1
|
Li B, Luo M, Liu X, Shi W, Qi J, Zhou S, Wang G. The Spodoptera frugiperda L-aminoacylase degrades fatty acid-amino acid conjugates and promotes larvae growth on Zea mays. Commun Biol 2025; 8:641. [PMID: 40263587 PMCID: PMC12015422 DOI: 10.1038/s42003-025-08048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Oral secretions (OS) contain diverse functional molecules that play important roles in the molecular interactions between insect herbivores and their host plants. Components of OS have been hypothesized to facilitate adaptation of specialized herbivores towards their preferred hosts. In this study, we identified an L-aminoacylase-encoding gene, SfruACY, that was preferentially up-regulated in the salivary glands of Spodoptera frugiderpa larvae when feeding on maize leaves compared to artificial diet. The protein product was confirmed to catalyze the in vitro degradation of fatty acid-amino acid conjugates (FACs), the classic plant defense elicitors commonly found in the OS of lepidopteran caterpillars. Generation of a homozygous SfruACY knock-out line with the CRISPR-Cas9 technology further revealed that the activity of this gene could promote the growth of S. frugiperda larvae on maize leaves but was not required for larvae growth on artificial diet. Finally, comparative transcriptomic analyses of maize leaves showed more pronounced inducible defense responses when attacked by the SfruACY knocked-out larvae than the wildtype intruders. These experimental evidences support that the inducible expression of SfruACY by maize leaf diet in the salivary glands of S. frugiperda larvae can lower the FAC contents in their OS, and hence facilitate larvae growth likely by inducing weaker plant defense responses. Our findings provide a mechanistic explanation for a longstanding observation that S. frugiperda larvae induce weaker plant defense responses, and shed light on transcriptional regulation as a potential mean for insect herbivores to adapt towards their preferred host plant species.
Collapse
Affiliation(s)
- Bin Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Mei Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Xiaofeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Wangpeng Shi
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Entomology, China Agricultural University, Beijing, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Kallure GS, Sahoo SS, Kale RS, Barvkar VT, Kontham R, Giri AP. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104070. [PMID: 38176573 DOI: 10.1016/j.ibmb.2024.104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
One of the most prevalent bioactive molecules present in the oral secretion (OS) of lepidopteran insects is fatty acid amino acid conjugates (FACs). Insect dietary components have influence on the synthesis and retaining the pool of FACs in the OS. We noted differential and diet-specific accumulation of FACs in the OS of Helicoverpa armigera by using Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry. Interestingly, we identified FACs hydrolyzing enzyme aminoacylase (HaACY) in the OS of H. armigera through proteomic analysis. Next, we have cloned, expressed, and purified active recombinant HaACY in the bacterial system. Recombinant HaACY hydrolyzes all the six identified FACs in the OS of H. armigera larvae fed on host and non-host plants and releases respective fatty acid and glutamine. In these six FACs, fatty acid moieties vary while amino acid glutamine was common. Glutamine obtained upon hydrolysis of FACs by HaACY might serve as an amino acid pool for insect growth and development. To understand the substrate choices of HaACY, we chemically synthesized, purified, and characterized all the six FACs. Interestingly, rHaACY also shows hydrolysis of synthetic FACs into respective fatty acid and glutamine. Our results underline the importance of diet on accumulation of FACs and role of aminoacylase(s) in regulating the level of FACs and glutamine.
