1
|
Guo K, Duan J, Jing X, Zhang X, Ding Q, Dong Z, Xia Q, Zhao P. Silk components and properties of the multilayer cocoon of the greater wax moth, Galleria mellonella. INSECT SCIENCE 2025. [PMID: 40296465 DOI: 10.1111/1744-7917.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
The greater wax moth Galleria mellonella is a major pest of brood combs, and produces large quantities of strong, elastic silk in the environment. However, little research has been conducted on the silk glands (SGs), silk composition and functions of G. mellonella. In this study, we compared the morphologies of the SGs of G. mellonella and Bombyx mori and found that the nuclei of the anterior SGs differ distinctly. We also investigated the protein components and morphology of the G. mellonella cocoon in terms of its multilayer structure. Proteomic analyses identified 158 secretory proteins across the various cocoon layers. Fibroin, sericin, seroin and adhesive proteins were the most abundant proteins. The expression patterns of the major silk genes were investigated, and the results revealed the specific expression of P16 and Seroin3 genes in the anterior SG. Scanning electron microscopy and proteomic analyses of the cocoon layers showed that the sericin contents in the outermost and middle layers were significantly higher than that in the innermost layer. We extracted the soluble proteins from the different cocoon layers and evaluated their antimicrobial activities in vitro. Only the outermost cocoon layer showed antibacterial activity against Escherichia coli. Mechanical property tests showed that G. mellonella silk was stronger than B. mori silk. Our study provides important information on the composition and properties of G. mellonella cocoon silk, and serves as a basis for future research and use.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qiao Ding
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Aikman EL, Eccles LE, Stoppel WL. Native Silk Fibers: Protein Sequence and Structure Influences on Thermal and Mechanical Properties. Biomacromolecules 2025; 26:2043-2059. [PMID: 40052735 DOI: 10.1021/acs.biomac.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design.
Collapse
Affiliation(s)
- Elizabeth L Aikman
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Whitney L Stoppel
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
4
|
Kaewkod T, Kumseewai P, Suriyaprom S, Intachaisri V, Cheepchirasuk N, Tragoolpua Y. Potential therapeutic agents of Bombyx mori silk cocoon extracts from agricultural product for inhibition of skin pathogenic bacteria and free radicals. PeerJ 2024; 12:e17490. [PMID: 38903886 PMCID: PMC11188935 DOI: 10.7717/peerj.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024] Open
Abstract
Background Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.
Collapse
Affiliation(s)
- Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Puangphaka Kumseewai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Lu W, Shi R, Li X, Ma S, Yang D, Shang D, Xia Q. A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024; 264:130444. [PMID: 38417762 DOI: 10.1016/j.ijbiomac.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Silk, especially spider and insect silk, is a highly versatile biomaterial with potential applications in biomedicine, materials science, and biomimetic engineering. The primary structure of silk proteins is the basis for the mechanical properties of silk fibers. Biotechnologies such as single-molecule sequencing have facilitated an increasing number of reports on new silk genes and assembled silk proteins. Therefore, this review aims to provide a comprehensive overview of the recent advances in representative spider and insect silk proteins, focusing on identification methods, sequence characteristics, and de novo design and assembly. The review discusses three identification methods for silk genes: polymerase chain reaction (PCR)-based sequencing, PCR-free cloning and sequencing, and whole-genome sequencing. Moreover, it reveals the main spider and insect silk proteins and their sequences. Subsequent de novo assembly of artificial silk is covered and future research directions in the field of silk proteins, including new silk genes, customizable artificial silk, and the expansion of silk production and applications are discussed. This review provides a basis for the genetic aspects of silk production and the potential applications of artificial silk in material science and biomedical engineering.
