1
|
Santos TNF, Moreira RO, Rodrigues JDB, Rojas LAC, Souza JAM, Desidério JA. Isolation and in silico analysis of a new subclass of parasporin 4 from Bacillus thuringiensis coreanensis. PeerJ 2025; 13:e19061. [PMID: 40151459 PMCID: PMC11949118 DOI: 10.7717/peerj.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background Bacillus thuringiensis (Bt) is a Gram-positive bacterium whose strains have been studied mainly for the control of insect pests, due to the insecticidal capacity of its Cry and Vip proteins. However, recent studies indicate the presence of other proteins with no known insecticidal action. These proteins denominated "parasporins" (PS) have cytotoxic activity and are divided into six classes, namely PS1, PS2, PS3, PS4, PS5, and PS6. Among these, parasporins 4 (PS4) has only one described subclass, present in the Bacillus thuringiensis shandongiensis strain. Given the importance and limited knowledge about the actions of PS4 proteins and the existence of only one described subclass, the present work aimed to characterize the Bacillus thuringiensis coreanensis strain as a potential source of PS4 protein. Methods A preliminary screening to detect the ps4 gene was conducted in a bank of standard strains and isolates of Bacillus thuringiensis from the Laboratory of Bacterial Genetics and Applied Biotechnology, FCAV/UNESP. The positive strain for this gene had its genomic DNA extracted, the ps4 gene was isolated, cloned and in silico analyses of its sequence were performed. Tools such as Bioedit, BLAST, Clustal Omega, Geneious, IQ-Tree, and iTOL were used in these analyses. For the structural analysis of the PS4 detected, in comparison to the database PS4 (BAD22577), the tools Alphafold2, Pymol, and InterPro were used. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel analyses allowed the visualization of the inactive and active PS4 protein from the positive strain, after solubilization and activation with Proteinase K. Results Previous screening of Bt standard strains revealed the presence of a partial ps4 gene in Bacillus thuringiensis coreanensis strain. The alignment obtained by the BLAST tool revealed 100% identity between the fragment detected in this work with a hypothetical protein (ANN35810.1) from the genome of that same strain. Considering this, the isolation of the complete gene present in this strain was performed by applying the polymer chain reaction (PCR) technique, using the hypothetical sequence as a basis for the primers elaboration. The in silico analysis of the obtained sequence revealed 92.03% similarity with the ps4 sequence presented in the database (AB180980). Protein modeling studies and comparison of their structures revealed that the B. thuringiensis coreanensis has a new subclass of PS4, denominated PS4Ab1, being an important source of parasporin to be explored in biotechnological applications.
Collapse
Affiliation(s)
- Thais N. F. Santos
- Biology Department, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Raquel O. Moreira
- Biology Department, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | | | - Luis A. C. Rojas
- Department of Agricultural and Environmental Biotechnology, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Jackson A. M. Souza
- Biology Department, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Janete A. Desidério
- Biology Department, São Paulo State University, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
2
|
Alarcón-Aldana JS, Visser L, Rueda-Forero NJ, Pinzón-Reyes EH, Rondón-Villarreal P, Suárez-Barrera MO. Enhancing the Cytotoxicity and Apoptotic Efficacy of Parasporin-2-Derived Variants (Mpp46Aa1) on Cancer Cell Lines. Toxins (Basel) 2024; 16:415. [PMID: 39453191 PMCID: PMC11511244 DOI: 10.3390/toxins16100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Parasporin PS2Aa1, recently renamed Mpp46Aa1, is an anti-cancer protein known for its selectivity against various human cancer cell lines. We genetically modified native PS2Aa1 to create a library of approximately 100 mutants. From this library, we selected promising mutants based on their half-maximal inhibitory concentration (IC50) and sequence variations. In this study, Variant 3-35, with the G257V substitution, demonstrated increased cytotoxicity and selectivity against the colon cancer cell line SW480. Conversely, Variant N65, featuring substitutions N92D, K175R, and S218G, yielded the most favorable results against the cancer cell lines SW-620, MOLT-4, and Jurkat. The caspase 3/7 and 9, Annexin V-Cy3 and 6-GFDA activities, and, most notably, mitochondrial membrane permeabilization assays confirmed the apoptotic marker elevation. These findings indicate that residues 92, 175, 218, and 257 may play a critical role in the cytotoxic activity and selectivity. We successfully obtained genetically improved variants with substitutions at these key amino acid positions. Additionally, we conducted molecular dynamic simulations to explore the potential interactions between PS2Aa1 and the CD59 GPI-anchored protein. The simulation results revealed that residues 57, 92, and 101 were consistently present, suggesting their possible significance in the interactions between parasporin and the CD59 protein.