Collapse
Affiliation(s)
- Gopal S Kallure
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Shubhranshu Shekhar Sahoo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Rutuja S Kale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Ravindar Kontham
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India; Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Bhandari S, Bisht KS, Merkler DJ. The Biosynthesis and Metabolism of the N-Acylated Aromatic Amino Acids: N-Acylphenylalanine, N-Acyltyrosine, N-Acyltryptophan, and N-Acylhistidine. Front Mol Biosci 2022; 8:801749. [PMID: 35047560 PMCID: PMC8762209 DOI: 10.3389/fmolb.2021.801749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
The fatty acid amides are a family of lipids composed of two chemical moieties, a fatty acid and a biogenic amine linked together in an amide bond. This lipid family is structurally related to the endocannabinoid anandamide (N-arachidonoylethanolamine) and, thus, is frequently referred to as a family of endocannabinoid-related lipids. The fatty acid amide family is divided into different classes based on the conjugate amine; anandamide being a member of the N-acylethanolamine class (NAE). Another class within the fatty acid amide family is the N-acyl amino acids (NA-AAs). The focus of this review is a sub-class of the NA-AAs, the N-acyl aromatic amino acids (NA-ArAAs). The NA-ArAAs are not broadly recognized, even by those interested in the endocannabinoids and endocannabinoid-related lipids. Herein, the NA-ArAAs that have been identified from a biological source will be highlighted and pathways for their biosynthesis, degradation, enzymatic modification, and transport will be presented. Also, information about the cellular functions of the NA-ArAAs will be placed in context with the data regarding the identification and metabolism of these N-acylated amino acids. A review of the current state-of-knowledge about the NA-ArAAs is to stimulate future research about this underappreciated sub-class of the fatty acid amide family.
Collapse
Affiliation(s)
- Suzeeta Bhandari
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - Kirpal S Bisht
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, United States
| |
Collapse
|
4
|
Krempl C, Joußen N, Reichelt M, Kai M, Vogel H, Heckel DG. Consumption of gossypol increases fatty acid-amino acid conjugates in the cotton pests Helicoverpa armigera and Heliothis virescens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21843. [PMID: 34490676 DOI: 10.1002/arch.21843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Gossypol is a toxic sesquiterpene dimer produced by cotton plants which deters herbivory by insects and vertebrates. Two highly reactive aldehyde groups contribute to gossypol toxicity by cross-linking herbivore proteins. We identified another consequence of consuming gossypol in two insect pests of cotton: increased amounts of fatty acid-amino acid conjugates (FACs). Eight different FACs in the feces of larval Helicoverpa armigera and Heliothis virescens increased when larvae consumed artificial diet containing gossypol, but not a gossypol derivative lacking free aldehyde groups (SB-gossypol). FACs are produced by joining plant-derived fatty acids with amino acids of insect origin in the larval midgut tissue by an unknown conjugase, and translocated into the gut lumen by an unknown transporter. FACs are hydrolyzed back into fatty acids and amino acids by an aminoacylase (L-ACY-1) in the gut lumen. The equilibrium level of FACs in the lumen is determined by a balance between conjugation and hydrolysis, which may differ among species. When heterologously expressed, L-ACY-1 of H. armigera but not H. virescens was inhibited by gossypol; consistent with the excretion of more FACs in the feces by H. armigera. FACs are known to benefit the plant host by inducing anti-herbivore defensive responses, and have been hypothesized to benefit the herbivore by acting as a surfactant and increasing nitrogen uptake efficiency. Thus in addition to its direct toxic effects, gossypol may negatively impact insect nitrogen uptake efficiency and amplify the signal used by the plant to elicit release of volatile compounds that attract parasitoids.
Collapse
Affiliation(s)
- Corinna Krempl
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Joußen
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marco Kai
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
5
|
Giacometti R, Jacobi V, Kronberg F, Panagos C, Edison AS, Zavala JA. Digestive activity and organic compounds of Nezara viridula watery saliva induce defensive soybean seed responses. Sci Rep 2020; 10:15468. [PMID: 32963321 PMCID: PMC7508886 DOI: 10.1038/s41598-020-72540-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
The stink bug Nezara viridula is one of the most threatening pests for agriculture in North and South America, and its oral secretion may be responsible for the damage it causes in soybean (Glycine max) crop. The high level of injury to seeds caused by pentatomids is related to their feeding behavior, morphology of mouth parts, and saliva, though information on the specific composition of the oral secretion is scarce. Field studies were conducted to evaluate the biochemical damage produced by herbivory to developing soybean seeds. We measured metabolites and proteins to profile the insect saliva in order to understand the dynamics of soybean-herbivore interactions. We describe the mouth parts of N. viridula and the presence of metabolites, proteins and active enzymes in the watery saliva that could be involved in seed cell wall modification, thus triggering plant defenses against herbivory. We did not detect proteins from bacteria, yeasts, or soybean in the oral secretion after feeding. These results suggest that the digestive activity and organic compounds of watery saliva may elicit a plant self-protection response. This study adds to our understanding of stink bug saliva plasticity and its role in the struggle against soybean defenses.