Collapse
Affiliation(s)
- Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Deli Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Wang SL, Li XW, Xu W, Yu QY, Fang SM. Advances of regenerated and functionalized silk biomaterials and application in skin wound healing. Int J Biol Macromol 2024; 254:128024. [PMID: 37972830 DOI: 10.1016/j.ijbiomac.2023.128024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The cocoon silk of silkworms (Bombyx mori) has multiple potential applications in biomedicine due to its good biocompatibility, mechanical properties, degradability, and plasticity. Numerous studies have confirmed that silk material dressings are more effective than traditional ones in the skin wound healing process. Silk material research has recently moved toward functionalized biomaterials and achieved remarkable results. Herein, we summarize the recent advances in functionalized silk materials and their efficacy in skin wound healing. In particular, transgenic technology has realized the specific expression of human growth factors in the silk glands of the silkworms, which lays the foundation for fabricating novel and low-cost functionalized materials. Without a green and safe preparation process, the best raw silk materials cannot be made into medically safe products. Therefore, we provide an overview of green and gentle approaches for silk degumming and silk sericin (SS) extraction. Moreover, we summarize and discuss the processing methods of silk fibroin (SF) and SS materials and their potential applications, such as burns, diabetic wounds, and other wounds. This review aims to enhance our understanding of new advances and directions in silk materials and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xiao-Wei Li
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China.
| |
Collapse
|
7
|
Lopes TBF, Aguiar RCM, de Souza RF, Nascimento CC, Dionísio JF, Mantovani MS, Semprebon SC, da Rosa R. Influence of temperature variation on gene expression and cocoon production in Bombyx mori Linnaeus, 1758 (Lepidoptera: Bombycidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101111. [PMID: 37516100 DOI: 10.1016/j.cbd.2023.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Silkworms (Bombyx mori) are lepidopterans of economic importance for global silk production. However, factors that directly affect the yield and quality of silkworm cocoon production, such as diseases and temperature fluctuations, cause great economic losses. Knowing how they respond to rearing temperature during the most critical stage of their life cycle (i.e., fifth instar) could provide information on their adaptation and improve silk production. In the current work, we analyzed transcriptional data from two groups of B. mori that were reared at 26 °C and 34 °C throughout the fifth instar. The silkworms and cocoons were weighed. In total, 3115 transcripts were differentially expressed (DE; including 1696 down-regulated and 1419 up-regulated) among the 29,157 sequences found by transcriptome assembly. We emphasize the genes associated with immunological response, transcription factors, silk biosynthesis, and heat shock proteins, among the DE transcripts in response to the temperature conditions. Silkworms reared at 34 °C presented a reduced mean body weight (-0.944 g in comparison to the 26 °C group), which had a direct impact on the weight of cocoons formed and the silk conversion rate. These changes were statistically significant when compared to silkworms reared at 26 °C. Mortality rates (6 and 9 %, at 26 °C and 34 °C, respectively) were similar to those obtained in breeding fields. The findings provide information on the biological processes involved in the temperature response mechanism of silkworms, as well as information that may be used in future climatization processes at rearing facilities and in breeding for improved thermotolerance.
Collapse
Affiliation(s)
- Thayná Bisson Ferraz Lopes
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Rachel Colauto Milanezi Aguiar
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Cristianne Cordeiro Nascimento
- Departamento de Design Gráfico, Centro de Educação, Comunicação e Artes, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Jaqueline Fernanda Dionísio
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| | - Simone Cristine Semprebon
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
8
|
Schäfer S, Aavani F, Köpf M, Drinic A, Stürmer EK, Fuest S, Grust ALC, Gosau M, Smeets R. Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair Regen 2023; 31:99-110. [PMID: 36106818 DOI: 10.1111/wrr.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The field of reconstructive surgery encompasses a wide range of surgical procedures and regenerative approaches to treat various tissue types. Every surgical procedure is associated with the risk of surgical site infections, which are not only a financial burden but also increase patient morbidity. The surgical armamentarium in this area are biomaterials, particularly natural, biodegradable, biocompatible polymers, including the silk proteins fibroin (SF) and sericin (SS). Silk is known to be derived from silkworms and is mainly composed of 60-80% fibroin, which provides the structural form, and 15-35% sericin, which acts as a glue-like substance for the SF threads. Silk proteins possess most of the desired properties for biomedical applications, including biocompatibility, biodegradability, minimal immunogenicity, and tunable biomechanical behaviour. In an effort to alleviate or even prevent infections associated with the use of biomaterials in surgery, antibacterial/antimicrobial properties have been investigated in numerous studies. In this systematic review, the following question was addressed: Do silk proteins, SF and SS, possess an intrinsic antibacterial property and how could these materials be tailored to achieve such a property?
