1
|
Kaur R, Bordenstein SR. Cytoplasmic incompatibility factor proteins from Wolbachia prophage are costly to sperm development in Drosophila melanogaster. Proc Biol Sci 2025; 292:20243016. [PMID: 39933580 PMCID: PMC11813569 DOI: 10.1098/rspb.2024.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The symbiosis between arthropods and Wolbachia bacteria is globally widespread, largely due to selfish-drive systems that favour the fitness of symbiont-transmitting females. The most common drive, cytoplasmic incompatibility (CI), is central to arboviral control efforts. In Drosophila melanogaster carrying wMel Wolbachia deployed in mosquito control, two prophage genes in Wolbachia, cifA and cifB, cause CI that results in a paternal-effect lethality of embryos in crosses between Wolbachia-bearing males and aposymbiotic females. While the CI mechanism by which Cif proteins alter sperm development has recently been elucidated in D. melanogaster and Aedes aegypti mosquitoes, the Cifs' extended impact on male reproductive fitness such as sperm morphology and quantity remains unclear. Here, using cytochemical, microscopic and transgenic assays in D. melanogaster, we demonstrate that both CifA and CifB cause a significant portion of defects in elongating spermatids, culminating in malformed mature sperm nuclei. Males expressing Cifs have reduced spermatid bundles and sperm counts, and transgenic expression of Cifs can occasionally result in no mature sperm formation. We reflect on Cifs' varied functional impacts on the Host Modification model of CI as well as host evolution, behaviour and vector control strategies.
Collapse
Affiliation(s)
- Rupinder Kaur
- Departments of Biology and Entomology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, USA
| | - Seth R. Bordenstein
- Departments of Biology and Entomology, Pennsylvania State University, University Park, PA, USA
- One Health Microbiome Center, Pennsylvania State University, Huck Institutes of the Life Sciences, University Park, PA, USA
| |
Collapse
|
2
|
Kryukova NA, Kryukov VY, Polenogova OV, Chertkova ЕА, Tyurin MV, Rotskaya UN, Alikina T, Kabilov МR, Glupov VV. The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22053. [PMID: 37695720 DOI: 10.1002/arch.22053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Infection of intestinal tissues with Wolbachia has been found in Habrobracon hebetor. There are not many studies on the relationship between Habrobracon and Wolbachia, and they focus predominantly on the sex index of an infected parasitoid, its fertility, and behavior. The actual role of Wolbachia in the biology of Habrobracon is not yet clear. The method of complete eradication of Wolbachia in the parasitoid was developed here, and effects of the endosymbiont on the host's digestive metabolism were compared between two lines of the parasitoid (Wolbachia-positive and Wolbachia-negative). In the gut of Wolbachia+ larvae, lipases' activity was higher almost twofold, and activities of acid proteases, esterases, and trehalase were 1.5-fold greater than those in the Wolbachia- line. Analyses of larval homogenates revealed that Wolbachia+ larvae accumulate significantly more lipids and have a lower amount of pyruvate as compared to Wolbachia- larvae. The presented results indicate significant effects of the intracellular symbiotic bacterium Wolbachia on the metabolism of H. hebetor larvae and on the activity of its digestive enzymes.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Vadim Y Kryukov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | | | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Ulyana N Rotskaya
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Мarsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| |
Collapse
|
3
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
4
|
Li Q, Cheng Y, Fan J, Chen J. Metabolic relay gene of aphid and primary symbiont as RNAi target loci for aphid control. FRONTIERS IN PLANT SCIENCE 2023; 13:1092638. [PMID: 36743566 PMCID: PMC9890070 DOI: 10.3389/fpls.2022.1092638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Aphids form a stable and mutually beneficial relationship with their primary symbiont Buchnera aphidicola, which play an important role in providing the missing nutrients to the host aphid. Based on the genome sequence of wheat aphid Siotobion miscanthi and its primary symbiont Buchnera that we obtained in our previously study, we identified a metabolic relay gene, ilvA, involved in the isoleucine synthesis pathway between aphids and Buchnera. METHOD In this study, we identified the location and sequence structure of ilvA gene in aphid genome, the expression level in different instars and tissues of aphids, and the effect of reducing ilvA expression on the growth and development of aphids by bioinformatics analysis, quantitative PCR, RNAi and bioassay experiments. RESULT Our study showed that ilvA was expressed at the highest level in the 2nd instar of the aphid, while the expression of this gene was significantly higher in the aphid bacteriocytes than in other tissues. Notably, this gene is localized on the aphid sex chromosome and remains highly conserved and collinearity across different aphid genomes. Knocking down the expression of ilvA reduced the aphid body weight and production. However, the indices of mortality decreased slightly, but were not significantly different, compared to the control. DISCUSSION The results show that the relay genes between aphids and their symbionts in the metabolism of essential nutrients have potential roles in the growth and development of aphids, meanwhile, providing target loci and new ideas for RNAi-based aphid green control strategies.
