1
|
Zou Y, Ye A, Dong M, Zhou Y, Wu W, Tang Y, Hu H, Dai F, Tong X. Silkworm mutagenesis using a ribonucleoprotein-based CRISPR/Cas12a system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025:104329. [PMID: 40398570 DOI: 10.1016/j.ibmb.2025.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/06/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
The development of highly efficient genome editing tools has revolutionized developmental biology and genetic studies in silkworm. Although methods based on CRISPR/Cas9 are currently popular, the Cas12a system has emerged as a promising option. However, it has not yet been applied to target the silkworm genome in vivo, and its activity in silkworm has not yet been characterized. In this study, we established a ribonucleoprotein-based CRISPR/Cas12a system, and compared it to the CRISPR/Cas9 system using 19 crRNA and 17 sgRNAs to target three different genes in vivo. Although Cas12a generates mutants less efficiently than Cas9, we used it successfully to generate transmissible indels, and demonstrated its application by targeting the FibH and mp genes to produce mutants with the expected phenotypes. We also assessed the influence of temperature (37 °C vs. 25 °C) on Cas12a activity, and demonstrated that the effects are target dependent. In summary, we have established a ribonucleoprotein-based CRISPR/Cas12a system in silkworm that offers a practical alternative to CRISPR/Cas9 and extends the genome editing tool box available for silkworm research.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Aijun Ye
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meixin Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuhao Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wentao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
2
|
Nakata M, Ueno M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. CRISPR/Cas9- and Single-Stranded ODN-Mediated Knock-In in Silkworm Bombyx mori. Zoolog Sci 2024; 41:540-547. [PMID: 39636137 DOI: 10.2108/zs240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 12/07/2024]
Abstract
Although genome editing techniques have made significant progress, introducing exogenous genes into the genome through knock-in remains a challenge in many organisms. In silkworm Bombyx mori, TALEN-mediated knock-in methods have been established. However, difficulties in construction and limitations of the target sequence have hindered the application of these methods. In the present study, we verified several CRISPR/Cas9-mediated knock-in methods to expand the application of gene knock-in techniques and found that the short single-stranded oligodeoxynucleotide (ssODN)-mediated method is the most effective in silkworms. Using ssODN-mediated methods, we established knock-in silkworm strains that harbor an attP sequence, a 50 bp phiC31 integrase recognition site, at either the BmHr38 (Hormone receptor 38) or Bmdsx (doublesex) locus. Additionally, we found that the long ssODN (lsODN)-mediated method successfully introduced the GAL4 gene at the doublesex locus in embryos. The present study provides valuable information on CRISPR/Cas9-mediated knock-in methods in silkworms, expanding the utility of genome editing techniques in insects and paving the way for analyzing gene and genome function in silkworms.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masumi Ueno
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan,
| |
Collapse
|
3
|
Yu S, Ye X, Dai X, Dai X, Wang X, Zheng H, Zhong B. A strategy for improving the mechanical properties of silk fibers through the combination of genetic manipulation and zinc ion crosslinking. Int J Biol Macromol 2024; 282:137075. [PMID: 39488310 DOI: 10.1016/j.ijbiomac.2024.137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Silk fiber is generally considered an excellent biological material due to its good biocompatibility, morphological plasticity and biodegradability. Previously, the construction of silkworm silk gland bioreactors based on the piggyBac transposon has been optimized. However, the inserted exogenous genes have problems such as position uncertainty, and expression is not strictly controlled. Here, we applied transcription activator-like effector nuclease (TALEN)-mediated homology-directed repair (HDR) to precisely insert histidine-rich cuticular protein (CP) into silkworm Sericin1 (Ser1) gene. The Ser1-CP fusion protein was successfully secreted into cocoon shell. Subsequently, based on the metal coordination ability of the histidine imidazole group, we crosslinked cocoon with metal ions in vitro. In this strategy, the mechanical properties of the fused silk fibers with crosslinked Zn2+ improved, and the maximum breaking stress of the crosslinked Zn2+-fused silk fibers was 23.5 % greater than that of the wild-type fibers. Analysis of the secondary structure of the silk protein showed that the fused silk fibers crosslinked with Zn2+ had more β-sheet structures. This study pioneered a method of improving the mechanical properties of silk fibers by crosslinking metal ions with fused exogenous proteins and expanded the application value of silk gland bioreactors in the development of novel biomaterials.