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Centre, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Qin L, Li J, Guo K, Lu M, Zhang Y, Zhang X, Zeng Y, Wang X, Xia Q, Zhao P, Zhang AB, Dong Z. Insights into the structure and composition of mineralized hard cocoons constructed by the oriental moth, Monema (Cnidocampa) flavescens Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103878. [PMID: 36410578 DOI: 10.1016/j.ibmb.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Animals widely use minerals and organic components to construct biomaterials with excellent properties, such as teeth, bones, molluscan shells and eggshells. The larvae of the oriental moth, Monema (Cnidocampa) flavescens Walker, secrete silk proteins that combine closely with calcareous minerals to construct a hard cocoon, which is completely different from the mineral-free Bombyx mori cocoon. The cocoons of oriental moths are likely to be the hardest among the cocoons constructed by insect species. The cocoons of oriental moths were found to be mainly composed of calcium oxalates and Asx/Ser/Gly-rich cocoon proteins, but the types of calcium oxalates and cocoon proteins remain to be elucidated. In this study, we provide an in-depth explanation of the inorganic and organic components in the oriental moth cocoon. Microscopy and imaging technologies revealed that the cocoon is composed of mineral crystals, silk fibers and other organic matter. X-ray diffraction and infrared spectral analyses showed that the mineral crystals in the oriental moth cocoon were mainly CaC2H2O4·H2O. ICP-OES analysis suggested that the mineral crystals in the cocoons were mainly CaC2H2O4·H2O. LC-MS/MS-based proteomics allowed us to identify 467 proteins from the oriental moth cocoon, including 252 uncharacterized proteins, 87 enzymes, 36 small molecule binding proteins, and 5 silk proteins. Among the uncharacterized proteins, 25 of which were Asn-rich proteins because they contained a high proportion of Asn residues (19.1%-41.4%). Among the top 20 cocoon proteins with the highest abundance, 9 of which were Asn-rich proteins. The qPCR was used to investigate the expression patterns of the major cocoon protein-coding genes. Three fibroins and three Asn-rich proteins were expressed only in the silk gland but not in other tissues. The expression of Asn-rich proteins in the silk gland gradually increased from the anterior silk gland to the posterior silk gland. These findings provide important references for understanding the formation mechanism and mechanical properties of mineralized hard cocoons constructed by oriental moths.
Collapse
Affiliation(s)
- Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yanqiong Zeng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol 2022; 224:68-78. [DOI: 10.1016/j.ijbiomac.2022.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
11
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
12
|
Liu TH, Dong XL, Chen P, Zhang Q, Zhou XL, Lu C, Pan MH. Geminin is essential for DNA re-replication in the silk gland cells of silkworms. Exp Cell Res 2022; 410:112951. [PMID: 34843715 DOI: 10.1016/j.yexcr.2021.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
Endoreplication, known as endocycles or endoreduplication, is a cell cycle variant in which the genomic DNA is re-replicated without mitosis leading to polyploidy. Endoreplication is essential for the development and functioning of the different organs in animals and plants. Deletion of Geminin, a DNA replication licensing inhibitor, causes DNA re-replication or damage. However, the role of Geminin in endoreplication is still unclear. Here, we studied the role of Geminin in the endoreplication of the silk gland cells of silkworms by constructing two transgenic silkworm strains, including BmGeminin1-overexpression and BmGeminin1-RNA interference. Interference of BmGeminin1 led to body weight gain, increased silk gland volume, increased DNA content, and enhanced DNA re-replication activity relative to wild-type Dazao. Meanwhile, overexpression of BmGeminin1 showed an opposite phenotype compared to the BmGem1-RNAi strain. Furthermore, RNA-sequencing of the transgenic strains was carried out to explore how BmGeminin1 regulates DNA re-replication. Our data demonstrated a vital role of Geminin in the regulation of endoreplication in the silk gland of silkworms.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Department of Bioinformatics, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District of Chongqing, 400015, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Xiao-Lin Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China; Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, No.2 Tiansheng Road, Beibei District of Chongqing, 400716, China.