Collapse
Affiliation(s)
- Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing University of Agriculture, Beijing, China
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Cheng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Fan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julian Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Ministry of Agricultural and Rural Affairs -Center of Applied Biological International (MARA-CABI) Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
6
|
Zhang Y, He X, Qian Y, Xu S, Mo C, Yan Z, Yang X, Xiao Q. Plasma branched-chain and aromatic amino acids correlate with the gut microbiota and severity of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:48. [PMID: 35449203 PMCID: PMC9023571 DOI: 10.1038/s41531-022-00312-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Disturbances of circulating amino acids have been demonstrated in patients with Parkinson’s disease (PD). However, there have been no consistent results for branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs), and related factors have not been explored. We aimed to explore plasma BCAA and AAA profiles in PD patients, and identify their correlations with clinical characteristics and the gut microbiota. Plasma BCAA (leucine, isoleucine, and valine) and AAA (tyrosine and phenylalanine) levels were measured in 106 PD patients and 114 controls. Fecal samples were collected from PD patients for microbiota sequencing and functional analysis. We found that plasma BCAAs and tyrosine were decreased in PD patients. BCAAs and AAAs were correlated with clinical characteristics and microbial taxa, and, in particular, they were negatively correlated with the Hoehn and Yahr stage. Compared with early PD patients, BCAA and AAA levels were even lower, and microbial composition was altered in advanced PD patients. Predictive functional analysis indicated that predicted genes numbers involved in BCAA biosynthesis were lower in advanced PD patients. What’s more, the fecal abundances of critical genes (ilvB, ilvC, ilvD, and ilvN) involved in BCAA biosynthesis were reduced and fecal BCAA concentrations were lower in advanced PD patients. In conclusion, the disturbances of plasma BCAAs and AAAs in PD patients may be related to the gut microbiota and exacerbated with PD severity. The microbial amino acid metabolism may serve as a potential mechanistic link.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin He
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjun Mo
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Yan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Xiao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhang Y, Xu G, Jiang Y, Ma C, Yang G. Sublethal Effects of Imidacloprid on Fecundity, Apoptosis and Virus Transmission in the Small Brown Planthopper Laodelphax striatellus. INSECTS 2021; 12:insects12121131. [PMID: 34940219 PMCID: PMC8706141 DOI: 10.3390/insects12121131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Laodelphax striatellus damages plants directly through sucking plant sap and indirectly as a vector of rice stripe virus (RSV), resulting in serious losses of rice yield. It is one of the most destructive insects of rice in East Asia. Insecticides are primarily used for pest management, but the sublethal concentrations of insecticides may benefit several insects. The present research attempted to explore the effects of sublethal concentrations of imidacloprid on the fecundity, apoptosis and RSV transmission in the viruliferous SBPH. The results showed that the fecundity of SBPH was significantly increased after treatment with the LC10 dose of imidacloprid, while the LC30 dose of imidacloprid reduced the fecundity compared with the control. To further investigate the underlying mechanism of increased fecundity after exposure to the LC10 dose of imidacloprid, we examined the expression levels of vitellogenin (Vg), Vg receptor (VgR) and caspases in the ovaries of SBPH, and observed the apoptosis by terminal deoxynucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). qRT-PCR results indicated that the expression levels of Vg, VgR and four caspase genes were all significantly increased by the LC10 dose of imidacloprid, and TUNEL assays suggested that the frequency of apoptosis was significantly higher in the SBPH treated by the LC10 dose of imidacloprid, suggesting a potential correlation between the increased fecundity and the apoptosis of SBPH ovarioles. Additionally, the expression levels of RNA3 and capsid protein (CP) were both increased significantly by the LC10 dose of imidacloprid, whereas were decreased by the LC30 dose of imidacloprid compared to the control. Therefore, this study clarifies the mechanisms of sublethal effects of imidacloprid on viruliferous SBPH and could be used to optimize pest control strategies.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Correspondence: (G.X.); (G.Y.)
