1
|
Wang J, Liao S, Mao X, Lin H, Wei H, Chen H, Tang M. Function of doublesex and transformer-2 genes and its respond to environment factors in Dendroctonus armandi Tsai et Li (Coleoptera: Curculionidae: Scolytinae). Int J Biol Macromol 2025; 316:144508. [PMID: 40409646 DOI: 10.1016/j.ijbiomac.2025.144508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The doublesex (dsx) and transformer-2 (tra-2) genes play important roles in insect sex determination. However, the sex determination of Dendroctonus armandi in the native and coniferous forests of the Qinling Mountains is still unclear. In this study, we cloned and identified the full-length sequences of two Dadsx isoform (Dadsx1 and Dadsx2) and two isoform Datra-2 (Datra-2A and Datra-2B) in D. armandi. These four isoforms are expressed in larvae, pupae, as well as in males and females, and their expression levels are highest during the pupae stage. The relative expression levels of Dadsx and Datra-2 genes showed significant differences under different environment treatments (including temperature, nutrient, feeding duration, and terpenoid), with male Dadsx1 relative expression levels significantly higher than females and female Dadsx2 relative expression levels significantly higher than males. The silencing of Datra-2A and Datra-2B isoforms both leads to the downregulation of Dadsx1 isoform. Compared to the control group (average mortality rate: 36.7 %; average deformity rate: 0.2 %; emergence rate: 60.9 %; sex ratio: 1.11), when Dadsx1 (average mortality rate: 69.0 %; average deformity rate: 16.5 %; emergence rate: 29.6 %; sex ratio: 0.28), Dadsx2 (average mortality rate: 64.4 %; average deformity rate: 17.4 %; emergence rate: 25.4 %; sex ratio: 2.41), Datra-2A (average mortality rate: 65.1 %; average deformity rate: 16.1 %; emergence rate: 15.4 %; sex ratio: 0.31) and Datra-2B (average mortality rate: 65.4 %; average deformity rate: 17.2 %; emergence rate: 13.8 %; sex ratio: 0.33) isoform s were silenced, it showed a significant increase in mortality and deformity rates, a significant decrease in emergence rate, and a severe sex imbalance. The results indicate that the relative expression levels of Dadsx and Datra-2 genes are influenced by external factors and play a crucial role in maintaining the sex ratio of D. armandi and ensuring its lifecycle development.
Collapse
Affiliation(s)
- Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Songkai Liao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Haoyu Lin
- Forest Protection Research Institute, Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Yamamoto F, Yokoyama T, Su Y, Suzuki MG. Transcriptomic Evidence for Cell-Autonomous Sex Differentiation of the Gynandromorphic Fat Body in the Silkworm, Bombyx mori. J Dev Biol 2024; 12:31. [PMID: 39585032 PMCID: PMC11587106 DOI: 10.3390/jdb12040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The classic model of sex determination in insects suggests that they do not have sex hormones and that sex is determined in a cell-autonomous manner. On the other hand, there is accumulating evidence that the development of secondary sexual traits is controlled in a non-cell-autonomous manner through external factors. To evaluate the degrees of the cell-autonomous and non-cell-autonomous regulation of secondary sexual trait development, we analyzed the dynamics of the sexually dimorphic transcriptome in gynandromorphic individuals of the mo mutant strain in the silkworm Bombyx mori. The silkworm possesses a female heterogametic sex-determination system (ZZ = male/ZW = female), where the master regulatory gene for femaleness, Feminizer (Fem), is located in the W chromosome. As a secondary sexual trait, we focused on the fat body, which shows remarkable differences between the sexes during the last instar larval stage. A comparison of the transcriptomes between the fat bodies of male and female larvae identified 232 sex-differentially expressed genes (S-DEGs). The proportions of ZZ and ZW cells constituting the fat body of the gynandromorphic larvae were calculated according to the expression level of the Fem. Based on the obtained values, the expression level of each S-DEG was estimated, assuming that the levels of S-DEG expression were determined according to the proportion of ZZ and ZW cells. The estimated expression levels of 207 out of 232 S-DEGs were strongly correlated with the corresponding S-DEG expression level of the gynandromorphic fat body, determined by RNA-seq. These results strongly suggest that most of the sexually dimorphic transcriptome in the fat body is regulated in a cell-autonomous manner.
Collapse
Affiliation(s)
- Fumiko Yamamoto
- Anicom Pafe, Inc., Sumitomo Fudosan, 8-17-1, Shinjyuku, Shinjyuku-ku 160-0023, Tokyo, Japan;
| | - Takeshi Yokoyama
- Department of Biological Production, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-8-1, Harumi-cho, Fuchu 183-8538, Tokyo, Japan;
| | - Yan Su
- Department of Physiology, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku 113-8421, Tokyo, Japan;
| | - Masataka G. Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| |
Collapse
|
3
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Li X, Liu H, Bi H, Wang Y, Xu J, Zhang S, Zhang Z, Zhang Z, Huang Y. Masculinizer gene controls sexual differentiation in Hyphantria cunea. INSECT SCIENCE 2024; 31:405-416. [PMID: 37464965 DOI: 10.1111/1744-7917.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
The Masculinizer gene, Masc, encodes a lepidopteran-specific novel CCCH-type zinc finger protein, which controls sex determination and dosage compensation in Bombyx mori. Considering the potential application of it in pest control, it is necessary to investigate the function of Masc gene in Hyphantria cunea, a globally invasive forest pest. In the present study, we identified and functionally characterized the Masc gene, HcMasc, in H. cunea. Sequence analysis revealed that HcMASC contained the conserved CCCH-type zinc finger domain, nuclear localization signal, and male determining domain, in which the last was confirmed to be required for its masculinization in BmN cell line. However, expression data showed that unlike male-biased expression in B. mori, HcMasc gene expresses in main all developmental stages or tissues in both sexes. Clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based disruption of the common exons 1 and 3 of the HcMasc gene resulted in imbalanced sex ratio and abnormal external genitalia of both sexes. Our results suggest that the HcMasc gene is required for both male and female sexual differentiation and dosage compensation in H. cunea and provide a foundation for developing better strategies to control this pest.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
5
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Fujiwara K, Miyazaki S, Maekawa K. Candidate target genes of the male-specific expressed Doublesex in the termite Reticulitermes speratus. PLoS One 2024; 19:e0299900. [PMID: 38427681 PMCID: PMC10906832 DOI: 10.1371/journal.pone.0299900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
Eusocial insects such as termites, ants, bees, and wasps exhibit a reproductive division of labor. The developmental regulation of reproductive organ (ovaries and testes) is crucial for distinguishing between reproductive and sterile castes. The development of reproductive organ in insects is regulated by sex-determination pathways. The sex determination gene Doublesex (Dsx), encoding transcription factors, plays an important role in this pathway. Therefore, clarifying the function of Dsx in the developmental regulation of sexual traits is important to understand the social evolution of eusocial insects. However, no studies have reported the function of Dsx in hemimetabolous eusocial group termites. In this study, we searched for binding sites and candidate target genes of Dsx in species with available genome information as the first step in clarifying the function of Dsx in termites. First, we focused on the Reticulitermes speratus genome and identified 101 candidate target genes of Dsx. Using a similar method, we obtained 112, 39, and 76 candidate Dsx target genes in Reticulitermes lucifugus, Coptotermes formosanus, and Macrotermes natalensis, respectively. Second, we compared the candidate Dsx target genes between species and identified 37 common genes between R. speratus and R. lucifugus. These included several genes probably involved in spermatogenesis and longevity. However, only a few common target genes were identified between R. speratus and the other two species. Finally, Dsx dsRNA injection resulted in the differential expression of several target genes, including piwi-like protein and B-box type zinc finger protein ncl-1 in R. speratus. These results provide valuable resource data for future functional analyses of Dsx in termites.