| |
Collapse
|
13
|
Antibacterial Mechanism of Silkworm Seroins. Polymers (Basel) 2020; 12:polym12122985. [PMID: 33327635 PMCID: PMC7765120 DOI: 10.3390/polym12122985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Seroin 1 and seroin 2 are abundant in silkworm cocoon silk and show strong antibacterial activities, and thus are thought to protect cocoon silk from damage by bacteria. In this study, we characterized the expression pattern of silkworm seroin 3, and found that seroin 3 is synthesized in the female ovary and secreted into egg to play its roles. After being infected, seroin 1, 2, and 3 were significantly up-regulated in the silkworm. We synthesized the full-length protein of seroin 1, 2, and 3 and their N/C-terminal domain (seroin-N/C), and compared the antimicrobial activities in vitro. All three seroins showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Seroin 2 showed better antibacterial effect than seroin 1 and 3, whereas seroin 1/2/3-N was better than seroin 1/2/3-C. We found that seroin 2-C has stronger peptidoglycan binding ability than seroin 2-N per the ELISA test. The binding sites of seroin 2 with bacteria were blocked by peptidoglycan, which resulted in the loss of the antibacterial activity of seroin 2. Collectively, these findings suggest that seroin 1 and 2 play antibacterial roles in cocoon silk, whereas seroin 3 functions in the eggs. The three silkworm seroins have the same antibacterial mechanism, that is, binding to bacterial peptidoglycan by the C-terminal domain and inhibiting bacterial growth by the N-terminal domain.
Collapse
|
14
|
Parlin AF, Stratton SM, Culley TM, Guerra PA. A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. PLoS One 2020; 15:e0239531. [PMID: 32946526 PMCID: PMC7500605 DOI: 10.1371/journal.pone.0239531] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
The worldwide shortage of single-use N95 respirators and surgical masks due to the COVID-19 pandemic has forced many health care personnel to use their existing equipment for as long as possible. In many cases, workers cover respirators with available masks in an attempt to extend their effectiveness against the virus. Due to low mask supplies, many people instead are using face coverings improvised from common fabrics. Our goal was to determine what fabrics would be most effective in both practices. Under laboratory conditions, we examined the hydrophobicity of fabrics (cotton, polyester, silk), as measured by their resistance to the penetration of small and aerosolized water droplets, an important transmission avenue for the virus causing COVID-19. We also examined the breathability of these fabrics and their ability to maintain hydrophobicity despite undergoing repeated cleaning. Laboratory-based tests were conducted when fabrics were fashioned as an overlaying barrier for respirators and when constructed as face coverings. When used as material in these two situations, silk was more effective at impeding the penetration and absorption of droplets due to its greater hydrophobicity relative to other tested fabrics. We found that silk face coverings repelled droplets in spray tests as well as disposable single-use surgical masks, and silk face coverings have the added advantage over masks such that they can be sterilized for immediate reuse. We show that silk is a hydrophobic barrier to droplets, can be more breathable than other fabrics that trap humidity, and are re-useable via cleaning. We suggest that silk can serve as an effective material for making hydrophobic barriers that protect respirators, and silk can now be tested under clinical conditions to verify its efficacy for this function. Although respirators are still the most appropriate form of protection, silk face coverings possess properties that make them capable of repelling droplets.