Collapse
Affiliation(s)
- Shihua Yu
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China
| | - Xiaoyan Dai
- Suposik Bioscience Technologies Ltd., 314031 Jiaxing, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China
| | - Xinqiu Wang
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Suposik Bioscience Technologies Ltd., 314031 Jiaxing, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China.
| |
Collapse
|
4
|
Yu S, Zheng H, Ye X, Dai X, Wang X, Zhao S, Dai X, Zhong B. TALEN-mediated homologous-recombination-based fibroin light chain in-fusion expression system in Bombyx mori. Front Bioeng Biotechnol 2024; 12:1399629. [PMID: 38832132 PMCID: PMC11144906 DOI: 10.3389/fbioe.2024.1399629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Silkworm was the first domesticated insect and has important economic value. It has also become an ideal model organism with applications in genetic and expression studies. In recent years, the use of transgenic strategies has made the silkworm silk gland an attractive bioreactor for the production of recombinant proteins, in particular, piggyBac-mediated transgenes. However, owing to differences in regulatory elements such as promoters, the expression levels of exogenous proteins have not reached expectations. Here, we used targeted gene editing to achieve site-specific integration of exogenous genes on genomic DNA and established the fibroin light chain (FibL) in-fusion expression system by TALEN-mediated homology-directed recombination. First, the histidine-rich cuticular protein (CP) was successfully site-directed inserted into the native FibL, and the FibL-CP fusion gene was correctly transcribed and expressed in the posterior silk gland under the control of the endogenous FibL promoter, with a protein expression level comparable with that of the native FibL protein. Moreover, we showed based on molecular docking that the fusion of FibL with cuticular protein may have a negative effect on disulfide bond formation between the C-terminal domain of fibroin heavy chain (FibH) and FibL-CP, resulting in abnormal spinning and cocoon in homozygotes, indicating a significant role of FibL in silk protein formation and secretion. Our results demonstrate the feasibility of using the FibL fusion system to express exogenous proteins in silkworm. We expect that this bioreactor system will be used to produce more proteins of interest, expanding the application value of the silk gland bioreactor.
Collapse
Affiliation(s)
- Shihua Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xiangping Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Xinqiu Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zheng Zhou, China
| | - Xiaoyan Dai
- Suposik Bioscience Technologies Ltd., Jiaxing, China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Yu B, Dong S, Jiang X, Qiao L, Chen J, Li T, Pan G, Zhou Z, Li C. Cas9-Mediated Gene Editing Using Receptor-Mediated Ovary Transduction of Cargo (ReMOT) Control in Bombyx mori. INSECTS 2023; 14:932. [PMID: 38132605 PMCID: PMC10743513 DOI: 10.3390/insects14120932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Lepidoptera is one of the most speciose insect orders, causing enormous damage to agricultural and forest crops. Although genome editing has been achieved in a few Lepidoptera for insect controls, most techniques are still limited. Here, by injecting female pupae of the Lepidoptera model species, Bombyx mori, gene editing was established using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) control technique. We identified a B. mori oocytes-targeting peptide ligand (BmOTP, a 29 aa of vitellogenin N-terminal of silkworms) with a highly conserved sequence in lepidopteran insects that could efficiently deliver mCherry into oocytes. When BmOTP was fused to CRISPR-associated protein 9 (Cas9) and the BmOTP-Cas9 ribonucleoprotein complex was injected into female pupae, heritable editing of the offspring was achieved in the silkworms. Compared with embryo microinjection, individual injection is more convenient and eliminates the challenge of injecting extremely small embryos. Our results will significantly facilitate the genetic manipulation of other lepidopteran insects, which is essential for advancing lepidopteran pest control.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Sichen Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Xiaoyu Jiang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Liang Qiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; (B.Y.); (S.D.); (X.J.); (J.C.); (T.L.); (G.P.)