Collapse
Affiliation(s)
- Kokuto Fujiwara
- Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Satoshi Miyazaki
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - Kiyoto Maekawa
- Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
7
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
8
|
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. Masculinizer is not post-transcriptionally regulated by female-specific piRNAs during sex determination in the Asian corn borer, Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103946. [PMID: 37075905 DOI: 10.1016/j.ibmb.2023.103946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Lepidopteran insects are heterogametic in females, although most insect species are heterogametic in males. In a lepidopteran model species, the silkworm Bombyx mori (Bombycoidea), the uppermost sex determinant Feminizer (Fem) has been identified on the female-specific W chromosome. Fem is a precursor of PIWI-interacting small RNA (piRNA). Fem piRNA forms a complex with Siwi, one of the two B. mori PIWI-clade Argonaute proteins. In female embryos, Fem piRNA-Siwi complex cleaves the mRNA of the male-determining gene Masculinizer (Masc), directing the female-determining pathway. In male embryos, Masc activates the male-determining pathway in the absence of Fem piRNA. Recently, W chromosome-derived piRNAs complementary to Masc mRNA have also been identified in the diamondback moth Plutella xylostella (Yponomeutoidea), indicating the convergent evolution of piRNA-dependent sex determination in Lepidoptera. Here, we show that this is not the case in the Asian corn borer, Ostrinia furnacalis (Pyraloidea). Although our previous studies demonstrated that O. furnacalis Masc (OfMasc) has a masculinizing function in the embryonic stage, the expression level of OfMasc was indistinguishable between the sexes at the timing of sex determination. Deep sequencing analysis identified no female-specific small RNAs mapped onto OfMasc mRNA. Embryonic knockdown of two PIWI genes did not affect the expression level of OfMasc in either sex. These results demonstrated that piRNA-dependent reduction of Masc mRNA in female embryos is not a common strategy of sex determination, which suggests the possibility of divergent evolution of sex determinants across the order Lepidoptera.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
9
|
Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. Int J Mol Sci 2023; 24:ijms24032605. [PMID: 36768922 PMCID: PMC9917219 DOI: 10.3390/ijms24032605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Over the last decade, long non-coding RNAs (lncRNAs) have witnessed a steep rise in interest amongst the scientific community. Because of their functional significance in several biological processes, i.e., alternative splicing, epigenetics, cell cycle, dosage compensation, and gene expression regulation, lncRNAs have transformed our understanding of RNA's regulatory potential. However, most knowledge concerning lncRNAs comes from mammals, and our understanding of the potential role of lncRNAs amongst insects remains unclear. Technological advances such as RNA-seq have enabled entomologists to profile several hundred lncRNAs in insect species, although few are functionally studied. This article will review experimentally validated lncRNAs from different insects and the lncRNAs identified via bioinformatic tools. Lastly, we will discuss the existing research challenges and the future of lncRNAs in insects.
Collapse
|
10
|
The function and evolution of a genetic switch controlling sexually dimorphic eye differentiation in honeybees. Nat Commun 2023; 14:463. [PMID: 36709321 PMCID: PMC9884244 DOI: 10.1038/s41467-023-36153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Animals develop sex-specific morphological structures that are diverse between organisms. However, understanding the developmental and evolutionary mechanisms governing these traits is still limited and largely restricted to DM domain genes, which are conserved, sex-specific developmental regulators identified in genetic models. Here, we report a sex-specific developmental regulator gene, glubschauge (glu) that selectively regulates sexually dimorphic eye differentiation in honeybees. We found that the sex determination gene feminizer (fem) controls sex-specific splicing of glu transcripts, establishing a genetic switch in which Glu proteins with a zinc finger (ZnF) domain are only expressed in females. We showed that female coding sequence was essential and sufficient for partial feminization. Comparative sequence and functional studies revealed that the evolutionary origination of the genetic switch was followed by the mutational origin of the essential ZnF domain. Our results demonstrate that glu is a newly evolved sex-specific genetic switch for region-specific regulation of a dimorphic character.
Collapse
|
11
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
12
|
CRISPR/Cas9-Mediated Mutagenesis of Sex-Specific Doublesex Splicing Variants Leads to Sterility in Spodoptera frugiperda, a Global Invasive Pest. Cells 2022; 11:cells11223557. [PMID: 36428986 PMCID: PMC9688123 DOI: 10.3390/cells11223557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith), an emerging invasive pest worldwide, has posed a serious agricultural threat to the newly invaded areas. Although somatic sex differentiation is fundamentally conserved among insects, the sex determination cascade in S. frugiperda is largely unknown. In this study, we cloned and functionally characterized Doublesex (dsx), a "molecular switch" modulating sexual dimorphism in S. frugiperda using male- and female-specific isoforms. Given that Lepidoptera is recalcitrant to RNAi, CRISPR/Cas9-mediated mutagenesis was employed to construct S. frugiperda mutants. Specifically, we designed target sites on exons 2, 4, and 5 to eliminate the common, female-specific, and male-specific regions of S. frugiperda dsx (Sfdsx), respectively. As expected, abnormal development of both the external and internal genitalia was observed during the pupal and adult stages. Interestingly, knocking out sex-specific dsx variants in S. frugiperda led to significantly reduced fecundity and fertility in adults of corresponding sex. Our combined results not only confirm the conserved function of dsx in S. frugiperda sex differentiation but also provide empirical evidence for dsx as a potential target for the Sterile Insect Technique (SIT) to combat this globally invasive pest in a sustainable and environmentally friendly way.
Collapse
|
13
|
The Sex-Specific Splicing of Doublesex in Brine Shrimp Artemia franciscana. Genes (Basel) 2022; 13:genes13111997. [PMID: 36360234 PMCID: PMC9690683 DOI: 10.3390/genes13111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of sex determination and differentiation in animals has recently made remarkable strides through the use of advanced research tools. At the gene level, the Mab-3-related transcription factor (Dmrt) gene family, which encodes for the typical DNA-binding doublesex/Mab-3 (DM) domain in their protein, is known for its contribution to sex determination and differentiation in insects. In this study, DNA-binding DM domain screening has identified eight transcripts from Artemia franciscana transcriptomic that encode proteins containing one conserved DNA-binding DM domain. The genome mapping confirmed that these eight transcripts are transcribed from six different loci on the A. franciscana genome assembly. One of those loci, the Af.dsx-4 locus, is closely related to Doublesex, a gene belonging to the Dmrt gene family. This locus could be transcribed into three alternative transcripts, namely Af.dsx4, Af.dsxF and Af.dsxM. While Af.dsx4 and Af.dsxF could putatively be translated to form an identical Af.dsxF protein of 186 aa long, Af.dsxM translates for an Af.dsxM protein of 289 aa long but shares a DNA-binding DM domain. Interestingly, Af.dsxF and Af.dsxM are confirmed as sex-specific transcripts, Af.dsxF is only present in females, and Af.dsxM is only present in male individuals. The results suggest that the sex-specific splicing mechanism of the doublesex described in insects is also present in A. franciscana. Af.dxs-4 locus can be used in further studies to clarify the sex determination pathways in A. fracnciscana.
Collapse
|
14
|
Zhu R, Guo J, Li G, Liu R, Yi T, Jin D. Identification of potential sex determination genes and functional analyses in Neoseiulus californicus under prey stress. PEST MANAGEMENT SCIENCE 2022; 78:5024-5040. [PMID: 36056789 DOI: 10.1002/ps.7128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phytoseiid mites are important natural enemies of spider mites. Sex-determination mechanism are important basic scientific issues in the reproduction and evolution of predatory mites. Clarifying sex-determination mechanism may provide reference for exploring genetic approach to have the phytoseiid mites produce more female offspring, which could improve their effectiveness as a biological control agent. RESULTS We used transcriptome sequencing to identify and characterize 20 putative sex-determination genes in the phytoseiid mite Neoseiulus californicus, a species with uncommon pseudo-arrhenotoky, including doublesex-like (dsx1-like), transformer-2 (tra-2), intersex (ix), and fruitless-like (BTB2). A significant negative correlation was found between prey stress and offspring sex ratio. But the most genes identified showed no difference in expression between the groups with lowest and highest female offspring ratios. The hatching rate and sex ratio of female offspring were reduced when the ix gene was silenced, and the oviposition days and fecundity were reduced when the BTB2 gene was silenced. The fecundity was reduced when the tra2 gene was silenced and the snf gene is essential for oviposition in female. There was no effect on reproduction and female sex determination when silencing the dsx1-like and dsx2-like gene. CONCLUSION The genes BTB2, tra2 and snf are involved in oviposition, and ix may be involved in female sex determination and egg formation in Neoseiulus californicus. The results are conductive to further understanding molecular regulatory mechanism of sex determination in predatory mites and may provide a reference for better use of this predatory by producing more females. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Gang Li
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Rundong Liu
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Tianci Yi
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, the Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affirs, the People's Republic of China, Guiyang, China
| |
Collapse
|
15
|
Identification and Expression Analysis of Dsx and Its Positive Transcriptional Regulation of IAG in Black Tiger Shrimp ( Penaeus monodon). Int J Mol Sci 2022; 23:ijms232012701. [PMID: 36293554 PMCID: PMC9604489 DOI: 10.3390/ijms232012701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5′-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.