Collapse
Affiliation(s)
- Romina Giacometti
- Consejo Nacional de Investigaciones Científicas y Técnicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Vanesa Jacobi
- Consejo Nacional de Investigaciones Científicas y Técnicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Florencia Kronberg
- Consejo Nacional de Investigaciones Científicas y Técnicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Charalampos Panagos
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA, USA
| | - Arthur S Edison
- Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA, USA
| | - Jorge A Zavala
- Consejo Nacional de Investigaciones Científicas y Técnicas / Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
- Cátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Wang R, Seyedsayamdost MR. Opinion: Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Yoshinaga N. Physiological function and ecological aspects of fatty acid-amino acid conjugates in insects†. Biosci Biotechnol Biochem 2016; 80:1274-82. [DOI: 10.1080/09168451.2016.1153956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Novoselov A, Becker T, Pauls G, von Reuß SH, Boland W. Spodoptera littoralis detoxifies neurotoxic 3-nitropropanoic acid by conjugation with amino acids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:97-103. [PMID: 26092560 DOI: 10.1016/j.ibmb.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Spodoptera littoralis is a phytophagous generalist. Its host range includes more than 40 plant species, some of which produce 3-nitropropanoic acid (3-NPA), an irreversible inhibitor of mitochondrial succinate dehydrogenase. Growth in larvae fed an artificial diet with a sublethal admixture of 3-NPA (4.2 μmol per g) was slowed significantly, but larvae experienced no increase in mortality. In contrast, larvae injected with 25.2 μmol/g (bodyweight) 3-NPA experienced acute toxicity and death. To study the detoxification mechanism of 3-NPA in S. littoralis, the insect frass was analyzed by HPLC-MS. Comparative analysis of 3-NPA-treated and -untreated control samples using HR-MS(2) revealed a group of differential signals that were identified as amino acid amides of 3-NPA with glycine, alanine, serine, and threonine. When sublethal amounts of stable isotope-labeled 3-NPA were injected into a larva's hemolymph, 3-NPA amino acid conjugates were identified as putative detoxification products. Bioassays with synthetic standards confirmed that the toxicity of the amides was negligible in comparison to the toxicity of free 3-NPA, demonstrating that amino acid conjugation in S. littoralis represents an efficient way to detoxify 3-NPA. Furthermore, biosynthetic studies using crude fractions of the gut tissue indicated that conjugation of 3-NPA with amino acids occurs in epithelial cells of the insect's gut. Taken together, these results suggest that the detoxification of 3-NPA in S. littoralis proceeds via conjugation to specific amino acids within the epithelial cells followed by export of the nontoxic amino acid conjugates to the hemolymph via as yet uncharacterized mechanisms, most likely involving the Malpighian tubules.