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Chao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Y.Z.); (Y.J.); (C.M.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (G.X.); (G.Y.)
| |
Collapse
|
8
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
9
|
Xia X, Peng CW, Cui JR, Jin PY, Yang K, Hong XY. Wolbachia affects reproduction in the spider mite Tetranychus truncatus (Acari: Tetranychidae) by regulating chorion protein S38-like and Rop. INSECT MOLECULAR BIOLOGY 2021; 30:18-29. [PMID: 32945029 DOI: 10.1111/imb.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia-induced reproductive regulation in hosts has been used to control pest populations, but little is known about the molecular mechanism underlying Wolbachia regulation of host genes. Here, reproductive regulation by Wolbachia in the spider mite Tetranychus truncatus was studied at the molecular level. Infection with Wolbachia resulted in decreasing oviposition and cytoplasmic incompatibility in T. truncatus. Further RNA-seq revealed genes regulated by Wolbachia in T. truncatus. Real-time quantitative polymerase chain reaction (qPCR) showed that genes, including chorion protein S38-like and Rop were down-regulated by Wolbachia. RNA interference (RNAi) of chorion protein S38-like and Rop in Wolbachia-uninfected T. truncatus decreased oviposition, which was consistent with Wolbachia-induced oviposition decrease. Interestingly, suppressing Rop in Wolbachia-infected T. truncatus led to increased Wolbachia titres in eggs; however, this did not occur after RNAi of chorion protein S38-like. This is the first study to show that chorion protein S38-like and Rop facilitate Wolbachia-mediated changes in T. truncatus fertility. In addition, RNAi of Rop turned the body colour of Wolbachia-uninfected T. truncatus black, which indicates that the role of Rop is not limited to the reproductive regulation of T. truncatus.
Collapse
Affiliation(s)
- X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-W Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-R Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Cardinium Localization During Its Parasitoid Wasp Host's Development Provides Insights Into Cytoplasmic Incompatibility. Front Microbiol 2020; 11:606399. [PMID: 33424808 PMCID: PMC7793848 DOI: 10.3389/fmicb.2020.606399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Arthropods harbor heritable intracellular symbionts that may manipulate host reproduction to favor symbiont transmission. In cytoplasmic incompatibility (CI), the symbiont sabotages the reproduction of infected males such that high levels of offspring mortality result when they mate with uninfected females. In crosses with infected males and infected females, however (the “rescue” cross), normal numbers of offspring are produced. A common CI-inducing symbiont, Cardinium hertigii, causes variable levels of CI mortality in the parasitoid wasp, Encarsia suzannae. Previous work correlated CI-induced mortality with male development time in this system, although the timing of Cardinium CI-induction and the relationship between development time and CI mortality was not well understood. Here, using a combination of crosses, manipulation of development time, and fluorescence microscopy, we identify the localization and the timing of the CI-induction step in the Cardinium-E. suzannae system. Antibiotic treatment of adult Cardinium-infected males did not reduce the mortality associated with the CI phenotype, suggesting that CI-alteration occurs prior to adulthood. Our results suggest that the alteration step occurs during the pupal period, and is limited by the duration of pupal development: 1) Encarsia produces most sperm prior to adulthood, 2) FISH localization of Cardinium in testes showed an association with sperm nuclei throughout spermatogenesis but not with mature sperm, and 3) two methods of prolonging the pupal period (cool temperatures and the juvenile hormone analog methoprene) both caused greater CI mortality, suggesting the degree of alteration is limited by the duration of the pupal stage. Based on these results, we compare two models for potential mechanisms of Cardinium sperm modification in the context of what is known about analogous mechanisms of Wolbachia, a more extensively studied CI-inducing symbiont.