Collapse
|
16
|
Masculinizer and Doublesex as Key Factors Regulate Sexual Dimorphism in Ostrinia furnacalis. Cells 2022; 11:cells11142161. [PMID: 35883604 PMCID: PMC9320909 DOI: 10.3390/cells11142161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In animals, sexually dimorphic traits are ubiquitous and play vital roles in reproduction, courtship, and environmental adaptation, especially in insects. In this study, we used the CRISPR/Cas9 genome editing system to generate somatic mutations of the Masculinizer (Masc) and doublesex (dsx) genes in the sex determination pathway of Ostrinia furnacalis. The OfMasc and Ofdsx genes are structural orthologs of the key sex regulation factors in Bombyx mori. Mutation of the OfMasc and Ofdsx genes induced abnormal external genitalia, adult sterility, and sex reversal of sexually dimorphic traits including wing pigmentation, gene expression patterns, and dsx sex-specific splicing. These results demonstrate that the Masc and dsx genes are conserved factors in sexually dimorphic traits, and therefore represent potential target genes in the effort to control O. furnacalis and other lepidopteran pests. Abstract Sex determination is an important and traditional biological process. In Lepidoptera, Masculinizer (Masc) and doublesex (dsx) are the essential genes for sex determination and play critical roles in sexual differentiation and development. The functions of Masc and dsx have been characterized in several model insect species. However, the molecular mechanism and sex determination functions of Masc and dsx in Ostrinia furnacalis, an agricultural pest, are still unknown. Here, we successfully used the CRISPR/Cas9 genome editing system to knock out OfMasc and Ofdsx. Mutation of OfMasc induced male external genital defects and sterility. Disruptions of the Ofdsx common region caused sex-specific defects in the external genitals and adult sterility. In addition, we found that OfMasc and Ofdsx can regulate the pigmentation genes that control wing pigmentation patterns. These results demonstrate that OfMasc and Ofdsx play key roles in the sex determination of O. furnacalis, and suggest novel genetic control approaches for the management of pests, including O. furnacalis.
Collapse
|
17
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
18
|
Li AM, He WZ, Wei JL, Chen ZL, Liao F, Qin CX, Pan YQ, Shang XK, Lakshmanan P, Wang M, Tan HW, Huang DL. Transcriptome Profiling Reveals Genes Related to Sex Determination and Differentiation in Sugarcane Borer (Chilo sacchariphagus Bojer). INSECTS 2022; 13:insects13060500. [PMID: 35735837 PMCID: PMC9225334 DOI: 10.3390/insects13060500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Chilo sacchariphagus Bojer is an important sugarcane pest globally. The identification of key genes associated with sex determination and differentiation will provide important basic information for the sterile insect technique control strategy. In this study, the comparative transcriptomic analysis of female and male adults revealed sex-biased gene expression, indicating putative genetic elements of sex determination and differentiation in this species. Abstract Chilo sacchariphagus Bojer is an important sugarcane pest globally. Along with genetic modification strategies, the sterile insect technique (SIT) has gained more attention as an environment-friendly method for pest control. The identification of key genes associated with sex determination and differentiation will provide important basic information for this control strategy. As such, the transcriptome sequencing of female and male adults was conducted in order to understand the sex-biased gene expression and molecular basis of sex determination and differentiation in this species. A total of 60,429 unigenes were obtained; among them, 34,847 genes were annotated. Furthermore, 11,121 deferentially expressed genes (DEGs) were identified, of which 8986 were male-biased and 2135 were female-biased genes. The male-biased genes were enriched for carbon metabolism, peptidase activity and transmembrane transport, while the female-biased genes were enriched for the cell cycle, DNA replication, and the MAPK signaling pathway. In addition, 102 genes related to sex-determination and differentiation were identified, including the protein toll, ejaculatory bulb-specific protein, fruitless, transformer-2, sex-lethal, beta-Catenin, sox, gata4, beta-tubulin, cytosol aminopeptidase, seminal fluid, and wnt4. Furthermore, transcription factors such as myb, bhlh and homeobox were also found to be potentially related to sex determination and differentiation in this species. Our data provide new insights into the genetic elements associated with sex determination and differentiation in Chilo sacchariphagus, and identified potential candidate genes to develop pest-control strategies.
Collapse
Affiliation(s)
- Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei-Zhong He
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ji-Li Wei
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xian-Kun Shang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hong-Wei Tan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530007, China; (A.-M.L.); (W.-Z.H.); (J.-L.W.); (Z.-L.C.); (F.L.); (C.-X.Q.); (Y.-Q.P.); (X.-K.S.); (P.L.); (M.W.)
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, China
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
- Correspondence: (H.-W.T.); (D.-L.H.)
| |
Collapse
|
19
|
Wang Y, Rensink AH, Fricke U, Riddle MC, Trent C, van de Zande L, Verhulst EC. Doublesex regulates male-specific differentiation during distinct developmental time windows in a parasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103724. [PMID: 35093500 DOI: 10.1016/j.ibmb.2022.103724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Sexually dimorphic traits in insects are subject to sexual selection, but our knowledge of the underlying molecular mechanisms is still scarce. Here we investigate how the highly conserved gene, Doublesex (Dsx), is involved in shaping sexual dimorphism in the model parasitoid wasp Nasonia vitripennis (Hymenoptera: Pteromalidae). First, we present the revised Dsx gene structure including an alternative transcription start, and two additional male NvDsx transcript isoforms. We show sex-specific NvDsx expression and splicing throughout development, and demonstrate that transient NvDsx silencing in different male developmental stages shifts two sexually dimorphic traits from male to female morphology, with the effect being dependent on the timing of silencing. In addition, we determined the effect of NvDsx on the development of reproductive organs. Transient silencing of NvDsx in early male larvae affects the growth and differentiation of the internal and external reproductive tissues. We did not observe phenotypic changes in females after NvDsx silencing. Our results indicate that male NvDsx is required to suppress female-specific traits and/or to promote male-specific traits during distinct developmental windows. This provides new insights into the regulatory activity of Dsx during male wasp development in the Hymenoptera.
Collapse
Affiliation(s)
- Yidong Wang
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Anna H Rensink
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ute Fricke
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands
| | - Megan C Riddle
- Biology Department, Western Washington University, Washington, USA
| | - Carol Trent
- Biology Department, Western Washington University, Washington, USA
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Eveline C Verhulst
- Wageningen University, Laboratory of Entomology, Wageningen, the Netherlands; Wageningen University, Laboratory of Genetics, Wageningen, the Netherlands.
