1
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Dragos-Pinzaru OG, Buema G, Herea DD, Chiriac H, Lupu N, Minuti AE, Stoian G, Shore D, Pierre VC, Tabakovic I, Stadler BJH. Synthesis and Characterization of Gold-Shell Magnetic Nanowires for Theranostic Applications. COATINGS 2022; 12:1755. [DOI: 10.3390/coatings12111755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Increasing interest has been given in recent years to alternative physical therapies for cancer, with a special focus on magneto-mechanical actuation of magnetic nanoparticles. The reported findings underline the need for highly biocompatible nanostructures, along with suitable mechanical and magnetic properties for different configurations of alternating magnetic fields. Here, we show how the biocompatibility of magnetic nanowires (MNWs), especially CoFe, can be increased by gold coating, which can be used both in cancer therapy and magnetic resonance imaging (MRI). This study provides a new approach in the field of theranostic applications, demonstrating the capabilities of core–shell nanowires to be used both to increase the cancer detection limit (as T2 contrast agents) and for its treatment (through magneto-mechanical actuation). The MNWs were electrodeposited in alumina templates, whereas the gold layer was electroless-plated by galvanic replacement. The gold-coated CoFe nanowires were biocompatible until they induced high cellular death to human osteosarcoma cells via magneto-mechanical actuation. These same MNWs displayed increased relaxivities (r1, r2). Our results show that the gold-coated CoFe nanowires turned out to be highly efficient in tumor cell destruction, and, at the same time, suitable for MRI applications.
Collapse
Affiliation(s)
| | - Gabriela Buema
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | | | - Horia Chiriac
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | - Nicoleta Lupu
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | | | - George Stoian
- National Institute of R&D for Technical Physics, 700050 Iasi, Romania
| | - Daniel Shore
- ECE Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Valerie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ibro Tabakovic
- ECE Department, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
3
|
Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, Miyanishi M. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol 2021; 196:711-723. [PMID: 34927242 PMCID: PMC9300074 DOI: 10.1111/bjh.17867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
Historically, defining haematopoietic subsets, including self‐renewal, differentiation and lineage restriction, has been elucidated by transplanting a small number of candidate cells with many supporting bone marrow (BM) cells. While this approach has been invaluable in characterising numerous distinct subsets in haematopoiesis, this approach is arguably flawed. The haematopoietic stem cell (HSC) has been proposed as the critical haematopoietic subset necessary for transplantation. However, due to the presence of supporting cells, the HSC has never demonstrated sufficiency. Utilising the homeobox B5 (Hoxb5)‐reporter system, we found that neither long‐term (LT) HSCs nor short‐term (ST) HSCs alone were sufficient for long‐term haematopoietic reconstitution. Critically, reconstitution can be rescued by transplanting combined LT‐ and ST‐HSCs, without supporting cells; a fraction we term the ‘Minimum Subset for Transplantation’ (MST). The MST accounts for only 0·005% of nucleated cells within mouse BM, and this MST can be cultured, expanded and genetically modified while preserving its rapid haematopoietic engraftment potential. These results support the consideration of an MST approach for clinical translation, especially for gene therapy approaches that require HSC compartment modification.