Collapse
Affiliation(s)
- Matthew R Doremus
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ, United States
| | | | - Suzanne E Kelly
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | | | - Martha S Hunter
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Guo Y, Khan J, Zheng XY, Wu Y. Wolbachia increase germ cell mitosis to enhance the fecundity of Laodelphax striatellus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103471. [PMID: 32966874 DOI: 10.1016/j.ibmb.2020.103471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/20/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia are intracellular bacteria that infect a wide range of invertebrates and have evolved various strategies to alter host reproduction for their own survival and dissemination. In small brown planthopper Laodelphax striatellus, Wolbachia-infected females lay more eggs than uninfected females. Our previous study has shown that Wolbachia are abundant in ovarian cells of L. striatellus and change the number of apoptotic nurse cells in a caspase-dependent manner to provide nutrition for oogenesis. The cellular and molecular bases of the Wolbachia-mediated alterations in L. striatellus oogenesis remain largely unknown. Here, we investigated whether germ cell mitosis, which has been implicated in determination of egg production rates, influences the interaction between fecundity and Wolbachia in L.striatellus. We used an anti-phospho-histone 3 (pH3) antibody to label and visualize mitotic cells. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained mitotic germ cells. The increased fecundity of Wolbachia-infected females was a result of mitosis of germ cells; the frequency of germ cell mitosis was much higher in infected females than in uninfected females. In addition, mitosis inhibition by Cdc20, CDK1, and CycB messenger RNA interference in Wolbachia-infected L. striatellus markedly decreased egg numbers. Live Wolbachia recolonization enhanced the egg production of uninfected L. striatellus by directly affecting mitosis regulators. Together, these data suggest that wStri might increase germ cell mitosis to enhance the fecundity of L. striatellus in a mitosis-regulating manner. Our findings establish a link between Wolbachia-induced mitosis and Wolbachia-mediated egg production effects.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jehangir Khan
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China; Department of Zoology, Abdul Wali Khan University Mardan, Pakistan.
| | - Xiao-Ying Zheng
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Yu Wu
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Zhang X, Li TP, Zhou CY, Zhao DS, Zhu YX, Bing XL, Huang HJ, Hong XY. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2020; 27:895-907. [PMID: 30924288 DOI: 10.1111/1744-7917.12675] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Bacteria symbionts in herbivores play an important role in host biology and ecology, and are affected by environmental factors such as temperature, diet, habitat, antibiotics and so on. However, the effects of antibiotics on the microbiome of the small brown planthopper Laodelphax striatellus (SBPH) remain unclear. Here, we studied the effects of tetracycline on the diversity and composition of bacterial colonies in different tissues of SBPH using high throughput sequencing of 16S ribosomal RNA amplicons. Our results show that Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria were most abundant in SBPH, and the genera Asaia and Wolbachia were most abundant in all body parts of SBPH. Antibiotic treatment had persistent effects on the composition of the SBPH microbiome. Tetracycline depleted the population of Firmicutes, Bacteroidetes, Tenericutes and Fusobacteria, and nearly 100% eliminated Wolbachia, Bacteroides and Abiotrophia in SBPH. Together, these results suggest that antibiotic exposure affects the bacteria symbionts of different body parts in SBPH and will facilitate future studies of the bacterial symbionts of arthropod hosts.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ying Zhou
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Bing XL, Zhao DS, Peng CW, Huang HJ, Hong XY. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. INSECT SCIENCE 2020; 27:947-963. [PMID: 32198842 DOI: 10.1111/1744-7917.12782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Rice planthoppers are notorious plant sap-feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Chang-Wu Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
15
|