| |
Collapse
|
20
|
Zhuo JC, Zhang HH, Hu QL, Zhang JL, Lu JB, Li HJ, Xie YC, Wang WW, Zhang Y, Wang HQ, Huang HJ, Lu G, Chen JP, Li JM, Tu ZJ, Zhang CX. A feminizing switch in a hemimetabolous insect. SCIENCE ADVANCES 2021; 7:eabf9237. [PMID: 34826246 PMCID: PMC8626073 DOI: 10.1126/sciadv.abf9237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of sex determination remains poorly understood in hemimetabolous insects. Here, in the brown planthopper (BPH), Nilaparvata lugens, a hemipteran rice pest, we identified a feminizing switch or a female determiner (Nlfmd) that encodes a serine/arginine-rich protein. Knockdown of Nlfmd in female nymphs resulted in masculinization of both the somatic morphology and doublesex splicing. The female-specific isoform of Nlfmd, Nlfmd-F, is maternally deposited and zygotically transcribed. Depletion of Nlfmd by maternal RNAi or CRISPR-Cas9 resulted in female-specific embryonic lethality. Knockdown of an hnRNP40 family gene named female determiner 2 (Nlfmd2) also conferred masculinization. In vitro experiments showed that an Nlfmd2 isoform, NlFMD2340, bound the RAAGAA repeat motif in the Nldsx pre-mRNA and formed a protein complex with NlFMD-F to modulate Nldsx splicing, suggesting that NlFMD2 may function as an RNA binding partner of the feminizing switch NlFMD. Our results provide novel insights into the diverse mechanisms of insect sex determination.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Wei-Wei Wang
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhi-Jian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104325. [PMID: 34743972 DOI: 10.1016/j.jinsphys.2021.104325] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Clustered regularly spaced short palindrome repeats (CRISPR) structure family forms the acquired immune system in bacteria and archaea. Recent advances in CRISPR/Cas genome editing as derived from prokaryotes, confirmed the characteristics of robustness, high target specificity and programmability, and also revolutionized the insect sciences field. The successful application of CRISPR in a wide variety of lepidopteran insects, with a high genetic diversity, provided opportunities to explore gene functions, insect modification and pest control. In this review, we present a detailed overview on the recent progress of CRISPR in lepidopteran insects, and described the basic principles of the system and its application. Major interest is on wing development, pigmentation, mating, reproduction, sex determination, metamorphosis, resistance and silkworm breeding innovation. Finally, we outlined the limitations of CRISPR/Cas system and discussed its application prospects in lepidopteran insects.
Collapse
Affiliation(s)
- Jiang-Jie Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Yan Shi
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China; Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Ji-Nan Wu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Hao Li
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Tong-Xian Liu
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
22
|
Mine S, Sumitani M, Aoki F, Hatakeyama M, Suzuki MG. Effects of Functional Depletion of Doublesex on Male Development in the Sawfly, Athalia rosae. INSECTS 2021; 12:insects12100849. [PMID: 34680618 PMCID: PMC8538284 DOI: 10.3390/insects12100849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023]
Abstract
Simple Summary The sawfly, Athalia rosae, exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. The doublesex (dsx) gene is a well-conserved transcription factor that regulates sexual differentiation in insects. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. As a result, knockdown of Ardsx in haploid males caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. The same knockdown approach using diploid males caused complete male-to-female sex reversal; they were able to produce fertile eggs and exhibited female behaviors. The same RNAi treatment did not affect female differentiation. These results demonstrated that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead. Abstract The doublesex (dsx) gene, which encodes a transcription factor, regulates sexual differentiation in insects. Sex-specific splicing of dsx occurs to yield male- and female-specific isoforms, which promote male and female development, respectively. Thus, functional disruption of dsx leads to an intersexual phenotype in both sexes. We previously identified a dsx ortholog in the sawfly, Athalia rosae. Similar to dsx in other insects, dsx in the sawfly yields different isoforms in males and females as a result of alternative splicing. The sawfly exploits a haplodiploid mode of reproduction, in which fertilized eggs develop into diploid females, whereas unfertilized eggs parthenogenetically develop into haploid males. In the present study, we knocked down the A. rosae ortholog of dsx (Ardsx) during several developmental stages with repeated double-stranded RNA (dsRNA) injections. Knockdown of Ardsx via parental RNA interference (RNAi), which enables knockdown of genes in offspring embryos, led to a lack of internal and external genitalia in haploid male progeny. Additional injection of dsRNA targeting Ardsx in these animals caused almost complete male-to-female sex reversal, but the resulting eggs were infertile. Notably, the same knockdown approach using diploid males obtained by sib-crossing caused complete male-to-female sex reversal; they were morphologically and behaviorally females. The same RNAi treatment did not affect female differentiation. These results indicate that dsx in the sawfly is essential for male development and its depletion caused complete male-to-female sex reversal. This is the first demonstration of functional depletion of dsx not causing intersexuality but inducing total sex reversal in males instead.
Collapse
Affiliation(s)
- Shotaro Mine
- Department of Biosciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan;
| | - Megumi Sumitani
- Division of Biotechnology, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
| | - Masatsugu Hatakeyama
- Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba 305-8634, Japan;
| | - Masataka G. Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan;
- Correspondence: ; Tel.: +81-4-7136-3694
| |
Collapse
|
23
|
5'-Nucleotidase Plays a Key Role in Uric Acid Metabolism of Bombyx mori. Cells 2021; 10:cells10092243. [PMID: 34571893 PMCID: PMC8468349 DOI: 10.3390/cells10092243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023] Open
Abstract
Uric acid (UA) is the end-product in the human purine metabolism pathway. The UA that accumulates in silkworm tissues is excreted as a nitrogen waste product. Here, we first validated that Bombyx mori has a homolog of the human gene that encodes the 5′-nucleotidase (5′N) involved in purine metabolism. The B. mori gene, Bm5′N, is located upstream of other genes involved in UA metabolism in the silkworm. Disruption of Bm5′N via the CRISPR/Cas9 system resulted in decreased UA levels in the silkworm epidermis and caused a translucent skin phenotype. When Bm5′N mutant silkworms were fed with the uric acid precursor inosine, the UA levels in the epidermis increased significantly. Furthermore, the metabolomic and transcriptomic analyses of Bm5′N mutants indicated that loss of the Bm5′N affected purine metabolism and the ABC transport pathway. Taken together, these results suggest that the UA pathway is conserved between the silkworm and humans and that the Bm5′N gene plays a crucial role in the uric acid metabolism of the silkworm. Thus, the silkworm may be a suitable model for the study of UA metabolism pathways relevant to human disease.
Collapse
|
24
|
Wan H, Zhong J, Zhang Z, Zou P, Zeng X, Wang Y. Discovery of the Dmrt gene family members based on transcriptome analysis in mud crab Scylla paramamosain. Gene 2021; 784:145576. [PMID: 33771605 DOI: 10.1016/j.gene.2021.145576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Doublesex and mab-3 related transcription factors (Dmrts) play crucial roles in sex determination/differentiation and gonad development. The information on Dmrts and their functions are still scarce in mud crab Scylla paramamosain. In this study, 12 published transcriptome data of S. paramamosain were retrieved, pooled, and assembled. From the assembly, 7 Dmrt gene family members were identified and consisted of Spdmrt-like, Spdmrt-1a, Spdmrt-3, Spdmrt-11E, Spidmrt-1, Spdoublesex (Spdsx), and Spidmrt-2. These dmrt genes were predicted to encode 224 aa, 465 aa, 435 aa, 276 aa, 520 aa, 552 aa, and 266 aa protein precursors, respectively. The expression patterns of the dmrt genes were characterized by semi-quantitative PCR. The Spdmrt-like and Spdmrt-1a were exclusively detected in gonads, of which both expression levels in the testis were higher than that in the ovary. The Spdmrt-3, Spdmrt-11E, Spidmrt-1, Spdsx, and Spidmrt-2 were observed in various tissues; all these genes were sexually dimorphic except for dmrt-11E. Specifically, the expression level of Spdmrt-3 and Spidmrt-2 were higher in the testis than that in the ovary. On the contrary, the Spdsx and Spidmrt-1 expression level were higher in ovary than that in testis. The present study's findings provided a fundamental understanding of Dmrt gene family members involving sex determination/differentiation and gonad development in the S. paramamosain.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen 361021, China.
| |
Collapse
|
25
|
Yang X, Chen K, Wang Y, Yang D, Huang Y. The Sex Determination Cascade in the Silkworm. Genes (Basel) 2021; 12:genes12020315. [PMID: 33672402 PMCID: PMC7926724 DOI: 10.3390/genes12020315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
In insects, sex determination pathways involve three levels of master regulators: primary signals, which determine the sex; executors, which control sex-specific differentiation of tissues and organs; and transducers, which link the primary signals to the executors. The primary signals differ widely among insect species. In Diptera alone, several unrelated primary sex determiners have been identified. However, the doublesex (dsx) gene is highly conserved as the executor component across multiple insect orders. The transducer level shows an intermediate level of conservation. In many, but not all examined insects, a key transducer role is performed by transformer (tra), which controls sex-specific splicing of dsx. In Lepidoptera, studies of sex determination have focused on the lepidopteran model species Bombyx mori (the silkworm). In B. mori, the primary signal of sex determination cascade starts from Fem, a female-specific PIWI-interacting RNA, and its targeting gene Masc, which is apparently specific to and conserved among Lepidoptera. Tra has not been found in Lepidoptera. Instead, the B. mori PSI protein binds directly to dsx pre-mRNA and regulates its alternative splicing to produce male- and female-specific transcripts. Despite this basic understanding of the molecular mechanisms underlying sex determination, the links among the primary signals, transducers and executors remain largely unknown in Lepidoptera. In this review, we focus on the latest findings regarding the functions and working mechanisms of genes involved in feminization and masculinization in Lepidoptera and discuss directions for future research of sex determination in the silkworm.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (X.Y.); (K.C.); (Y.W.); (D.Y.)