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Chen K, Yu Y, Zhang Z, Hu B, Liu X, James AA, Tan A. Engineering a complex, multiple enzyme-mediated synthesis of natural plant pigments in the silkworm, Bombyx mori. Proc Natl Acad Sci U S A 2023; 120:e2306322120. [PMID: 37549256 PMCID: PMC10433459 DOI: 10.1073/pnas.2306322120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
Plants produce various pigments that not only appear as attractive colors but also provide valuable resources in applications in daily life and scientific research. Biosynthesis pathways for these natural plant pigments are well studied, and most have multiple enzymes that vary among plant species. However, adapting these pathways to animals remains a challenge. Here, we describe successful biosynthesis of betalains, water-soluble pigments found only in a single plant order, Caryophyllales, in transgenic silkworms by coexpressing three betalain synthesis genes, cytochrome P450 enzyme CYP76AD1, DOPA 4,5-dioxygenase, and betanidin 5-O-glucosyltransferase. Betalains can be synthesized in various tissues under the control of the ubiquitous IE1 promoter but accumulate mainly in the hemolymph with yields as high as 274 μg/ml. Additionally, transformed larvae and pupae show a strong red color easily distinguishable from wild-type animals. In experiments in which expression is controlled by the promoter of silk gland-specific gene, fibroin heavy-chain, betalains are found predominantly in the silk glands and can be secreted into cocoons through spinning. Betalains in transformed cocoons are easily recovered from cocoon shells in water with average yields reaching 14.4 μg/mg. These data provide evidence that insects can synthesize natural plant pigments through a complex, multiple enzyme-mediated synthesis pathway. Such pigments also can serve as dominant visible markers in insect transgenesis applications. This study provides an approach to producing valuable plant-derived compounds by using genetically engineered silkworms as a bioreactor.
Collapse
Affiliation(s)
- Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| | - Anthony A. James
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA92697-3900
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697-3900
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang212100, China
| |
Collapse
|
7
|
Tsubota T, Sakai H, Sezutsu H. Genome Editing of Silkworms. Methods Mol Biol 2023; 2637:359-374. [PMID: 36773160 DOI: 10.1007/978-1-0716-3016-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Silkworm is a lepidopteran insect that has been used as a model for a wide variety of biological studies. The microinjection technique is available, and it is possible to cause transgenesis as well as target gene disruption via the genome editing technique. TALEN-mediated knockout is especially effective in this species. We also succeeded in the precise and efficient integration of a donor vector using the precise integration into target chromosome (PITCh) method. Here we describe protocols for ZFN (zinc finger nuclease)-, TALEN (transcription activator-like effector nuclease)-, and CRISPR/Cas9-mediated genome editing as well as the PITCh technique in the silkworm. We consider that all of these techniques can contribute to the further promotion of various biological studies in the silkworm and other insect species.
Collapse
Affiliation(s)
- Takuya Tsubota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Kambis TN, Mishra PK. Genome Editing and Diabetic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:103-114. [PMID: 36454462 PMCID: PMC10155862 DOI: 10.1007/978-981-19-5642-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Differential gene expression is associated with diabetic cardiomyopathy (DMCM) and culminates in adverse remodeling in the diabetic heart. Genome editing is a technology utilized to alter endogenous genes. Genome editing also provides an option to induce cardioprotective genes or inhibit genes linked to adverse cardiac remodeling and thus has promise in ameliorating DMCM. Non-coding genes have emerged as novel regulators of cellular signaling and may serve as potential therapeutic targets for DMCM. Specifically, there is a widespread change in the gene expression of fetal cardiac genes and microRNAs, termed genetic reprogramming, that promotes pathological remodeling and contributes to heart failure in diabetes. This genetic reprogramming of both coding and non-coding genes varies with the progression and severity of DMCM. Thus, genetic editing provides a promising option to investigate the role of specific genes/non-coding RNAs in DMCM initiation and progression as well as developing therapeutics to mitigate cardiac remodeling and ameliorate DMCM. This chapter will summarize the research progress in genome editing and DMCM and provide future directions for utilizing genome editing as an approach to prevent and/or treat DMCM.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Yamada N, Mise Y, Yonemura N, Uchino K, Zabelina V, Sezutsu H, Iizuka T, Tamura T. Abolition of egg diapause by ablation of suboesophageal ganglion in parental females is compatible with genetic engineering methods. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104438. [PMID: 36049569 DOI: 10.1016/j.jinsphys.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microinjection of genetic material into non-diapause eggs is required for genetic engineering of silkworms. Besides diapause could be useful for maintaining transgenic lines, a drawback of this technology is that most standard silkworm strains and experimental lines of interest produce diapausing eggs. Several approaches have been developed to abolish diapause but none are very efficient. Here, we investigated the ablation of the suboesophageal ganglion (SG) in female pupae, which is a source of the hormone required to trigger egg diapause, as a mean to abolish diapause. We showed that SG-ablation is a reliable method to produce nondiapause eggs. Additionally, the challenge associated with lower fecundity of females with SG ablation was resolved by injecting pilocarpine into the mated female. We also investigated the suitability of nondiapause eggs laid by SG-ablated females for transgenesis, targeted mutagenesis, and induction of parthenogenetic development. Our results demonstrated SG-ablation to be a useful and simple method for expanding the possibilities associated with genetic engineering in silkworms.