Duan XZ, Sun JT, Wang LT, Shu XH, Guo Y, Keiichiro M, Zhu YX, Bing XL, Hoffmann AA, Hong XY. Recent infection by Wolbachia alters microbial communities in wild Laodelphax striatellus populations. MICROBIOME 2020; 8:104. [PMID: 32616041 PMCID: PMC7333401 DOI: 10.1186/s40168-020-00878-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/01/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Host-associated microbial communities play an important role in the fitness of insect hosts. However, the factors shaping microbial communities in wild populations, including genetic background, ecological factors, and interactions among microbial species, remain largely unknown. RESULTS Here, we surveyed microbial communities of the small brown planthopper (SBPH, Laodelphax striatellus) across 17 geographical populations in China and Japan by using 16S rRNA amplicon sequencing. Using structural equation models (SEM) and Mantel analyses, we show that variation in microbial community structure is likely associated with longitude, annual mean precipitation (Bio12), and mitochondrial DNA variation. However, a Wolbachia infection, which is spreading to northern populations of SBPH, seems to have a relatively greater role than abiotic factors in shaping microbial community structure, leading to sharp decreases in bacterial taxon diversity and abundance in host-associated microbial communities. Comparative RNA-Seq analyses between Wolbachia-infected and -uninfected strains indicate that the Wolbachia do not seem to alter the immune reaction of SBPH, although Wolbachia affected expression of metabolism genes. CONCLUSION Together, our results identify potential factors and interactions among different microbial species in the microbial communities of SBPH, which can have effects on insect physiology, ecology, and evolution. Video Abstract.
Collapse
Affiliation(s)
- Xing-Zhi Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lin-Ting Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Han Shu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Matsukura Keiichiro
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto, 861-1192, Japan
| | - Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
16
|
Huang HJ, Cui JR, Chen J, Bing XL, Hong XY. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103211. [PMID: 31425852 DOI: 10.1016/j.ibmb.2019.103211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are intracellular bacteria that manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). However, the underlying mechanisms of Wolbachia-induced CI are not entirely clear. Here, we monitored the Wolbachia distribution in the male gonads of the small brown planthopper (Laodelphax striatellus, SBPH) at different development stages, and investigated the influence of Wolbachia on male gonads by a quantitative proteomic analysis. A total of 276 differentially expressed proteins were identified, with the majority of them participating in metabolism, modification, and reproduction. Knocking down the expression of outer dense fiber protein (ODFP) and venom allergen 5-like (VA5L) showed decreased egg reproduction, and these two genes might be responsible for Wolbachia improved fecundity in infected L. striatellus; whereas knocking down the expression of cytosol amino-peptidase-like (CAL) significantly decreased the egg hatch rate in Wolbachia-uninfected L. striatellus, but not in the Wolbachia-infected one. Considering that the mRNA/protein level of CAL was downregulated by Wolbachia infection and dsCAL treatment closely mimicked Wolbachia-induced CI, we presumed that CAL might be one of the factors determining the CI phenotype.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
17
|
He Z, Zheng Y, Yu WJ, Fang Y, Mao B, Wang YF. How do Wolbachia modify the Drosophila ovary? New evidences support the "titration-restitution" model for the mechanisms of Wolbachia-induced CI. BMC Genomics 2019; 20:608. [PMID: 31340757 PMCID: PMC6657171 DOI: 10.1186/s12864-019-5977-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cytoplasmic incompatibility (CI) is the most common phenotype induced by endosymbiont Wolbachia and results in embryonic lethality when Wolbachia-modified sperm fertilize eggs without Wolbachia. However, eggs carrying the same strain of Wolbachia can rescue this embryonic death, thus producing viable Wolbachia-infected offspring. Hence Wolbachia can be transmitted mainly by hosts’ eggs. One of the models explaining CI is “titration-restitution”, which hypothesized that Wolbachia titrated-out some factors from the sperm and the Wolbachia in the egg would restitute the factors after fertilization. However, how infected eggs rescue CI and how hosts’ eggs ensure the proliferation and transmission of Wolbachia are not well understood. Results By RNA-seq analyses, we first compared the transcription profiles of Drosophila melanogaster adult ovaries with and without the wMel Wolbachia and identified 149 differentially expressed genes (DEGs), of which 116 genes were upregulated and 33 were downregulated by Wolbachia infection. To confirm the results obtained from RNA-seq and to screen genes potentially associated with reproduction, 15 DEGs were selected for quantitative RT-PCR (qRT-PCR). Thirteen genes showed the same changing trend as RNA-seq analyses. To test whether these genes are associated with CI, we also detected their expression levels in testes. Nine of them exhibited different changing trends in testes from those in ovaries. To investigate how these DEGs were regulated, sRNA sequencing was performed and identified seven microRNAs (miRNAs) that were all upregulated in fly ovaries by