- Correspondence:
| |
Collapse
|
26
|
Nakata M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. Identification and characterization of sexually dimorphic neurons that express the sex-determining gene doublesex in the brain of silkmoth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103518. [PMID: 33421546 DOI: 10.1016/j.ibmb.2021.103518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan.
| |
Collapse
|
27
|
Yuzawa T, Matsuoka M, Sumitani M, Aoki F, Sezutsu H, Suzuki MG. Transgenic and knockout analyses of Masculinizer and doublesex illuminated the unique functions of doublesex in germ cell sexual development of the silkworm, Bombyx mori. BMC DEVELOPMENTAL BIOLOGY 2020; 20:19. [PMID: 32957956 PMCID: PMC7504827 DOI: 10.1186/s12861-020-00224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023]
Abstract
Background Masculinizer (Masc) plays a pivotal role in male sex determination in the silkworm, Bombyx mori. Masc is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. The male isoform of Bmdsx (BmdsxM) induces male differentiation in somatic cells, while females express the female isoform of Bmdsx (BmdsxF), which promotes female differentiation in somatic cells. Our previous findings suggest that Masc could direct the differentiation of genetically female (ZW) germ cells into sperms. However, it remains unclear whether Masc directly induces spermatogenesis or if it promotes male differentiation in germ cells indirectly by inducing the expression of BmdsxM. Results In this study, we performed genetic analyses using the transgenic line that expressed Masc, as well as various Bmdsx knockout lines. We found that Masc-expressing females with a homozygous mutation in BmdsxM showed normal development in ovaries. The formation of testis-like tissues was abolished in these females. On the other hand, Masc-expressing females carrying a homozygous mutation in BmdsxF exhibited almost complete male-specific development in gonads and germ cells. These results suggest that BmdsxM has an ability to induce male development in germ cells as well as internal genital organs, while BmdsxF inhibits BmdsxM activity and represses male differentiation. To investigate whether MASC directly controls male-specific splicing of Bmdsx and identify RNAs that form complexes with MASC in testes, we performed RNA immunoprecipitation (RIP) using an anti-MASC antibody. We found that MASC formed a complex with AS1 lncRNA, which is a testis-specific factor involved in the male-specific splicing of Bmdsx pre-mRNA. Conclusions Taken together, our findings suggest that Masc induces male differentiation in germ cells by enhancing the production of BmdsxM. Physical interaction between MASC and AS1 lncRNA may be important for the BmdsxM expression in the testis. Unlike in the Drosophila dsx, BmdsxM was able to induce spermatogenesis in genetically female (ZW) germ cells. To the best of our knowledge, this is the first report that the role of dsx in germ cell sexual development is different between insect species.
Collapse
Affiliation(s)
- Tomohisa Yuzawa
- AIR WATER INC, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Misato Matsuoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.,SHINYUSHA, 1-12 Kanda Jimbocho, Chiyoda-ku, Tokyo, 101-0051, Japan
| | - Megumi Sumitani
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Hideki Sezutsu
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Owashi, Tsukuba, 305-8634, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
28
|
Liu ZL, Xu J, Ling L, Yang DH, Chen SQ, Huang YP. MicroRNA-2738 regulates gene expression in the sex determination pathway in Bombyx mori. INSECT SCIENCE 2020; 27:646-654. [PMID: 31131541 DOI: 10.1111/1744-7917.12694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding transcripts that bind to 3'-untranslated regions to trigger messenger RNA degradation or translational inhibition. Here we explored how miRNAs regulate sex determination in Bombyx mori, a lepidopteran model insect. Genes known to be involved in sex determination, BmPSI, Bmdsx, and BmMasc, are predicted targets of the species-specific miR-2738. Using a dual luciferase reporter assay in HEK293T cells, we confirmed that miR-2738 suppressed transcription of BmPSI, Bmdsx, and BmMasc. The levels of BmPSI and BmMasc were significantly down-regulated in B. mori miR-2738 overexpression. In contrast, the genetic disruption of miR-2738 using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 transgenic system increased the levels of BmPSI and BmMasc transcripts, whereas splicing of Bmdsx was unaltered by miR-2738 depletion or overexpression. Taken together, this study implicates miR-2738 as a minor regulator of sex determination genes in the silkworm.
Collapse
Affiliation(s)
- Zu-Lian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| | - Lin Ling
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| | - De-Hong Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| | - Shu-Qing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, CAS, Shanghai, China
| |
Collapse
|
29
|
Xu J, Liu W, Yang D, Chen S, Chen K, Liu Z, Yang X, Meng J, Zhu G, Dong S, Zhang Y, Zhan S, Wang G, Huang Y. Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade. PLoS Genet 2020; 16:e1008622. [PMID: 32520935 PMCID: PMC7307793 DOI: 10.1371/journal.pgen.1008622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/22/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Insect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways. Loss of Bmdsx gene expression significantly reduced the peripheral perception of the major pheromone component bombykol by reducing expression of the product of the BmOR1 gene which completely blocked courtship in adult males. Interestingly, we found that mating behavior was regulated independently by another sexual differentiation gene, Bmfru. Loss of Bmfru completely blocked mating, but males displayed normal courtship behavior. Lack of Bmfru expression significantly reduced the perception of the minor pheromone component bombykal due to the down regulation of BmOR3 expression; further, functional analysis revealed that loss of the product of BmOR3 played a key role in terminating male mating behavior. Our results suggest that Bmdsx and Bmfru are at the base of the two primary pathways that regulate olfactory-based sexual behavior. The fundamental insect sexual behaviors, courtship and mating, result from successful integration of olfactory, vision, tactile and other complex innate behaviors. In the widely used insect model, Drosophila melanogaster, the sex determination cascade genes fruitless and doublesex are involved in the regulation of courtship and mating behaviors; however, little is known about the function of these sexual differentiation genes in regulating sex behaviors of Lepidoptera. Here we combine genetics and electrophysiology to investigate regulation pathway of sexual behaviors in the model lepidopteran insect, the domesticated silk moth, Bombyx mori. Our results support the presence of two genetic pathways in B. mori, named Bmdsx-BmOR1-bombykol and Bmfru-BmOR3-bombykal, which control distinct aspects of male sexual behavior that are modulated by olfaction. This is the first comprehensive report about the role of sex differentiation genes in the male sexual behavior in the silk moth.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Meng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanheng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuanglin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (GW); (YH)
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (GW); (YH)
| |
Collapse
|
30
|
Sun L, Zhang Z, Zhang R, Yu Y, Yang F, Tan A. Molecular Disruption of Ion Transport Peptide Receptor Results in Impaired Water Homeostasis and Developmental Defects in Bombyx mori. Front Physiol 2020; 11:424. [PMID: 32508668 PMCID: PMC7251169 DOI: 10.3389/fphys.2020.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Insect ion transport peptides (ITPs) are important regulators of many physiological processes and they exert their functions by interacting with their receptors (ITPRs). In the current study, we comprehensively investigated the physiological functions of ITPR in the lepidopteran model insect, the silkworm (Bombyx mori), using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing technique. Mutations in silkworm ITPR (BNGR-A2) resulted in a prolongnation of the larval stage by 3.5-day as well as failure in wing expansion of moths. The BNGR-A2 mutation accelerated food transition throughout the digestive tract, which is 1.55-fold that of wild type (WT) insects. Excretion was 1.56-fold of WT insects during the larval stage, resulting in the loss of body water content. Loss of BNGR-A2 function induced significant upregulation of nitric oxide synthase (NOS) enzyme activity and nitric oxide (NO) content, as well as downstream Ca2+/NO/cGMP signaling pathways. Key genes in insulin and ecdysone signaling pathways were also affected by BNGR-A2 disruption. Our data show that ITPR plays key roles in regulating insect water homeostasis and development.