Collapse
Affiliation(s)
- Nobuto Yamada
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan.
| | - Yoshiko Mise
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Naoyuki Yonemura
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Valeriya Zabelina
- Biology Center CAS, Institute of Entomology, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceské Budejovice, Czech Republic
| | - Hideki Sezutsu
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- Institute of Sericulture and Silk Science, Inashiki-gun, Ibaraki 300-0324, Japan
| |
Collapse
|
10
|
Xu X, Harvey-Samuel T, Siddiqui HA, Ang JXD, Anderson ME, Reitmayer CM, Lovett E, Leftwich PT, You M, Alphey L. Toward a CRISPR-Cas9-based Gene Drive in the Diamondback Moth Plutella xylostella. CRISPR J 2022; 5:224-236. [PMID: 35285719 DOI: 10.1089/crispr.2021.0129] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Promising to provide powerful genetic control tools, gene drives have been constructed in multiple dipteran insects, yeast, and mice for the purposes of population elimination or modification. However, it remains unclear whether these techniques can be applied to lepidopterans. Here, we used endogenous regulatory elements to drive Cas9 and single guide RNA (sgRNA) expression in the diamondback moth (DBM), Plutella xylostella, and test the first split gene drive system in a lepidopteran. The DBM is an economically important global agriculture pest of cruciferous crops and has developed severe resistance to various insecticides, making it a prime candidate for such novel control strategy development. A very high level of somatic editing was observed in Cas9/sgRNA transheterozygotes, although no significant homing was revealed in the subsequent generation. Although heritable Cas9-medated germline cleavage as well as maternal and paternal Cas9 deposition were observed, rates were far lower than for somatic cleavage events, indicating robust somatic but limited germline activity of Cas9/sgRNA under the control of selected regulatory elements. Our results provide valuable experience, paving the way for future construction of gene drives or other Cas9-based genetic control strategies in DBM and other lepidopterans.
Collapse
Affiliation(s)
- Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,School of Life Sciences, Peking University, Beijing, P.R. China
| | - Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Joshua Xin De Ang
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | | | - Christine M Reitmayer
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Erica Lovett
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Luke Alphey
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, P.R. China.,Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright, United Kingdom
| |
Collapse
|
11
|
Zou YL, Ye AJ, Liu S, Wu WT, Xu LF, Dai FY, Tong XL. Expansion of targetable sites for the ribonucleoprotein-based CRISPR/Cas9 system in the silkworm Bombyx mori. BMC Biotechnol 2021; 21:54. [PMID: 34544395 PMCID: PMC8454041 DOI: 10.1186/s12896-021-00714-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND With the emergence of CRISPR/Cas9 technology, multiple gene editing procedures became available for the silkworm. Although binary transgene-based methods have been widely used to generate mutants, delivery of the CRISPR/Cas9 system via DNA-free ribonucleoproteins offers several advantages. However, the T7 promoter that is widely used in the ribonucleoprotein-based method for production of sgRNAs in vitro requires a 5' GG motif for efficient initiation. The resulting transcripts bear a 5' GG motif, which significantly constrains the number of targetable sites in the silkworm genome. RESULTS In this study, we used the T7 promoter to add two supernumerary G residues to the 5' end of conventional (perfectly matched) 20-nucleotide sgRNA targeting sequences. We then asked if sgRNAs with this structure can generate mutations even if the genomic target does not contain corresponding GG residues. As expected, 5' GG mismatches depress the mutagenic activity of sgRNAs, and a single 5' G mismatch has a relatively minor effect. However, tests involving six sgRNAs targeting two genes show that the mismatches do not eliminate mutagenesis in vivo, and the efficiencies remain at useable levels. One sgRNA with a 5' GG mismatch at its target performed mutagenesis more efficiently than a conventional sgRNA with 5' matched GG residues at a second target within the same gene. Mutations generated by sgRNAs with 5' GG mismatches are also heritable. We successfully obtained null mutants with detectable phenotypes from sib-mated mosaics after one generation. CONCLUSIONS In summary, our method improves the utility and flexibility of the ribonucleoprotein-based CRISPR/Cas9 system in silkworm.