Wolbachia infection. Matching of miRNA and mRNA data showed that these seven miRNAs regulated 15 DEGs. Wolbachia-responsive genes in fly ovaries were involved in biological processes including metabolism, transportation, oxidation-reduction, immunity, and development. Conclusions Comparisons of mRNA and miRNA data from fly ovaries revealed 149 mRNAs and seven miRNAs that exhibit significant changes in expression due to Wolbachia infection. Notably, most of the DEGs showed variation in opposite directions in ovaries versus testes in the presence of Wolbachia, which generally supports the “titration-restitution” model for CI. Furthermore, genes related to metabolism were upregulated, which may benefit maximum proliferation and transmission of Wolbachia. This provides new insights into the molecular mechanisms of Wolbachia-induced CI and Wolbachia dependence on host ovaries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5977-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wen-Juan Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
18
|
Liu L, Zhang KJ, Rong X, Li YY, Liu H. Identification of Wolbachia-Responsive miRNAs in the Small Brown Planthopper, Laodelphax striatellus. Front Physiol 2019; 10:928. [PMID: 31396100 PMCID: PMC6668040 DOI: 10.3389/fphys.2019.00928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
Laodelphax striatellus is naturally infected with the Wolbachia strain wStri, which induces strong cytoplasmic incompatibility of its host. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that play a critical role in the regulation of gene expression at post-transcriptional level in various biological processes. Despite various studies reporting that Wolbachia affects the miRNA expression of their hosts, the molecular mechanism underlying interactions between Wolbachia and their host miRNAs has not been well understood. In order to better understand the impact of Wolbachia infection on its host, we investigated the differentially expressed miRNAs between Wolbachia-infected and Wolbachia-uninfected strains of L. striatellus. Compared with uninfected strains, Wolbachia infection resulted in up-regulation of 18 miRNAs and down-regulation of 6 miRNAs in male, while 25 miRNAs were up-regulated and 15 miRNAs were down-regulated in female. The target genes of these differentially expressed miRNAs involved in immune response regulation, reproduction, redox homeostasis and ecdysteroidogenesis were also annotated in both sexes. We further verified the expression of several significantly differentially expressed miRNAs and their predicted target genes by qRT-PCR method. The results suggested that Wolbachia appears to reduce the expression of genes related to fertility in males and increase the expression of genes related to fecundity in females. At the same time, Wolbachia may enhance the expression of immune-related genes in both sexes. All of the results in this study may be helpful in further exploration of the molecular mechanisms by which Wolbachia affects on its hosts.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Kai-Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xia Rong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ya-Ying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Guo Y, Gong JT, Mo PW, Huang HJ, Hong XY. Wolbachia localization during Laodelphax striatellus embryogenesis. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:125-133. [PMID: 31128084 DOI: 10.1016/j.jinsphys.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/28/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Wolbachia are intracellular bacteria carried by thousands of arthropod species. The success of Wolbachia is due to efficient vertical transmission by the host maternal germline. Wolbachia's behavior during host oogenesis is well characterized, although their behavior during embryogenesis is unclear. Vertical transmission of Wolbachia wStri in the small brown planthopper, Laodelphax striatellus is extraordinarily efficient. To understand why, we investigated its localization and dynamics in L. striatellus embryos. Microscopic observations indicated that the Wolbachia were mainly localized at the anterior region of the embryo during early embryogenesis. The distribution of Wolbachia within the anterior region was established during oogenesis, and according to a phylogenetic analysis, may be due to intrinsic factors in Wolbachia. We observed that wStri migrated to the posterior part cells during late embryogenesis, in the region where gonads were formed. An expression profile of Wolbachia-infected host embryonic development genes revealed Ddx1 mRNAs, which is required for host viability and in the germ line, accumulated in the posterior region of 3-day-old embryos, while other development genes mRNAs were significantly more abundant in the posterior region of 6-day-old embryos. These genes thus appear to be associated with the localization of Wolbachia wStri in the anterior region, although their functions remain unclear. These results can explain Wolbachia wStri high prevalence in L. striatellus.