Collapse
Affiliation(s)
- Juan S. Alarcón-Aldana
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| | - Nohora J. Rueda-Forero
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Efraín H. Pinzón-Reyes
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Paola Rondón-Villarreal
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
| | - Miguel O. Suárez-Barrera
- Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación MASIRA, Universidad de Santander, Bucaramanga 680002, Colombia; (J.S.A.-A.); (N.J.R.-F.); (E.H.P.-R.); (P.R.-V.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands;
| |
Collapse
|
3
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Williamson LJ, Galchenkova M, Best HL, Bean RJ, Munke A, Awel S, Pena G, Knoska J, Schubert R, Dörner K, Park HW, Bideshi DK, Henkel A, Kremling V, Klopprogge B, Lloyd-Evans E, Young MT, Valerio J, Kloos M, Sikorski M, Mills G, Bielecki J, Kirkwood H, Kim C, de Wijn R, Lorenzen K, Xavier PL, Rahmani Mashhour A, Gelisio L, Yefanov O, Mancuso AP, Federici BA, Chapman HN, Crickmore N, Rizkallah PJ, Berry C, Oberthür D. Structure of the Lysinibacillus sphaericus Tpp49Aa1 pesticidal protein elucidated from natural crystals using MHz-SFX. Proc Natl Acad Sci U S A 2023; 120:e2203241120. [PMID: 38015839 PMCID: PMC10710082 DOI: 10.1073/pnas.2203241120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.
Collapse
Affiliation(s)
| | - Marina Galchenkova
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Hannah L. Best
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Anna Munke
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Salah Awel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Gisel Pena
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Juraj Knoska
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | | | | | - Hyun-Woo Park
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Dennis K. Bideshi
- Department of Biological Sciences, California Baptist University, Riverside, CA92504
| | - Alessandra Henkel
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Viviane Kremling
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Bjarne Klopprogge
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Mark T. Young
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | | | - Marco Kloos
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | - Grant Mills
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Chan Kim
- European XFEL GmbH, 22869Schenefeld, Germany
| | | | | | - Paul Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Max-Planck Institute for the Structure and Dynamics of Matter, 22761Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Luca Gelisio
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL GmbH, 22869Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Brian A. Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Henry N. Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
- Centre for Ultrafast Imaging, Universität Hamburg, 22761Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761Hamburg, Germany
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, BrightonBN1 9QG, United Kingdom
| | | | - Colin Berry
- School of Biosciences, Cardiff University, CardiffCF10 3AX, United Kingdom
| | - Dominik Oberthür
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, 22607Hamburg, Germany
| |
Collapse
|
5
|
Wang S, Guo Y, Sun Y, Weng M, Liao Q, Qiu R, Zou S, Wu S. Identification of two Bacillus thuringiensis Cry3Aa toxin-binding aminopeptidase N from Rhynchophorus ferrugineus (Coleoptera: Curculionidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:615-625. [PMID: 37466033 DOI: 10.1017/s0007485323000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.
Collapse
Affiliation(s)
- Shaozhen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Qiliao Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ru Qiu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
6
|
Naing ZL, Soe ET, Zhang C, Niu L, Tang J, Ding Z, Yu S, Lu J, Fang F, Liang G. Cadherin Is a Binding Protein but Not a Functional Receptor of Bacillus thuringiensis Cry2Ab in Helicoverpa armigera. Appl Environ Microbiol 2023; 89:e0062523. [PMID: 37378519 PMCID: PMC10370303 DOI: 10.1128/aem.00625-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Midgut receptors play a critical role in the specificity of Cry toxins for individual insect species. Cadherin proteins are essential putative receptors of Cry1A toxins in lepidopteran larvae. Cry2A family members share common binding sites in Helicoverpa armigera, and one of them, Cry2Aa, has been widely reported to interact with midgut cadherin. Here, we studied the binding interaction and functional role of H. armigera cadherin in the mechanism of Cry2Ab toxicity. A region spanning from cadherin repeat 6 (CR6) to the membrane-proximal region (MPR) of cadherin protein was produced as six overlapping peptides to identify the specific binding regions of Cry2Ab. Binding assays showed that Cry2Ab binds nonspecifically to peptides containing CR7 and CR11 regions in a denatured state but binds specifically only to CR7-containing peptides in the native state. The peptides CR6-11 and CR6-8 were transiently expressed in Sf9 cells to assess the functional role of cadherin. Cytotoxicity assays showed that Cry2Ab is not toxic to the cells expressing any of the cadherin peptides. However, ABCA2-expressing cells showed high sensitivity to Cry2Ab toxin. Neither increased nor decreased sensitivity to Cry2Ab was observed when the peptide CR6-11 was coexpressed with the ABCA2 gene in Sf9 cells. Instead, treating ABCA2-expressing cells with a mixture of Cry2Ab and CR6-8 peptides resulted in significantly reduced cell death compared with treatment with Cry2Ab alone. Moreover, silencing of the cadherin gene in H. armigera larvae showed no significant effect on Cry2Ab toxicity, in contrast to the reduced mortality in ABCA2-silenced larvae. IMPORTANCE To improve the efficiency of production of a single toxin in crops and to delay the evolution of insect resistance to the toxin, the second generation of Bt cotton, expressing Cry1Ac and Cry2Ab, was introduced. Understanding the mode action of the Cry proteins in the insect midgut and the mechanisms insects use to overcome these toxins plays a crucial role in developing measures to counter them. Extensive studies have been conducted on the receptors of Cry1A toxins, but relatively little has been done about those of Cry2Ab. By showing the nonfunctional binding of cadherin protein with Cry2Ab, we have furthered the understanding of Cry2Ab receptors.