Collapse
Affiliation(s)
- Alexey Novoselov
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Tobias Becker
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Gerhard Pauls
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Stephan H von Reuß
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knoell-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
9
|
Yoshinaga N, Ishikawa C, Seidl-Adams I, Bosak E, Aboshi T, Tumlinson JH, Mori N. N-(18-hydroxylinolenoyl)-L-glutamine: a newly discovered analog of volicitin in Manduca sexta and its elicitor activity in plants. J Chem Ecol 2014; 40:484-90. [PMID: 24817386 DOI: 10.1007/s10886-014-0436-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Plants attacked by insect herbivores release a blend of volatile organic compounds (VOCs) that serve as chemical cues for host location by parasitic wasps, natural enemies of the herbivores. Volicitin, N-(17-hydroxylinolenoyl)-L-glutamine, is one of the most active VOC elicitors found in herbivore regurgitants. Our previous study revealed that hydroxylation on the 17th position of the linolenic acid moiety of N-linolenoyl-L-glutamine increases by more than three times the elicitor activity in corn plants. Here, we identified N-(18-hydroxylinolenoyl)-L-glutamine (18OH-volicitin) from larval gut contents of tobacco hornworm (THW), Manduca sexta. Eggplant and tobacco, two solanaceous host plants of THW larvae, and corn, a non-host plant, responded differently to this new elicitor. Eggplant and tobacco seedlings emitted twice the amount of VOCs when 18OH-volicitin was applied to damaged leaf surfaces compared to N-linolenoyl-L-glutamine, while both these fatty acid amino acid conjugates (FACs) elicited a similar response in corn seedlings. In both solanaceous plants, there was no significant difference in the elicitor activity of 17OH- and 18OH-volicitin. Interestingly, other lepidopteran species that have 17OH-type volicitin also attack solanaceous plants. These data suggest that plants have developed herbivory-detection systems customized to their herbivorous enemies.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan,
| | | | | | | | | | | | | |
Collapse
|
10
|
Yoshinaga N, Abe H, Morita S, Yoshida T, Aboshi T, Fukui M, Tumlinson JH, Mori N. Plant volatile eliciting FACs in lepidopteran caterpillars, fruit flies, and crickets: a convergent evolution or phylogenetic inheritance? Front Physiol 2014; 5:121. [PMID: 24744735 PMCID: PMC3978339 DOI: 10.3389/fphys.2014.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/13/2014] [Indexed: 12/02/2022] Open
Abstract
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Hiroaki Abe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Sayo Morita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Tetsuya Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - Masao Fukui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| | - James H Tumlinson
- Department of Entomology, Center for Chemical Ecology, Pennsylvania State University University Park, PA, USA
| | - Naoki Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Sakyo, Kyoto, Japan
| |
Collapse
|
11
|
Yoshinaga N, Alborn HT, Nakanishi T, Suckling DM, Nishida R, Tumlinson JH, Mori N. Fatty Acid-amino Acid Conjugates Diversification in Lepidopteran Caterpillars. J Chem Ecol 2010; 36:319-25. [DOI: 10.1007/s10886-010-9764-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 11/29/2022]
|
12
|
Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc Natl Acad Sci U S A 2008; 105:18058-63. [PMID: 18997016 DOI: 10.1073/pnas.0809623105] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)-L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses and the physiological role of FACs in the insect have been minimal. By using (14)C-labeled glutamine, glutamic acid, and linolenic acid in feeding studies of Spodoptera litura larvae, combined with tissue analyses, we found glutamine in the midgut cells to be a major source for biosynthesis of FACs. Furthermore, 20% of the glutamine moiety of FACs was derived from glutamic acid and ammonia through enzymatic reaction of glutamine synthetase (GS). To determine whether FACs improve GS productivity, we studied nitrogen assimilation efficiency of S. litura larvae fed on artificial diets containing (15)NH(4)Cl and glutamic acid. When the diet was enriched with linolenic acid, the nitrogen assimilation efficiency improved from 40% to >60%. In the lumen, the biosynthesized FACs are hydrolyzed to fatty acids and glutamine, which are reabsorbed into tissues and hemolymph. These results strongly suggested that FACs play an active role in nitrogen assimilation in Lepidoptera larva and that glutamine containing FACs in the gut lumen may function as a form of storage of glutamine, a key compound of nitrogen metabolism.