Collapse
Affiliation(s)
- Katsuyuki Nishi
- RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Taro Sakamaki
- RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kay Sadaoka
- RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Momo Fujii
- RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - James Y Chen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
4
|
Russkamp NF, Myburgh R, Kiefer JD, Neri D, Manz MG. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp Hematol 2021; 95:31-45. [PMID: 33484750 DOI: 10.1016/j.exphem.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
Precise replacement of diseased or dysfunctional organs is the goal of regenerative medicine and has appeared to be a distant goal for a long time. In the field of hematopoietic stem cell transplantation, this goal is now becoming tangible as gene-editing technologies and novel conditioning agents are entering the clinical arena. Targeted immunologic depletion of hematopoietic stem cells (HSCs), which are at the very root of the hematopoietic system, will enable more selective and potentially more effective hematopoietic stem cell transplantation in patients with hematological diseases. In contrast to current conditioning regimes based on ionizing radiation and chemotherapy, immunologic conditioning will spare mature hematopoietic cells and cause substantially less inflammation and unspecific collateral damage to other organs. Biological agents that target the stem cell antigen CD117 are the frontrunners for this purpose and have exhibited preclinical activity in depletion of healthy HSCs. The value of anti-CD117 antibodies as conditioning agents is currently being evaluated in early clinical trials. Whereas mild, antibody-based immunologic conditioning concepts might be appropriate for benign hematological disorders in which incomplete replacement of diseased cells is sufficient, higher efficacy will be required for treatment and elimination of hematologic stem cell malignancies such as acute myeloid leukemia and myelodysplastic syndrome. Antibody-drug conjugates, bispecific T-cell engaging and activating antibodies (TEAs), or chimeric antigen receptor (CAR) T cells might offer increased efficacy compared with naked antibodies and yet higher tolerability and safety compared with current genotoxic conditioning approaches. Here, we summarize the current state regarding immunologic conditioning concepts for the treatment of HSC disorders and outline potential future developments.
Collapse
Affiliation(s)
- Norman F Russkamp
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Renier Myburgh
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland
| | - Jonathan D Kiefer
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich (CCCZ), Zurich, Switzerland.
| |
Collapse
|
5
|
Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Sci Rep 2018; 8:4726. [PMID: 29549333 PMCID: PMC5856848 DOI: 10.1038/s41598-018-22899-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R−/− (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat’s remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
Collapse
|
6
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
7
|
Tsukamoto A, Abbot SE, Kadyk LC, DeWitt ND, Schaffer DV, Wertheim JA, Whittlesey KJ, Werner MJ. Challenging Regeneration to Transform Medicine. Stem Cells Transl Med 2015; 5:1-7. [PMID: 26607174 DOI: 10.5966/sctm.2015-0180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The aging population in the U.S. and other developed countries has led to a large increase in the number of patients suffering from degenerative diseases. Transplantation surgery has been a successful therapeutic option for certain patients; however, the availability of suitable donor organs and tissues significantly limits the number of patients who can benefit from this approach. Regenerative medicine has witnessed numerous recent and spectacular advances, making the repair or replacement of dysfunctional organs and tissues an achievable goal. Public-private partnerships and government policies and incentives would further catalyze the development of universally available donor tissues, resulting in broad medical and economic benefits. This article describes a Regenerative Medicine Grand Challenge that the Alliance for Regenerative Medicine recently shared with the White House's Office of Science and Technology Policy in response to a White House call to action in scientific disciplines suggesting that the development of "universal donor tissues" should be designated as a Regenerative Medicine Grand Challenge. Such a designation would raise national awareness of the potential of regenerative medicine to address the unmet needs of many diseases and would stimulate the scientific partnerships and investments in technology needed to expedite this goal. Here we outline key policy changes and technological challenges that must be addressed to achieve the promise of a major breakthrough in the treatment of degenerative disease. A nationalized effort and commitment to develop universal donor tissues could realize this goal within 10 years and along the way result in significant innovation in manufacturing technologies. SIGNIFICANCE Regenerative therapies, in which dysfunctional or degenerating cells, tissues, or organs are repaired or replaced, have the potential to cure chronic degenerative diseases. Such treatments are limited by a shortage of donor organs and tissues and the need for immune suppression to prevent rejection. This article proposes a 21st Century Grand Challenge that would address this significant medical need by coordinating a national effort to convene the multidisciplinary expertise needed to manufacture functional and engraftable cells, tissues, or organs that could be made available to any patient without significant risk of rejection-so-called universal donor tissues.