Collapse
Affiliation(s)
- Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Linlin Niu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhongwei Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Siqi Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Site-Directed Mutants of Parasporin PS2Aa1 with Enhanced Cytotoxic Activity in Colorectal Cancer Cell Lines. Molecules 2022; 27:molecules27217262. [DOI: 10.3390/molecules27217262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Parasporin 2 has cytotoxic effects against numerous colon cancer cell lines, making it a viable alternative to traditional treatments. However, its mechanism of action and receptors remain unknown. In this study, site-directed mutagenesis was used to obtain PS2Aa1 mutants with variation in domain I at positions 256 and 257. Variants 015, 002, 3-3, 3-35, and 3-45 presented G256A, G256E, G257A, G257V, and G257E substitutions, respectively. Cytotoxicity tests were performed for the cell viability of cell lines SW480, SW620, and CaCo-2. Mutants 3-3, 3-35, and 3-45 efficiently killed the cell lines. It was found that the activated forms of caspase-3 and PARP were in higher abundance as well as increased production of γH2AX when 3-35 was used to treat CaCo-2 and SW480. To assess possible membrane-binding receptors involved in the interaction, an APN receptor blocking assay showed reduced activity of some parasporins. Hence, we performed molecular docking and molecular dynamics simulations to analyze the stability of possible interactions and identify the residues that could be involved in the protein–protein interaction of PS2Aa1 and APN. We found that residues 256 and 257 facilitate the interaction. Parasporin 3-35 is promising because it has higher cytotoxicity than PS2Aa1.
Collapse
|
8
|
Endo H. Molecular and Kinetic Models for Pore Formation of Bacillus thuringiensis Cry Toxin. Toxins (Basel) 2022; 14:toxins14070433. [PMID: 35878171 PMCID: PMC9321905 DOI: 10.3390/toxins14070433] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Cry proteins from Bacillus thuringiensis (Bt) and other bacteria are pesticidal pore-forming toxins. Since 2010, when the ABC transporter C2 (ABCC2) was identified as a Cry1Ac protein resistant gene, our understanding of the mode of action of Cry protein has progressed substantially. ABCC2 mediates high Cry1A toxicity because of its high activity for helping pore formation. With the discovery of ABCC2, the classical killing model based on pore formation and osmotic lysis became nearly conclusive. Nevertheless, we are still far from a complete understanding of how Cry proteins form pores in the cell membrane through interactions with their host gut membrane proteins, known as receptors. Why does ABCC2 mediate pore formation with high efficiency unlike other Cry1A-binding proteins? Is the “prepore” formation indispensable for pore formation? What is the mechanism underlying the synergism between ABCC2 and the 12-cadherin domain protein? We examine potential mechanisms of pore formation via receptor interactions in this paper by merging findings from prior studies on the Cry mode of action before and after the discovery of ABC transporters as Cry protein receptors. We also attempt to explain Cry toxicity using Cry–receptor binding affinities, which successfully predicts actual Cry toxicity toward cultured cells coexpressing ABC transporters and cadherin.