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Samuel M. Stratton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Theresa M. Culley
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Guerra
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhang Y, Tang M, Dong Z, Zhao D, An L, Zhu H, Xia Q, Zhao P. Synthesis, secretion, and antifungal mechanism of a phosphatidylethanolamine-binding protein from the silk gland of the silkworm Bombyx mori. Int J Biol Macromol 2020; 149:1000-1007. [PMID: 32018011 DOI: 10.1016/j.ijbiomac.2020.01.310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
A silkworm cocoon contains several antimicrobial proteins such as protease inhibitors and seroins to provide protection for the enclosed pupa. In this study, we identified a new Bombyx mori phosphatidylethanolamine-binding protein (BmPEBP) with antimicrobial activity in the cocoon silk using semi-quantitative and quantitative RT-PCR, western blotting, and immunofluorescence. The results indicated that BmPEBP was synthesized in the middle silk gland and secreted into the sericin layer of the cocoon silk. Functional analysis showed that BmPEBP could inhibit the spore growth of four types of fungi, Candida albicans, Saccharomyces cerevisiae, Beauveriabassiana, and Aspergillus fumigates, by binding to the fungal cell membrane. Investigation of the interaction of BmPEBP with membrane phospholipids revealed that the protein showed a strong binding affinity to phosphatidylethanolamine, weak affinity to phosphatidylinositol, and no affinity to phosphatidylserine or phosphatidylcholine. Circular dichroism spectroscopy showed that binding to phosphatidylethanolamine caused conformational changes in the BmPEBP molecule by reducing β-sheet formation and inducing the appearance of an α-helix motif. We speculate that BmPEBP performs antifungal function in the cocoon silk through interaction with phosphatidylethanolamine in the fungal membrane.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Muya Tang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Lingna An
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Hongtao Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Kucerova L, Zurovec M, Kludkiewicz B, Hradilova M, Strnad H, Sehnal F. Modular structure, sequence diversification and appropriate nomenclature of seroins produced in the silk glands of Lepidoptera. Sci Rep 2019; 9:3797. [PMID: 30846749 PMCID: PMC6405961 DOI: 10.1038/s41598-019-40401-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identified in studied lepidopteran species and their classification required detailed phylogenetic analysis based on complete and verified cDNA sequences. We sequenced silk gland-specific cDNA libraries from ten species and identified 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31–50% and 22.5–25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is reflected in proposed nomenclature.
Collapse
Affiliation(s)
- Lucie Kucerova
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic
| | - Michal Zurovec
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic.
| | - Barbara Kludkiewicz
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic
| | - Miluse Hradilova
- Institute of Molecular Genetics CAS, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics CAS, Videnska 1083, 142 20, Prague, 4, Czech Republic
| | - Frantisek Sehnal
- Institute of Entomology, Biology Centre CAS, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske, Budejovice, Czech Republic.
| |
Collapse
|
17
|
Duplouy A, Minard G, Lähteenaro M, Rytteri S, Saastamoinen M. Silk properties and overwinter survival in gregarious butterfly larvae. Ecol Evol 2018; 8:12443-12455. [PMID: 30619557 PMCID: PMC6309129 DOI: 10.1002/ece3.4595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
All organisms are challenged by encounters with parasites, which strongly select for efficient escape strategies in the host. The threat is especially high for gregarious species entering immobile periods, such as diapause. Larvae of the Glanville fritillary butterfly, Melitaea cinxia, spend the winter in diapause in groups of conspecifics each sheltered in a silk nest. Despite intensive monitoring of the population, we have little understanding of the ecological factors influencing larval survival over the winter in the field. We tested whether qualitative and quantitative properties of the silk nest contribute to larval survival over diapause. We used comparative proteomics, metabarcoding analyses, microscopic imaging, and in vitro experiments to compare protein composition of the silk, community composition of the silk-associated microbiota, and silk density from both wild-collected and laboratory-reared families, which survived or died in the field. Although most traits assessed varied across families, only silk density was correlated with overwinter survival in the field. The silk nest spun by gregarious larvae before the winter acts as an efficient breathable physical shield that positively affects larval survival during diapause. Such benefit may explain how this costly trait is conserved across populations of this butterfly species and potentially across other silk-spinning insect species.