Collapse
Affiliation(s)
- Lili Sun
- College of Forestry, Northeast Forestry University, Harbin, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhongjie Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ru Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ye Yu
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fangying Yang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Anjiang Tan
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Li X, Liu Q, Liu H, Bi H, Wang Y, Chen X, Wu N, Xu J, Zhang Z, Huang Y, Chen H. Mutation of doublesex in Hyphantria cunea results in sex-specific sterility. PEST MANAGEMENT SCIENCE 2020; 76:1673-1682. [PMID: 31749278 DOI: 10.1002/ps.5687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The gene doublesex (dsx) plays pivotal roles in sex determination and controls sexually dimorphic development in certain insects. Importantly, it also displays a potential candidate target for pest management due to its sex-specific splicing. Therefore, we used CRISPR/Cas9-mediated gene disruption to investigate the function of dsx in Hyphantria cunea, an invasive forest pest. RESULT In the present study, we identified the dsx gene from H. cunea which showed a sex-biased expression pattern that was different from other lepidopteran insects. Referring to sex-specific functional analyses in Bombyx mori, we performed a site-specific knockout of the Hcdsx gene by using a CRISPR/Cas9 system, which induced severe abnormalities in external genitalia and some incomplete sex reversal phenotypes, which in turn led to reduced sex-specific fecundity. An alternative splicing pattern of Hcdsx was altered by CRISPR/Cas9-induced mutation, and alterations in splicing affected expression of downstream genes encoding pheromone binding protein 1, vg1 and vg2 (encoding vitellogenin), which contributed to the sex-specific sterility phenotypes in the Hcdsx mutants. CONCLUSION The Hcdsx gene plays important roles in sexual differentiation in H. cunea. Disruption of Hcdsx induced sex-specific sterility, demonstrating a potential application in control of this pest. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowei Li
- College of Forestry, Northwest A&F University, Yangling, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Qun Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Xien Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Xu J, Chen RM, Chen SQ, Chen K, Tang LM, Yang DH, Yang X, Zhang Y, Song HS, Huang YP. Identification of a germline-expression promoter for genome editing in Bombyx mori. INSECT SCIENCE 2019; 26:991-999. [PMID: 30549429 DOI: 10.1111/1744-7917.12657] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Identification of stage- and tissue-specific cis-regulatory elements will enable more precise genomic editing. In previous studies of the silkworm Bombyx mori, we identified and characterized several tissue- and sex-specific cis-regulatory elements using transgenic technology, including a female- and fat body-specific promoter, vitellogenin, testis-specific promoters, Radial spoke head 1 (BmR1) and beta-tubulin 4 (Bmβ4). Here we report a cis-regulatory element specific for a somatic and germ cell-expressed promoter, nanos (Bmnos). We investigated activities of three truncated promoter sequences upstream of the transcriptional initiation site sequences of Bmnos in vitro (nos-0.6kb, nos-1kb and nos-2kb) and in vivo (nos-2kb). In BmN cultured cells, all three lengths drove expression of the gene encoding enhanced green fluorescence protein (EGFP), although nos-2kb had the highest fluorescence activity. In transgenic silkworms, nos-2kb drove EGFP expression at the early embryonic stage, and fluorescence was concentrated in the gonads at later embryonic stages. In addition, this cis-regulatory element was not sex differentiated. The fluorescence intensity gradually weakened following the larval developmental stage in the gonads and were broadly expressed in the whole body. The nos-2kb promoter drove the Cas9 system with efficiency comparable to that of the broad-spectrum strong IE1 promoter. These results indicate that Bmnos is an effective endogenous cis-regulatory element in the early embryo and in the gonad that can be used in applications involving the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system.
Collapse
Affiliation(s)
- Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Mei Chen
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Shu-Qing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin-Meng Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - De-Hong Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Hong-Sheng Song
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
McKelvey EG, Fabre CC. Recent neurogenetic findings in insect courtship behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 36:103-110. [PMID: 31546094 DOI: 10.1016/j.cois.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Insect courtship parades consist of series of innate and stereotyped behaviours that become hardwired-in during the development of the nervous system. As such, insect courtship behaviour provides an excellent model for probing the principles of neuronal assembly, which underlie patterns of behaviour. Here, we present the main advances of recent studies - in species all the way from flies to planthoppers - and we envisage how these could lead to further propitious findings.
Collapse
Affiliation(s)
- Eleanor Gz McKelvey
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Caroline Cg Fabre
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
34
|
Wang YH, Chen XE, Yang Y, Xu J, Fang GQ, Niu CY, Huang YP, Zhan S. The Masc gene product controls masculinization in the black cutworm, Agrotis ipsilon. INSECT SCIENCE 2019; 26:1037-1044. [PMID: 30088858 DOI: 10.1111/1744-7917.12635] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Sex determination has been studied in the model lepidopteran species Bombyx mori, but it remains poorly understood in lepidopteran pests. In the present study, we identified and characterized the Masculinizer (Masc) gene in a Noctuidae pest species, Agrotis ipsilon. Sequence analysis revealed that AiMasc encodes a protein of 658 amino acids that has two CCCH-type zinc finger domains and two conserved cysteine residues (Cys-277 and Cys-280). We assessed the masculinizing activity of AiMasc in BmN cells and found that AiMasc induced expression of the male-specific doublesex isoform. Disruption of Masc via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) in A. ipsilon caused abnormalities in abdominal segments and external genitalia, resulting in male-specific sterility. These results suggest that Masc participates in the process of sex determination in A. ipsilon. Successful identification of sex-determination gene in a pest species may enable the development of novel genetic approaches for pest control.
Collapse
Affiliation(s)
- Yao-Hui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi-En Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yang Yang
- School of Life Science, East China Normal University, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Gang-Qi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Chang-Ying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
35
|
Ma SY, Smagghe G, Xia QY. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. INSECT SCIENCE 2019; 26:964-972. [PMID: 29845729 DOI: 10.1111/1744-7917.12609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
In recent years, research in life sciences has been remarkably revolutionized owing to the establishment, development and application of genome editing technologies. Genome editing has not only accelerated fundamental research but has also shown promising applications in agricultural breeding and therapy. In particular, the clustered, regularly interspaced, short palindromic repeat (CRISPR) technology has become an indispensable tool in molecular biology owing to its high efficacy and simplicity. Genome editing tools have also been established in silkworm (Bombyx mori), a model organism of Lepidoptera insects with high economic importance. This has remarkably improved the level and scope of silkworm research and could reveal new mechanisms or targets in basic entomology and pest management studies. In this review, we summarize the progress and potential of genome editing in silkworm and its applications in functional genomic studies for generating novel genetic materials.
Collapse
Affiliation(s)
- San-Yuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Du Q, Wen L, Zheng SC, Bi HL, Huang YP, Feng QL, Liu L. Identification and functional characterization of doublesex gene in the testis of Spodoptera litura. INSECT SCIENCE 2019; 26:1000-1010. [PMID: 29808584 DOI: 10.1111/1744-7917.12608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Fusion of the testis occurs in most Lepidoptera insects, including Spodoptera litura, an important polyphagous pest. Testicular fusion in S. litura is advantageous for male reproduction, and the molecular mechanism of fusion remains unknown. Doublesex influences the formation of genitalia, the behavior of courtship, and sexually dimorphic traits in fruit-fly and silkworm, and is essential for sexual differentiation. However, its purpose in the testis of S. litura remains unknown. The doublesex gene of S. litura (Sldsx) has male-specific SldsxM and female-specific SldsxF isoforms, and exhibits a higher expression level in the male testis. At the testicular fusion stage (L6D6), Sldsx attained the highest expression compared to the pre-fusion and post-fusion periods. Moreover, Sldsx had a higher expression in the peritoneal sheaths of testis than that of germ cells in the follicle. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9) was applied to S. litura to determine the role of Sldsx. A mixture of single guide RNA messenger RNA and Cas9 protein (300 ng/μL each) was injected into eggs within 2 h following oviposition. CRISPR/Cas9 successfully induced genomic mutagenesis of Sldsx at G0 generation. The mutant males had smaller testis surrounded by less tracheae. Moreover, the mutant males had abnormal external genitalia and could not finish mating with wild-type females. Additionally, testes were fused for almost all mutant males. The results showed that Sldsx was not related to testicular fusion, and is required for both testis development and the formation and function of external genitalia in S. litura. The main roles of doublesex on the male are similar to other insects.