Collapse
Affiliation(s)
| | | | - Lisa C Kadyk
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Natalie D DeWitt
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Jason A Wertheim
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kevin J Whittlesey
- California Institute for Regenerative Medicine, San Francisco, California, USA
| | - Michael J Werner
- Holland & Knight, Washington, D.C., USA Alliance for Regenerative Medicine, Washington, D.C., USA
| |
Collapse
|
8
|
Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Pai SY, Ballard B, Bauer SC, Bleesing JJH, Boyle M, Brower A, Buckley RH, van der Burg M, Burroughs LM, Candotti F, Cant AJ, Chatila T, Cunningham-Rundles C, Dinauer MC, Dvorak CC, Filipovich AH, Fleisher TA, Bobby Gaspar H, Gungor T, Haddad E, Hovermale E, Huang F, Hurley A, Hurley M, Iyengar S, Kang EM, Logan BR, Long-Boyle JR, Malech HL, McGhee SA, Modell F, Modell V, Ochs HD, O'Reilly RJ, Parkman R, Rawlings DJ, Routes JM, Shearer WT, Small TN, Smith H, Sullivan KE, Szabolcs P, Thrasher A, Torgerson TR, Veys P, Weinberg K, Zuniga-Pflucker JC. Primary Immune Deficiency Treatment Consortium (PIDTC) report. J Allergy Clin Immunol 2014; 133:335-47. [PMID: 24139498 PMCID: PMC3960312 DOI: 10.1016/j.jaci.2013.07.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023]
Abstract
The Primary Immune Deficiency Treatment Consortium (PIDTC) is a network of 33 centers in North America that study the treatment of rare and severe primary immunodeficiency diseases. Current protocols address the natural history of patients treated for severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome, and chronic granulomatous disease through retrospective, prospective, and cross-sectional studies. The PIDTC additionally seeks to encourage training of junior investigators, establish partnerships with European and other International colleagues, work with patient advocacy groups to promote community awareness, and conduct pilot demonstration projects. Future goals include the conduct of prospective treatment studies to determine optimal therapies for primary immunodeficiency diseases. To date, the PIDTC has funded 2 pilot projects: newborn screening for SCID in Navajo Native Americans and B-cell reconstitution in patients with SCID after hematopoietic stem cell transplantation. Ten junior investigators have received grant awards. The PIDTC Annual Scientific Workshop has brought together consortium members, outside speakers, patient advocacy groups, and young investigators and trainees to report progress of the protocols and discuss common interests and goals, including new scientific developments and future directions of clinical research. Here we report the progress of the PIDTC to date, highlights of the first 2 PIDTC workshops, and consideration of future consortium objectives.
Collapse
Affiliation(s)
- Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Morton J Cowan
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Luigi D Notarangelo
- Division of Immunology, the Manton Center for Orphan Disease Research, Children's Hospital, and Harvard Stem Cell Institute, Harvard Medical School, Boston, Mass
| | - Donald B Kohn
- Departments of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif
| | - Jennifer M Puck
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif; Institute for Human Genetics, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Pediatric Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Sarah C Bauer
- Developmental and Behavioral Pediatrics, Lurie Children's Hospital of Chicago, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Jack J H Bleesing
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Amy Brower
- Newborn Screening Translational Research Network, American College of Medical Genetics and Genomics, Bethesda, Md
| | - Rebecca H Buckley
- Pediatric Allergy and Immunology, Duke University School of Medicine, Durham, NC
| | | | - Lauri M Burroughs
- Pediatric Hematology/Oncology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Wash
| | - Fabio Candotti
- Genetics & Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | - Andrew J Cant
- Pediatric Immunology and Infectious Diseases and Pediatric Bone Marrow Transplant, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | - Talal Chatila
- Pediatric Allergy/Immunology, Children's Hospital, Harvard Medical School, Boston, Mass
| | | | - Mary C Dinauer
- Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, Mo
| | - Christopher C Dvorak
- Division of Allergy/Immunology and Blood and Marrow Transplantation, Department of Pediatrics and UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, Calif
| | - Alexandra H Filipovich
- Pediatric Clinical Immunology, Division of Hematology/Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| | - Hubert Bobby Gaspar
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Tayfun Gungor
- Pediatric Immunology and Blood and Marrow Transplantation, Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Elie Haddad
- Pediatric Immunology, Mother and Child Ste-Justine Hospital, Montreal, Quebec, Canada
| | | | - Faith Huang
- Pediatric Allergy/Immunology, Mount Sinai Medical Center, New York, NY