Collapse
Affiliation(s)
- Yun-Long Zou
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ai-Jun Ye
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shuo Liu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wen-Tao Wu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Li-Feng Xu
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs; College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
12
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
13
|
Ma SY, Smagghe G, Xia QY. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. INSECT SCIENCE 2019; 26:964-972. [PMID: 29845729 DOI: 10.1111/1744-7917.12609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials.
Collapse
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Zhang Z, Niu B, Ji D, Li M, Li K, James AA, Tan A, Huang Y. Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proc Natl Acad Sci U S A 2018; 115:8752-8756. [PMID: 30104361 PMCID: PMC6126770 DOI: 10.1073/pnas.1810945115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)-mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, China
| | - Kai Li
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-3900;
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
15
|
Xu J, Dong Q, Yu Y, Niu B, Ji D, Li M, Huang Y, Chen X, Tan A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc Natl Acad Sci U S A 2018; 115:8757-8762. [PMID: 30082397 PMCID: PMC6126722 DOI: 10.1073/pnas.1806805115] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spider silk is one of the best natural fibers and has superior mechanical properties. However, the large-scale harvesting of spider silk by rearing spiders is not feasible, due to their territorial and cannibalistic behaviors. The silkworm, Bombyx mori, has been the most well known silk producer for thousands of years and has been considered an ideal bioreactor for producing exogenous proteins, including spider silk. Previous attempts using transposon-mediated transgenic silkworms to produce spider silk could not achieve efficient yields, due to variable promoter activities and endogenous silk fibroin protein expression. Here, we report a massive spider silk production system in B. mori by using transcription activator-like effector nuclease-mediated homology-directed repair to replace the silkworm fibroin heavy chain gene (FibH) with the major ampullate spidroin-1 gene (MaSp1) in the spider Nephila clavipes We successfully replaced the ∼16-kb endogenous FibH gene with a 1.6-kb MaSp1 gene fused with a 1.1-kb partial FibH sequence and achieved up to 35.2% chimeric MaSp1 protein amounts in transformed cocoon shells. The presence of the MaSp1 peptide significantly changed the mechanical characteristics of the silk fiber, especially the extensibility. Our study provides a native promoter-driven, highly efficient system for expressing the heterologous spider silk gene instead of the transposon-based, random insertion of the spider gene into the silkworm genome. Targeted MaSp1 integration into silkworm silk glands provides a paradigm for the large-scale production of spider silk protein with genetically modified silkworms, and this approach will shed light on developing new biomaterials.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, Jiangsu, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
16
|
Zhu GH, Peng YC, Zheng MY, Zhang XQ, Sun JB, Huang Y, Dong SL. CRISPR/Cas9 mediated BLOS2 knockout resulting in disappearance of yellow strips and white spots on the larval integument in Spodoptera litura. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:29-35. [PMID: 28927827 DOI: 10.1016/j.jinsphys.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The custom-design bacterial CRISPR/Cas9 system has been recently used in some insects, indicating a powerful technique for studies on gene function and transgenic insects. However, its use in lepidopteran pests is scarce. Here, we reported a CRISPR/Cas9 system mediated mutagenesis of biogenesis of lysosome-related organelles complex1, subunit 2 (BLOS2) gene in a noctuid pest Spodoptera litura. A fragment of SlitBLOS2 was identified by analyzing a S. litura transcriptome database by local basic BLAST, and the full length cDNA was acquired by RACE strategy. To clarify the function of SlitBLOS2, CRISPR/Cas9 based target mutagenesis of SlitBLOS2 was achieved, displaying a mosaic translucent integument in 62.3-70.6% larvae of G0 generation. Further PCR-based genotype analysis demonstrated various mutations occurred at the SlitBLOS2 specific target site. A homozygote mutant individual was obtained in G1 generation, in which the yellow strips and white spots on the larval integument completely disappeared. Our study clearly demonstrates the function of SlitBLOS2 in the integument coloration, and thus provides a useful marker gene for genome editing based gene functional study and pest control strategy in S. litura as well as other lepidopteran pests.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Chuan Peng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei-Yan Zheng
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Bin Sun
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai 200032, China