Collapse
Affiliation(s)
- Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, China.
| | - Jun-Tao Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Pei-Wen Mo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
20
|
Bing XL, Zhao DS, Hong XY. Bacterial reproductive manipulators in rice planthoppers. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21548. [PMID: 30912174 DOI: 10.1002/arch.21548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.
Collapse
Affiliation(s)
- Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dian-Shu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Richardson KM, Griffin PC, Lee SF, Ross PA, Endersby-Harshman NM, Schiffer M, Hoffmann AA. A Wolbachia infection from Drosophila that causes cytoplasmic incompatibility despite low prevalence and densities in males. Heredity (Edinb) 2019; 122:428-440. [PMID: 30139962 PMCID: PMC6460763 DOI: 10.1038/s41437-018-0133-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023] Open
Abstract
Wolbachia bacteria are common insect endosymbionts transmitted maternally and capable of spreading through insect populations by cytoplasmic incompatibility (CI) when infected males cause embryo death after mating with uninfected females. Selection in the Wolbachia endosymbiont occurs on female hosts and is expected to favour strong maternal transmission to female offspring, even at the cost of reduced CI. With maternal leakage, nuclear genes are expected to be selected to suppress cytoplasmic incompatibility caused by males while also reducing any deleterious effects associated with the infection. Here we describe a new type of Wolbachia strain from Drosophila pseudotakahashii likely to have arisen from evolutionary processes on host and/or Wolbachia genomes. This strain is often absent from adult male offspring, but always transmitted to females. It leads to males with low or non-detectable Wolbachia that nevertheless show CI. When detected in adult males, the infection has a low density relative to that in females, a phenomenon not previously seen in Wolbachia infections of Drosophila. This Wolbachia strain is common in natural populations, and shows reduced CI when older (infected) males are crossed. These patterns highlight that endosymbionts can have strong sex-specific effects and that high frequency Wolbachia strains persist through effects on female reproduction. Female-limited Wolbachia infections may be of applied interest if the low level of Wolbachia in males reduces deleterious fitness effects on the host.
Collapse
Affiliation(s)
- Kelly M Richardson
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Philippa C Griffin
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Siu F Lee
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- CSIRO Land and Water, Black Mountain, ACT 2601, Canberra, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Nancy M Endersby-Harshman
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michele Schiffer
- Daintree Rainforest Observatory, James Cook University, Cape Tribulation, Douglas, QLD, 4873, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
22
|
Guo Y, Hoffmann AA, Xu XQ, Zhang X, Huang HJ, Ju JF, Gong JT, Hong XY. Wolbachia-induced apoptosis associated with increased fecundity in Laodelphax striatellus (Hemiptera: Delphacidae). INSECT MOLECULAR BIOLOGY 2018; 27:796-807. [PMID: 29989657 DOI: 10.1111/imb.12518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wolbachia influence the fitness of their invertebrate hosts. They have effects on reproductive incompatibility and egg production. Although the former are well characterized, the mechanistic basis of the latter is unclear. Here, we investigate whether apoptosis, which has been implicated in fecundity in model insects, influences the interaction between fecundity and Wolbachia in the planthopper Laodelphax striatellus. Wolbachia-infected females produced about 30% more eggs than uninfected females. We used the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling staining to visualize apoptosis. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained apoptotic nurse cells in both young and aged adult females. The frequency of apoptosis was much higher in the infected females. The increased fecundity appeared to be a result of apoptosis of nurse cells, which provide nutrients to the growing oocytes. In addition, cell apoptosis inhibition by caspase messenger RNA interference in Wolbachia-infected L. striatellus markedly decreased egg numbers. Together, these data suggest that wStri might enhance fecundity by increasing the number of apoptotic cells in the ovaries in a caspase-dependent manner. Our findings establish a link between Wolbachia-induced apoptosis and egg production effects mediated by Wolbachia, although the way in which the endosymbiont influences caspase levels remains to be determined.