Collapse
|
13
|
Yoshinaga N, Aboshi T, Ishikawa C, Fukui M, Shimoda M, Nishida R, Lait CG, Tumlinson JH, Mori N. Fatty Acid Amides, Previously Identified in Caterpillars, Found in the Cricket Teleogryllus taiwanemma and Fruit Fly Drosophila melanogaster Larvae. J Chem Ecol 2007; 33:1376-81. [PMID: 17566833 DOI: 10.1007/s10886-007-9321-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/24/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Fatty acid amides (FAAs) are known elicitors that induce plants to release volatile compounds that, in turn, attract foraging parasitoids. Since the discovery of volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] in the regurgitant of larval Spodoptera exigua, a series of related FAAs have been identified in several other species of lepidopteran caterpillars. We screened 13 non-lepidopteran insects for the presence of FAAs and found that these compounds were present in adults of two closely related cricket species, Teleogryllus taiwanemma and T. emma (Orthoptera: Gryllidae), and larvae of the fruit fly, Drosophila melanogaster (Diptera: Drosophilidae). When analyzed by liquid chromatography/mass spectrometry-ion trap-time-of-flight (LCMS-IT-TOF), the gut contents of both crickets had nearly identical FAA composition, the major FAAs comprising N-linolenoyl-L-glutamic acid and N-linoleoyl-L-glutamic acid. There were also two previously uncharacterized FAAs that were thought to be hydroxylated derivatives of these glutamic acid conjugates, based on their observed fragmentation patterns. In addition to these four FAAs containing glutamic acid, N-linolenoyl-L-glutamine and a small amount of volicitin were detected. In D. melanogaster, N-linolenoyl-L-glutamic acid and N-linoleoyl-L-glutamic acid were the major FAAs found in larval extracts, while hydroxylated glutamic acid conjugates, volicitin and N-linolenoyl-L-glutamine, were detected as trace components. Although these FAAs were not found in ten of the insects studied here, their identification in two additional orders of insects suggests that FAAs are more common than previously reported and may have physiological roles in a wide range of insects besides caterpillars.
Collapse
Affiliation(s)
- Naoko Yoshinaga
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Aboshi T, Yoshinaga N, Noge K, Nishida R, Mori N. Efficient incorporation of unsaturated fatty acids into volicitin-related compounds in Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2007; 71:607-10. [PMID: 17284824 DOI: 10.1271/bbb.60546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We introduced efficient incorporation of unsaturated fatty acids into volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine, insect-derived elicitors of plant volatiles, in the common cutworms Spodoptera litura by the incubation of larval gut tissues with unsaturated (linolenic, linoleic, and oleic acids) or saturated fatty acids (palmitic and stearic acids) sodium salt, and L-[alpha-(15)N]glutamine.
Collapse
Affiliation(s)
- Takako Aboshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
15
|
Sawada Y, Yoshinaga N, Fujisaki K, Nishida R, Kuwahara Y, Mori N. Absolute configuration of volicitin from the regurgitant of lepidopteran caterpillars and biological activity of volicitin-related compounds. Biosci Biotechnol Biochem 2006; 70:2185-90. [PMID: 16960380 DOI: 10.1271/bbb.60133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine are known as insect-produced plant volatile elicitors. The absolute configuration of the hydroxylinolenoyl moiety of volicitin from three noctuid species, Helicoverpa armigera, Mythimna separata and Spodoptera litura, was determined to be all 17S in high enantiomeric excess. When treated with 30 pmol of (17S)- and (17R)-volicitin, corn seedlings were induced to release volatiles, there being no significant difference in the amount released between the two isomers. On the other hand, N-linolenoyl-L-glutamine was only about 30% as active as volicitin. Among several synthesized N-linolenoylamino acid conjugates, only the L-glutamine conjugate induced the emission of volatile organic compounds. These results show that the L-glutamine moiety of volicitin played a more critical role than the hydroxyl moiety, although both moieties affected the elicitor activity inducing the release of volatiles.
Collapse
Affiliation(s)
- Yoshitsugu Sawada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|