Collapse
Affiliation(s)
- Qian Du
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Lun Bi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Qi-Li Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lin Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
37
|
Xu Y, Dong Y, Xu Y, Lai Z, Jin B, Hao Y, Gao Y, Sun Y, Chen XG, Gu J. Differentiation of Long Non-Coding RNA and mRNA Expression Profiles in Male and Female Aedes albopictus. Front Genet 2019; 10:975. [PMID: 31681418 PMCID: PMC6802003 DOI: 10.3389/fgene.2019.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/13/2019] [Indexed: 11/13/2022] Open
Abstract
The Asia tiger mosquito (Aedes albopictus) is an important vector of arboviruses, and females can transmit pathogens such as the dengue, zika, and chikungunya viruses. Understanding sex-related differences in this mosquito is fundamental for vector control. However, there are no reports of systematic characterization of long non-coding RNAs (lncRNAs) in male and female Ae. albopictus. To investigate the roles of coding and non-coding RNAs in both sexes of Ae. albopictus, RNA sequencing was performed on male and female samples. The results showed 305 differentially expressed protein-coding genes (DEGs) between males and females, of which 198 were highly expressed in males and 125 were highly expressed in females. Sex-associated gene ontology terms were enriched. Analysis with the FEELnc software identified 2,623 novel lncRNAs, of which 26 showed male high expression and 11 showed female high expression. Quantitative real-time PCR of randomly selected DEGs and lncRNAs supported the validity of the RNA sequencing results. Knocking down male high-expressed gene AALF000433 in male adults reduced the egg hatching rate. This study provides valuable data on sex-specific expression of protein-coding genes and lncRNAs in adult Ae. albopictus, which will guide further studies aimed at understanding sex development and determination mechanisms in this species.
Collapse
Affiliation(s)
- Ye Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunqiao Dong
- Reproductive Medical Center of Guangdong Women and Children Hospital, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yazhou Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zetian Lai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Binbin Jin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yanqiang Hao
- Department of Laboratory Medicine, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Sun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Guang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Wang Y, Chen X, Liu Z, Xu J, Li X, Bi H, Andongma AA, Niu C, Huang Y. Mutation of doublesex induces sex-specific sterility of the diamondback moth Plutella xylostella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103180. [PMID: 31278987 DOI: 10.1016/j.ibmb.2019.103180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/28/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
DOUBLESEX (DSX): the downstream gene in the insect sex determination pathway, plays a critical role in sexual differentiation and development. The functions of dsx have been characterized in several model insect species. However, the molecular mechanism and functions of sex determination of dsx in Plutella xylostella, an agricultural pest, are still unknown. In present study, we identified a male-specific and three female-specific Pxdsx transcripts in P. xylostella. Phylogenetic analyses and multiple sequence alignment revealed that Pxdsx is highly conserved in lepidopterans. The CRISPR/Cas9 technology was used to induce mutations in the male-specific isoform, the female-specific isoform, and common regions of Pxdsx. Disruptions of Pxdsx sex-specific isoforms caused sex-specific defects in external genitals and partial sexual reversal. In addition, we found that female specific transcripts were detected in PxdsxM male mutants and male-specific transcripts were detected in PxdsxF female mutants. Mutations also caused changes in expression of several sex-biased genes and induced sex-specific sterility. This study demonstrates that Pxdsx plays a key role in sex determination of P. xylostella and suggests novel genetic control approaches for the management of P. xylostella.
Collapse
Affiliation(s)
- Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China; Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi'en Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Zulian Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Xiaowei Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Awawing A Andongma
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changying Niu
- Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200032, China.
| |
Collapse
|
39
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
40
|
Chen X, Cao Y, Zhan S, Tan A, Palli SR, Huang Y. Disruption of sex-specific doublesex exons results in male- and female-specific defects in the black cutworm, Agrotis ipsilon. PEST MANAGEMENT SCIENCE 2019; 75:1697-1706. [PMID: 30520231 DOI: 10.1002/ps.5290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Doublesex (dsx), the downstream gene in the insect sex-determination pathway, is a key regulator of sexually dimorphic development and behavior across a variety of insects. Manipulating expression of dsx could be useful in the genetic control of insects. However, information on the sex-specific function of dsx in non-model insects is lacking. RESULTS In this work, we isolated a dsx homolog, which is alternatively spliced into six female-specific and one male-specific isoforms, from an important agricultural pest, the black cutworm, Agrotis ipsilon. Studies on the expression of sex-specific Aidsx mRNA during embryonic development showed that the sixth hour post oviposition is the key stage for sex determination in A. ipsilon. Functional analysis of Aidsx was conducted using a CRISPR/Cas9 system targeting female- and male-specific Aidsx exons. Disruptions of sex-specific Aidsx exons resulted in sex-specific, sexually dimorphic defects in external genitals, gonads and antennae, and expression of sex-specific genes as well as production of offspring in both sexes. CONCLUSION Our results not only demonstrate that dsx is a key player determining A. ipsilon sexually dimorphic traits, but also provide a potential method for the genetic control of this pest. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xien Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Yanghui Cao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
41
|
Xu J, Yu Y, Chen K, Huang Y. Intersex regulates female external genital and imaginal disc development in the silkworm. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 108:1-8. [PMID: 30831220 DOI: 10.1016/j.ibmb.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
As a component of the mediator complex, the intersex (ix) gene product is involved in the sex determination pathway of the Drosophila melanogaster. IX functions together with the female-specific product of doublesex (dsx) at the bottom of the hierarchy to implement female sexual differentiation. Here we analyzed the functions of the ix gene in the model lepidopteran insect Bombyx mori. We found that Bmix is expressed in many tissues and is highly expressed in early pupal stages. We used the transgene-based CRISPR/Cas9 system to generate mutants of the Bmix gene. The Bmix female mutants were sterile and had irregular external genitalia, whereas in the mutant males external genitalia were normal. Mutants of both sexes had normal gonad development and normal splicing of the Bmdsx pre-mRNA, suggesting that Bmix functions independently of Bmdsx. Interestingly, both male and female mutants had defective development of the imaginal disc including wing, antenna, and leg. RNA-seq and gene expression analyses indicated that genes involved in WNT, Hippo, and Hedgehog signaling pathways and wing development genes Bmawd and Bmfng were up-regulated or down-regulated in the Bmix mutants compared with wild-type animals. Our data provide insights into the multiple functions of Bmix in female external genital and imaginal disc development in the silkworm.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Yu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
42
|
Roth A, Vleurinck C, Netschitailo O, Bauer V, Otte M, Kaftanoglu O, Page RE, Beye M. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol 2019; 17:e3000171. [PMID: 30897091 PMCID: PMC6428258 DOI: 10.1371/journal.pbio.3000171] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Highly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. The worker nutrition-driven size reduction of reproductive organs was restricted to the female sex, suggesting input from the sex determination pathway. Genetic screens on the sex determination genes in genetic females for size polyphenism revealed that doublesex (dsx) mutants display size-reduced reproductive organs irrespective of the sexual morphology of the organ tissue. In contrast, feminizer (fem) mutants lost the response to worker nutrition-driven size control. The first morphological worker mutants in honeybees demonstrate that the response to nutrition relies on a genetic program that is switched “ON” by the fem gene. Thus, the genetic instruction provided by the fem gene provides an entry point to genetically dissect the underlying processes that implement the size polyphenism. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. A study using the first induced morphological mutants in honeybees demonstrates that this developmental plasticity requires a genetic program that is switched on by the “feminizer” gene. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. The first induced morphological mutants in honeybees demonstrate that this developmental plasticity requires a genetic program that is switched “ON” by the feminizer (fem) gene.