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Ma S, Liu Y, Liu Y, Chang J, Zhang T, Wang X, Shi R, Lu W, Xia X, Zhao P, Xia Q. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:13-20. [PMID: 28189747 DOI: 10.1016/j.ibmb.2017.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/24/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Genome editing enabled unprecedented new opportunities for targeted genomic engineering of a wide variety of organisms ranging from microbes, plants, animals and even human embryos. The serial establishing and rapid applications of genome editing tools significantly accelerated Bombyx mori (B. mori) research during the past years. However, the only CRISPR system in B. mori was the commonly used SpCas9, which only recognize target sites containing NGG PAM sequence. In the present study, we first improve the efficiency of our previous established SpCas9 system by 3.5 folds. The improved high efficiency was also observed at several loci in both BmNs cells and B. mori embryos. Then to expand the target sites, we showed that two newly discovered CRISPR system, SaCas9 and AsCpf1, could also induce highly efficient site-specific genome editing in BmNs cells, and constructed an integrated CRISPR system. Genome-wide analysis of targetable sites was further conducted and showed that the integrated system cover 69,144,399 sites in B. mori genome, and one site could be found in every 6.5 bp. The efficiency and resolution of this CRISPR platform will probably accelerate both fundamental researches and applicable studies in B. mori, and perhaps other insects.
Collapse
Affiliation(s)
- Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yue Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Yuanyuan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Jiasong Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Tong Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Xiaogang Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Run Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Wei Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Xiaojuan Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716 PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, 2, Tiansheng Road, Beibei, Chongqing 400716, China.
| |
Collapse
|
18
|
Takasu Y, Kobayashi I, Tamura T, Uchino K, Sezutsu H, Zurovec M. Precise genome editing in the silkworm Bombyx mori using TALENs and ds- and ssDNA donors - A practical approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 78:29-38. [PMID: 27569417 DOI: 10.1016/j.ibmb.2016.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Engineered nucleases are able to introduce double stranded breaks at desired genomic locations. The breaks can be repaired by an error-prone non-homologous end joining (NHEJ) mechanism, or the repair process can be exploited to introduce precise DNA modifications by homology-directed repair (HDR) when provided with a suitable donor template. We designed a series of DNA donors including long dsDNA plasmids as well as short ssDNA oligonucleotides and compared the effectiveness of their utilization during gene targeting with highly efficient transcription activator-like effector nucleases (TALENs). While the use of long dsDNA donors for the incorporation of larger DNA fragments in Bombyx is still a problem, short single-stranded oligodeoxynucleotides (ssODNs) are incorporated quite efficiently. We show that appropriately designed ssODNs were integrated into germ cells in up to 79% of microinjected individuals and describe in more detail the conditions for the precise genome editing of Bombyx genes. We specify the donor sequence requirements that affected knock-in efficiency, and demonstrate the successful applications of this method of sequence deletion, insertion and replacement in the Bombyx genome.
Collapse
Affiliation(s)
- Yoko Takasu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Isao Kobayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Toshiki Tamura
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Michal Zurovec
- Biology Centre of the ASCR, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
19
|
Cui GZ, Zhu JJ. Pheromone-Based Pest Management in China: Past, Present, and Future Prospects. J Chem Ecol 2016; 42:557-70. [DOI: 10.1007/s10886-016-0731-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
|
20
|
Long D, Lu W, Hao Z, Xiang Z, Zhao A. Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system. Transgenic Res 2016; 25:795-811. [DOI: 10.1007/s11248-016-9970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
|
21
|
Bi HL, Xu J, Tan AJ, Huang YP. CRISPR/Cas9-mediated targeted gene mutagenesis in Spodoptera litura. INSECT SCIENCE 2016; 23:469-77. [PMID: 27061764 DOI: 10.1111/1744-7917.12341] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 05/12/2023]
Abstract
Custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system provide attractive genome editing tools for insect functional genetics. The targeted gene mutagenesis mediated by the CRISPR/Cas9 system has been achieved in several insect orders including Diptera, Lepidoptera and Coleoptera. However, little success has been reported in agricultural pests due to the lack of genomic information and embryonic microinjection techniques in these insect species. Here we report that the CRISPR/Cas9 system induced efficient gene mutagenesis in an important Lepidopteran pest Spodoptera litura. We targeted the S. litura Abdominal-A (Slabd-A) gene which is an important embryonic development gene and plays a significant role in determining the identities of the abdominal segments of insects. Direct injection of Cas9 messenger RNA and Slabd-A-specific single guide RNA (sgRNA) into S. litura embryos successfully induced the typical abd-A deficient phenotype, which shows anomalous segmentation and ectopic pigmentation during the larval stage. A polymerase chain reaction-based analysis revealed that the Cas9/sgRNA complex effectively induced a targeted mutagenesis in S. litura. These results demonstrate that the CRISPR/Cas9 system is a powerful tool for genome manipulation in Lepidopteran pests such as S. litura.