| | - Alan Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | - Mary Hurley
- Chronic Granulomatous Disease Association, San Marino, Calif
| | | | - Elizabeth M Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Brent R Logan
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wis
| | - Janel R Long-Boyle
- Department of Clinical Pharmacy, School of Pharmacy, University of California, San Francisco, Calif
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sean A McGhee
- Pediatric Allergy/Immunology, Lucile Packard Children's Hospital, Stanford University Medical Center, Stanford, Calif
| | | | | | - Hans D Ochs
- Center for Immunity and Immunotherapy, Seattle Children's Hospital Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Richard J O'Reilly
- Pediatrics and Immunology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robertson Parkman
- Division of Research Immunology/B.M.T., Children's Hospital Los Angeles, Los Angeles, Calif
| | - David J Rawlings
- Pediatric Immunology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - John M Routes
- Pediatric Allergy and Clinical Immunology, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wis
| | - William T Shearer
- Pediatric Allergy & Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Trudy N Small
- Pediatric Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Kathleen E Sullivan
- Pediatric Immunology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Paul Szabolcs
- Bone Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Adrian Thrasher
- Pediatric Immunology, Center for Immunodeficiency, Institute of Child Health, Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Troy R Torgerson
- Pediatric Rheumatology, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Wash
| | - Paul Veys
- Blood and Marrow Transplantation, Institute of Child Health, Great Ormond Street Hospital, London, United Kingdom
| | - Kenneth Weinberg
- Pediatric Stem Cell Transplantation and Hematology/Oncology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, Calif
| | | |
Collapse
|
9
|
Maguire G. Stem cell therapy without the cells. Commun Integr Biol 2013; 6:e26631. [PMID: 24567776 PMCID: PMC3925653 DOI: 10.4161/cib.26631] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/14/2022] Open
Abstract
As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment.
Collapse
Affiliation(s)
- Greg Maguire
- BioRegenerative Sciences, Inc; The SRM Molecular Foundry; San Diego, CA USA
| |
Collapse
|
10
|
Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, Lopez AF, Parker MW. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev 2013; 250:277-302. [PMID: 23046136 DOI: 10.1111/j.1600-065x.2012.01164.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
Collapse
|
11
|
Fernandez I, Fridley KM, Arasappan D, Ambler RV, Tucker PW, Roy K. Gene expression profile and functionality of ESC-derived Lin-ckit+Sca-1+ cells are distinct from Lin-ckit+Sca-1+ cells isolated from fetal liver or bone marrow. PLoS One 2012; 7:e51944. [PMID: 23300581 PMCID: PMC3531429 DOI: 10.1371/journal.pone.0051944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 11/13/2012] [Indexed: 01/30/2023] Open
Abstract
In vitro bioreactor-based cultures are being extensively investigated for large-scale production of differentiated cells from embryonic stem cells (ESCs). However, it is unclear whether in vitro ESC-derived progenitors have similar gene expression profiles and functionalities as their in vivo counterparts. This is crucial in establishing the validity of ESC-derived cells as replacements for adult-isolated cells for clinical therapies. In this study, we compared the gene expression profiles of Lin-ckit+Sca-1+ (LKS) cells generated in vitro from mouse ESCs using either static or bioreactor-based cultures, with that of native LKS cells isolated from mouse fetal liver (FL) or bone marrow (BM). We found that in vitro-generated LKS cells were more similar to FL- than to BM LKS cells in gene expression. Further, when compared to cells derived from bioreactor cultures, static culture-derived LKS cells showed fewer differentially expressed genes relative to both in vivo LKS populations. Overall, the expression of hematopoietic genes was lower in ESC-derived LKS cells compared to cells from BM and FL, while the levels of non-hematopoietic genes were up-regulated. In order to determine if these molecular profiles correlated with functionality, we evaluated ESC-derived LKS cells for in vitro hematopoietic-differentiation and colony formation (CFU assay). Although static culture-generated cells failed to form any colonies, they did differentiate into CD11c+ and B220+ cells indicating some hematopoietic potential. In contrast, bioreactor-derived LKS cells, when differentiated under the same conditions failed to produce any B220+ or CD11c+ cells and did not form colonies, indicating that these cells are not hematopoietic progenitors. We conclude that in vitro culture conditions significantly affect the transcriptome and functionality of ESC-derived LKS cells and although in vitro differentiated LKS cells were lineage negative and expressed both ckit and Sca-1, these cells, especially those obtained from dynamic cultures, are significantly different from native cells of the same phenotype.