Collapse
Affiliation(s)
- Y Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - A A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - X-Q Xu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - H-J Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-F Ju
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-T Gong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. Comparative Genomics of Wolbachia- Cardinium Dual Endosymbiosis in a Plant-Parasitic Nematode. Front Microbiol 2018; 9:2482. [PMID: 30459726 PMCID: PMC6232779 DOI: 10.3389/fmicb.2018.02482] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Wolbachia and Cardinium are among the most important and widespread of all endosymbionts, occurring in nematodes and more than half of insect and arachnid species, sometimes as coinfections. These symbionts are of significant interest as potential biocontrol agents due to their abilities to cause major effects on host biology and reproduction through cytoplasmic incompatibility, sex ratio distortion, or obligate mutualism. The ecological and metabolic effects of coinfections are not well understood. This study examined a Wolbachia-Cardinium coinfection in the plant-parasitic nematode (PPN), Pratylenchus penetrans, producing the first detailed study of such a coinfection using fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), and comparative genomic analysis. Results from FISH and single-nematode PCR showed 123/127 individuals in a focal population carried Cardinium (denoted strain cPpe), and 48% were coinfected with Wolbachia strain wPpe. Both endosymbionts showed dispersed tissue distribution with highest densities in the anterior intestinal walls and gonads. Phylogenomic analyses confirmed an early place of cPpe and long distance from a sister strain in another PPN, Heterodera glycines, supporting a long history of both Cardinium and Wolbachia in PPNs. The genome of cPpe was 1.36 Mbp with 35.8% GC content, 1,131 predicted genes, 41% having no known function, and missing biotin and lipoate synthetic capacity and a plasmid present in other strains, despite having a slightly larger genome compared to other sequenced Cardinium. The larger genome revealed expansions of gene families likely involved in host-cellular interactions. More than 2% of the genes of cPpe and wPpe were identified as candidate horizontally transferred genes, with some of these from eukaryotes, including nematodes. A model of the possible Wolbachia-Cardinium interaction is proposed with possible complementation in function for pathways such as methionine and fatty acid biosynthesis and biotin transport.
Collapse
Affiliation(s)
- Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Sulochana K Wasala
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amy B Peetz
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Inga A Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
24
|
Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:81-88. [PMID: 29499213 DOI: 10.1016/j.jinsphys.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of insects. Although their dramatic effects on host reproductive biology have been well studied, the effects of Wolbachia on sleep behavior of insect hosts are not well documented. In this study, we report that Wolbachia infection caused an increase of total sleep time in both male and female Drosophila melanogaster. The increase in sleep was associated with an increase in the number of nighttime sleep bouts or episodes, but not in sleep bout duration. Correspondingly, Wolbachia infection also reduced the arousal threshold of their fly hosts. However, neither circadian rhythm nor sleep rebound following deprivation was influenced by Wolbachia infection. Transcriptional analysis of the dopamine biosynthesis pathway revealed that two essential genes, Pale and Ddc, were significantly upregulated in Wolbachia-infected flies. Together, these results indicate that Wolbachia mediates the expression of dopamine related genes, and decreases the sleep quality of their insect hosts. Our findings help better understand the host-endosymbiont interactions and in particular the Wolbachia's impact on behaviors, and thus on ecology and evolution in insect hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie A Williams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|