Collapse
Affiliation(s)
- Hong-Lun Bi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - An-Jiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Zhu L, Mon H, Xu J, Lee JM, Kusakabe T. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci Rep 2015; 5:18103. [PMID: 26657947 PMCID: PMC4674802 DOI: 10.1038/srep18103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/11/2015] [Indexed: 01/16/2023] Open
Abstract
Gene targeting can be achieved by precise genetic modifications through homology-directed repair (HDR) after DNA breaks introduced by genome editing tools such as CRISPR/Cas9 system. The most common form of HDR is homologous recombination (HR). Binding to the DNA breaks by HR factors is thought to compete with non-homologous end joining (NHEJ), an alternative DNA repair pathway. Here, we knocked out the factors in NHEJ by CRISPR/Cas9 system in silkworm cells, so that increased the activities of HR up to 7-fold. Also efficient HR-mediated genome editing events occurred between the chromosomal BmTUDOR-SN gene and donor DNA sequences with an EGFP gene in the middle of two homologous arms for the target gene. Utilizing the NHEJ-deficient silkworm cells, we found that homologous arms as short as 100 bp in donor DNA could be designed to perform precise genome editing. These studies should greatly accelerate investigations into genome editing of silkworm.
Collapse
Affiliation(s)
- Li Zhu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| |
Collapse
|
23
|
Smykal V, Raikhel AS. Nutritional Control of Insect Reproduction. CURRENT OPINION IN INSECT SCIENCE 2015; 11:31-38. [PMID: 26644995 PMCID: PMC4669899 DOI: 10.1016/j.cois.2015.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The amino acid-Target of Rapamycin (AA/TOR) and insulin pathways play a pivotal role in reproduction of female insects, serving as regulatory checkpoints that guarantee the sufficiency of nutrients for developing eggs. Being evolutionary older, the AA/TOR pathway functions as an initial nutritional sensor that not only activates nutritional responses in a tissue-specific manner, but is also involved in the control of insect insulin-like peptides (ILPs) secretion. Insulin and AA/TOR pathways also assert their nutritionally linked influence on reproductive events by contributing to the control of biosynthesis and secretion of juvenile hormone and ecdysone. This review covers the present status of our understanding of the contributions of AA/TOR and insulin pathways in insect reproduction.
Collapse
Affiliation(s)
| | - Alexander S. Raikhel
- Corresponding author. Department of Entomology, University of California Riverside, Riverside, CA 92521, USA. Tel.: 951 827 2129
| |
Collapse
|
24
|
Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:61-77. [PMID: 26047113 DOI: 10.1016/j.pestbp.2015.01.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 05/13/2023]
Abstract
The recent accumulation of molecular studies on mutations in insects, ticks and mites conferring resistance to insecticides, acaricides and biopesticides is reviewed. Resistance is traditionally classified by physiological and biochemical criteria, such as target-site insensitivity and metabolic resistance. However, mutations are discrete molecular changes that differ in their intrinsic frequency, effects on gene dosage and fitness consequences. These attributes in turn impact the population genetics of resistance and resistance management strategies, thus calling for a molecular genetic classification. Mutations in structural genes remain the most abundantly described, mostly in genes coding for target proteins. These provide the most compelling examples of parallel mutations in response to selection. Mutations causing upregulation and downregulation of genes, both in cis (in the gene itself) and in trans (in regulatory processes) remain difficult to characterize precisely. Gene duplications and gene disruption are increasingly reported. Gene disruption appears prevalent in the case of multiple, hetero-oligomeric or redundant targets.
Collapse
Affiliation(s)
- René Feyereisen
- INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France.
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|