Collapse
Affiliation(s)
- Irina Fernandez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Krista M. Fridley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Dhivya Arasappan
- Genome Sequencing and Analysis Facility, The University of Texas at Austin, Austin, Texas, United States of America
| | - Rosalind V. Ambler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
| | - Philip W. Tucker
- Department of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, Texas, United States of America
- The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Krishnendu Roy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, United States of America
- The Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ventura Ferreira MS, Labude N, Walenda G, Adamzyk C, Wagner W, Piroth D, Müller AM, Knüchel R, Hieronymus T, Zenke M, Jahnen-Dechent W, Neuss S. Ex vivoexpansion of cord blood-CD34+cells using IGFBP2and Angptl-5 impairs short-term lymphoid repopulationin vivo. J Tissue Eng Regen Med 2012; 7:944-54. [DOI: 10.1002/term.1486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | - Norina Labude
- Institute of Pathology; RWTH Aachen University; Germany
| | - Gudrun Walenda
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | | | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
| | - Daniela Piroth
- Department for Gynecology; RWTH Aachen University; Germany
| | - Albrecht M. Müller
- Institute for Medical Radiation and Cell Research; University of Würzburg; Germany
| | - Ruth Knüchel
- Institute of Pathology; RWTH Aachen University; Germany
| | - Thomas Hieronymus
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Martin Zenke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering Group; RWTH Aachen University; Germany
- Institute for Biomedical Engineering, Department of Cell Biology; RWTH Aachen University; Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| | - Sabine Neuss
- Institute of Pathology; RWTH Aachen University; Germany
- Helmholtz Institute for Biomedical Engineering, Biointerface Group; RWTH Aachen University; Germany
| |
Collapse
|
13
|
Hook LA. Stem cell technology for drug discovery and development. Drug Discov Today 2012; 17:336-42. [DOI: 10.1016/j.drudis.2011.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/12/2011] [Accepted: 11/02/2011] [Indexed: 01/12/2023]
|
14
|
Abstract
Many new therapies are emerging that use hematopoietic stem and progenitor cells. In this review, we focus on five promising emerging trends that are altering stem cell usage in pediatrics: (i) The use of hematopoietic stem cell (HSC) transplantation, autologous or allogeneic, in the treatment of autoimmune disorders is one. (ii) The use of cord blood transplantation in patients with inherited metabolic disorders such as Hurler syndrome shows great benefit, even more so than replacement enzyme therapy. (iii) Experience with the delivery of gene therapy through stem cells is increasing, redefining the potential and limitations of this therapy. (iv) It has recently been shown that human immunodeficiency virus (HIV) infection can be cured by the use of selected stem cells. (v) Finally, it has long been postulated that HSC-transplantation can be used to induce tolerance in solid-organ transplant recipients. A new approach to tolerance induction using myeloid progenitor cells will be described.
Collapse
|
15
|
Abstract
Notch is a crucial cell signaling pathway in metazoan development. By means of cell-cell interactions, Notch signaling regulates cellular identity, proliferation, differentiation and apoptosis. Within the last decade, numerous studies have shown an important role for this pathway in the development and homeostasis of mammalian stem cell populations. Hematopoietic stem cells (HSCs) constitute a well-defined population that shows self-renewal and multi-lineage differentiation potential, with the clinically relevant capacity to repopulate the hematopoietic system of an adult organism. Here, we review the emergence, development and maintenance of HSCs during mammalian embryogenesis and adulthood, with respect to the role of Notch signaling in hematopoietic biology.
Collapse
|