Collapse
Affiliation(s)
- Annika Roth
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Christina Vleurinck
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Vivien Bauer
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
43
|
Zhuo JC, Hu QL, Zhang HH, Zhang MQ, Jo SB, Zhang CX. Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:31-42. [PMID: 30237076 DOI: 10.1016/j.ibmb.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
In the sex determination cascade, the genes dsx (doublesex) in insects, mab-3 (male abnormal 3) in nematodes, and Dmrt1 (dsx/mab-3 related transcription factor-1) in vertebrates act as the base molecular switches and play important roles. Moreover, these genes share the same conserved feature domain-DNA-binding oligomerization domain (OD1), and female-specific dsx also has a conserved oligomerization domain 2 (OD2). Although sex determination and the functions of dsx in several holometabolous insects have been well documented, sex determination and the function of dsx in hemimetabolous insects remain a mystery. In this study, four dsx homologs were unexpectedly found in the Nilaparvata lugens (brown planthopper, BPH, order Hemiptera), which also showed a different evolutionary status. We found that only one of the four homologs, Nldsx, which has three alternative splicing variants (female-specific NldsxF, male-specific NldsxM, non-sex-specific NldsxC), was required in the sexual development of N. lugens. Compared with that of holometabolous species, the dsx of N. lugens contains a less conserved OD1, while the OD2 domain of BPH was not identifiable because the common region is poorly conserved, and the female-specific region is short. RNAi-mediated knockdown of Nldsx in female BPH resulted in a larger body size with a normal abdomen and reproductive system, while no changes in fertility were noted. However, adult males with RNA interference knockdown of NldsxM in nymphs became pseudofemales, were infertile, had abnormal copulatory organs, and had impassable deferent ducts with hyperplastic walls; additionally, the pseudofemales could not produce the normal courtship signals. Our results suggest that dsx plays a critical role in male BPH somatic development and mating behavior. This is the first study to show that dsx is essential for sexual development in a hemipteran species.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Meng-Qiu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Song Bok Jo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; Kim Jong Suk University of Education, Democratic People's Republic of Korea
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Zhang Z, Niu B, Ji D, Li M, Li K, James AA, Tan A, Huang Y. Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proc Natl Acad Sci U S A 2018; 115:8752-8756. [PMID: 30104361 PMCID: PMC6126770 DOI: 10.1073/pnas.1810945115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)-mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, China
| | - Kai Li
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-3900;
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
45
|
Zinna RA, Gotoh H, Kojima T, Niimi T. Recent advances in understanding the mechanisms of sexually dimorphic plasticity: insights from beetle weapons and future directions. CURRENT OPINION IN INSECT SCIENCE 2018; 25:35-41. [PMID: 29602360 PMCID: PMC5880310 DOI: 10.1016/j.cois.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 05/08/2023]
Abstract
Many traits that are sexually dimorphic, appearing either differently or uniquely in one sex, are also sensitive to an organism's condition. This phenomenon seems to have evolved to limit genetic conflict between traits that are under different selective pressures in each sex. Recent work has shed light on the molecular and developmental mechanisms that govern this condition sensitive growth, and this work has now expanded to encompass both sexual dimorphism as well as conditionally plastic growth, as it seems the two phenomena are linked on a molecular level. In all cases studied the gene doublesex, a conserved regulator of sex differentiation, controls both sexual dimorphism as well as the condition-dependent plastic responses common to these traits. However, the advent of next-generation -omics technologies has allowed researchers to decipher the common and diverged mechanisms of sexually dimorphic plasticity and expand investigations beyond the foundation laid by studies utilizing beetle weapons.
Collapse
Affiliation(s)
- Robert A Zinna
- Center for Insect Science, University of Arizona, Tucson, AZ 85721-0106, United States.
| | - Hiroki Gotoh
- Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takaaki Kojima
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585 Aichi, Japan
| |
Collapse
|
46
|
Rice G, Barmina O, Hu K, Kopp A. Evolving doublesex expression correlates with the origin and diversification of male sexual ornaments in the Drosophila immigrans species group. Evol Dev 2018; 20:78-88. [PMID: 29372584 DOI: 10.1111/ede.12249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Male ornaments and other sex-specific traits present some of the most dramatic examples of evolutionary innovations. Comparative studies of similar but independently evolved traits are particularly important for identifying repeated patterns in the evolution of these traits. Male-specific modifications of the front legs have evolved repeatedly in Drosophilidae and other Diptera. The best understood of these novel structures is the sex comb of Drosophila melanogaster and its close relatives. Here, we examine the evolution of another male foreleg modification, the sex brush, found in the distantly related Drosophila immigrans species group. Similar to the sex comb, we find that the origin of the sex brush correlates with novel, spatially restricted expression of the doublesex (dsx) transcription factor, the primary effector of the Drosophila sex determination pathway. The diversity of Dsx expression patterns in the immigrans species group closely reflects the differences in the presence, position, and size of the sex brush. Together with previous work on sex comb evolution, these observations suggest that tissue-specific activation of dsx expression may be a common mechanism responsible for the evolution of sexual dimorphism and particularly for the origin of novel male-specific ornaments.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Evolution and Ecology, University of California-Davis, Davis, California.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Kevin Hu
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, California
| |
Collapse
|
47
|
Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS Genet 2017; 13:e1006576. [PMID: 28103247 PMCID: PMC5289617 DOI: 10.1371/journal.pgen.1006576] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/02/2017] [Accepted: 01/10/2017] [Indexed: 12/23/2022] Open
Abstract
Manipulation of sex determination pathways in insects provides the basis for a wide spectrum of strategies to benefit agriculture and public health. Furthermore, insects display a remarkable diversity in the genetic pathways that lead to sex differentiation. The silkworm, Bombyx mori, has been cultivated by humans as a beneficial insect for over two millennia, and more recently as a model system for studying lepidopteran genetics and development. Previous studies have identified the B. mori Fem piRNA as the primary female determining factor and BmMasc as its downstream target, while the genetic scenario for male sex determination was still unclear. In the current study, we exploite the transgenic CRISPR/Cas9 system to generate a comprehensive set of knockout mutations in genes BmSxl, Bmtra2, BmImp, BmImpM, BmPSI and BmMasc, to investigate their roles in silkworm sex determination. Absence of Bmtra2 results in the complete depletion of Bmdsx transcripts, which is the conserved downstream factor in the sex determination pathway, and induces embryonic lethality. Loss of BmImp or BmImpM function does not affect the sexual differentiation. Mutations in BmPSI and BmMasc genes affect the splicing of Bmdsx and the female reproductive apparatus appeared in the male external genital. Intriguingly, we identify that BmPSI regulates expression of BmMasc, BmImpM and Bmdsx, supporting the conclusion that it acts as a key auxiliary factor in silkworm male sex determination. The sex determination system extremely diverse among organisms including insects in which even each order occupy a different manner of sex determination. The silkworm, Bombyx mori, is a lepidopteran model insect with economic importance. The mechanism of the silkworm sex determination has been in mystery for a long time until a Fem piRNA was identified as the primary female sex determinator recently. However, genetic and phenotypic proofs are urgently needed to fully exploit the mechanism, especially of the male sex determination. In the current study, we provided comprehensively genetic evidences by generating CRISPR/Cas9-mediated knockout mutations for those genes BmSxl, Bmtra2, BmImp, BmImpM, BmPSI and BmMasc, which were considered to be involved in insect sex determination. The results showed that mutations of BmSxl, BmImp and BmImpM had no physiological and morphological effects on the sexual development while Bmtra2 depletion caused Bmdsx splicing disappeared and induced embryonic lethality. Importantly, the BmPSI regulates expression of BmMasc, BmImpM and Bmdsx, supporting the conclusion that it acts as a key auxiliary factor to regulate the male sex determination in the silkworm.
Collapse
|