Collapse
Affiliation(s)
- Anne Duplouy
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Guillaume Minard
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
- Laboratory of Microbial EcologyUniversity of Lyon, University Claude Bernard Lyon 1UMR CNRS 5557, UMR INRA 1418VetAgro SupVilleurbanneFrance
| | - Meri Lähteenaro
- Finnish Museum of Natural HistoryZoology UnitUniversity of HelsinkiHelsinkiFinland
| | - Susu Rytteri
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
18
|
Wang G, Chen Y, Zhang X, Bai B, Yan H, Qin D, Xia Q. Selection of reference genes for tissue/organ samples on day 3 fifth-instar larvae in silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21458. [PMID: 29570841 DOI: 10.1002/arch.21458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The silkworm, Bombyx mori, is one of the world's most economically important insect. Surveying variations in gene expression among multiple tissue/organ samples will provide clues for gene function assignments and will be helpful for identifying genes related to economic traits or specific cellular processes. To ensure their accuracy, commonly used gene expression quantification methods require a set of stable reference genes for data normalization. In this study, 24 candidate reference genes were assessed in 10 tissue/organ samples of day 3 fifth-instar B. mori larvae using geNorm and NormFinder. The results revealed that, using the combination of the expression of BGIBMGA003186 and BGIBMGA008209 was the optimum choice for normalizing the expression data of the B. mori tissue/organ samples. The most stable gene, BGIBMGA003186, is recommended if just one reference gene is used. Moreover, the commonly used reference gene encoding cytoplasmic actin was the least appropriate reference gene of the samples investigated. The reliability of the selected reference genes was further confirmed by evaluating the expression profiles of two cathepsin genes. Our results may be useful for future studies involving the quantification of relative gene expression levels of different tissue/organ samples in B. mori.
Collapse
Affiliation(s)
- Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yanfei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingchuan Bai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hao Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Daoyuan Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Zhang Y, Zhao D, Meng Z, Dong Z, Lin Y, Chen S, Xia Q, Zhao P. Wild Silkworm Cocoon Contains More Metabolites Than Domestic Silkworm Cocoon to Improve Its Protection. JOURNAL OF INSECT SCIENCE (ONLINE) 2017; 17:4560634. [PMID: 29117380 PMCID: PMC5717709 DOI: 10.1093/jisesa/iex069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 05/11/2023]
Abstract
The silk of silkworm consists of fibroin fiber coated by sericins. In addition, some nonprotein components were also identified in the sericin fraction. The presence of nonprotein components in the silk has not been well explained. In the present study, methods based on gas chromatography-mass spectrometry were used to identify the metabolites in the cocoon silk from a wild silkworm and two domestic silkworm strains. In total, 45 metabolites were in the cocoon silk, including organic acids, fatty acids, carbohydrates, amino acids, and hydrocarbons. Comparative analyses revealed that 17 metabolites were significant more in the wild silkworm cocoon than in the domestic silkworm cocoon, including three organic acids, three fatty acids, three aldoses, four sugar alcohols, three hydrocarbons, and pyridine. Of them, citric acid in the wild silkworm cocoon is more than 40 times that in the domestic silkworm cocoon, which may have protective value against microbes. The carbohydrate, lipid, and the long-chain hydrocarbons may act as water repellent to make the pupa survive longer in the dry environment. Many metabolites in the cocoon silk may play roles to improve the silk resistance. Lots of nonprotein components were identified in the silk for the first time, providing useful data for understanding the biological function of the cocoon silk.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhu Meng
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Shiyi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, China
- Corresponding author, e-mail:
| |
Collapse
|