13 and UPK1B might contribute in differentiating OSCC-LM from LSCC.
Collapse
Affiliation(s)
- Hiroyuki Goda
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan.
| | - Koh-Ichi Nakashiro
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Yoshifumi Sano
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Tomoko Adachi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Norihiko Tokuzen
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Nobuyuki Kuribayashi
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Satoshi Hino
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Daisuke Uchida
- Department of Oral and Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|