Collapse
Affiliation(s)
- Haruka Endo
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| |
Collapse
|
9
|
Zhu Q, Hu X, Liu Y, Xie Y, Xu C, Lin M, Pooe OJ, Zhong J, Gao M, Lu L, Liu X, Zhang X. Identification of single domain antibodies with insect cytotoxicity using phage-display antibody library screening and Plutella xylostella ATP-binding cassette transporter subfamily C member 2 (ABCC2) -based insect cell expression system. Int J Biol Macromol 2022; 209:586-596. [PMID: 35346681 DOI: 10.1016/j.ijbiomac.2022.03.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022]
Abstract
It is extremely imminent to study a new strategy to manage agricultural pest like Plutella xylostella (P. xylostella) which is currently resistant to most of pesticides, including three domain-Cry toxins from Bacillus thuringiensis (Bt). In this study, we reported a phage displayed single domain antibody screening from human domain antibody (DAb) library targeted on Spodoptera frugiperda 9 (Sf9) cells expressed Cry1Ac toxin receptor, ATP-dependent binding cassette transporter C2 in P. xylostella (PxABCC2). After three rounds of panning, three cytotoxic antibodies (1D2, 2B7, 3C4) were obtained from thirty-eight antibodies and displayed high binding ability towards PxABCC2-expressed Sf9 cells. Through homology modeling and molecular docking, the interaction mode indicated that the most cytotoxic 1D2 of the three antibodies presented the lowest binding free energy required and had the most hydrogen bond formed with PxABCC2 in molecular docking analysis. Functional assay of key regions in 1D2 via Alanine replacement indicated that complementarity-determining region (CDR) 3 played a crucial role in antibody exerts binding activity and cytotoxicity. This study provides the first trial for discovering of potential cytotoxic antibodies from the human antibody library via specific receptor-expressed insect cell system biopanning.
Collapse
Affiliation(s)
- Qing Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaodan Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Manman Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Ofentse Jacob Pooe
- School of Life Sciences, Discipline of Biochemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Jianfeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Meijing Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lina Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
10
|
Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life (Basel) 2021; 11:999. [PMID: 34685371 PMCID: PMC8541582 DOI: 10.3390/life11100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
A hallmark of Bacillus thuringiensis bacteria is the formation of one or more parasporal crystal (Cry) proteins during sporulation. The toxicity of these proteins is highly specific to insect larvae, exerting lethal effects in different insect species but not in humans or other mammals. The aim of this review is to summarize previous findings on Bacillus thuringiensis, including the characteristics of the bacterium, its subsequent contribution to biotechnology as a bioinsecticide due to the presence of Cry proteins, and its potential application as an adjuvant. In several studies, Cry proteins have been administered together with specific antigens to immunize experimental animal models. The results have shown that these proteins can enhance immunogenicity by generating an adequate immune response capable of protecting the model against an experimental infectious challenge, whereas protection is decreased when the specific antigen is administered without the Cry protein. Therefore, based on previous results and the structural homology between Cry proteins, these molecules have arisen as potential adjuvants in the development of vaccines for both animals and humans. Finally, a model of the interaction of Cry proteins with different components of the immune response is proposed.
Collapse
Affiliation(s)
- Maria Cristina Gonzalez-Vazquez
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
| | - Ruth Abril Vela-Sanchez
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Norma Elena Rojas-Ruiz
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| |
Collapse
|
11
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
12
|
Progress on the Bacterium Bacillus thuringiensis and Its Application Within the Biological Control Program in Iran. PROGRESS IN BIOLOGICAL CONTROL 2021. [DOI: 10.1007/978-3-030-63990-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
14
|
Qi L, Qiu X, Yang S, Li R, Wu B, Cao X, He T, Ding X, Xia L, Sun Y. Cry1Ac Protoxin and Its Activated Toxin from Bacillus thuringiensis Act Differentially during the Pathogenic Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5816-5824. [PMID: 32379448 DOI: 10.1021/acs.jafc.0c01172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although the new dual model of the Bacillus thuringiensis insecticidal mechamism indicated that both Cry1A protoxin and activated toxin have the potency to kill insects, the difference in the toxic pathways elicited by the protoxin and activated toxin was less understood at the molecular level. Through utilizing the CF-203 cell line derived from the midgut of Choristoneura fumiferana, we found that there existed obvious differences in the binding sites and endocytosis pathways for the two forms of Cry1Ac. In addition, it was revealed that Cry1Ac protoxin existed predominantly in the midgut of Plutella xylostella at the early stage after ingesting Cry1Ac crystals, which brought about obvious damage to the midgut epithelium and exhibited different binding sites on the brush border membrane vesicle compared to the toxin. These findings supported the dual mode of action of B. thuringiensis Cry1A proteins and improved our understanding of the molecular features that contribute to the protoxin toxicity.
Collapse
Affiliation(s)
- Lingling Qi
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xianfeng Qiu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Sisi Yang
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ran Li
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Binbin Wu
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xiaomei Cao
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Ting He
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Xuezhi Ding
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Liqiu Xia
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| | - Yunjun Sun
- College of Life Science, State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, People's Republic of China
| |
Collapse
|
15
|
Wei W, Pan S, Ma Y, Xiao Y, Yang Y, He S, Bravo A, Soberón M, Liu K. GATAe transcription factor is involved in Bacillus thuringiensis Cry1Ac toxin receptor gene expression inducing toxin susceptibility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 118:103306. [PMID: 31843687 DOI: 10.1016/j.ibmb.2019.103306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are powerful tools for insect control. Cry toxin receptors such as cadherin (CAD), ABCC2 transporter and alkaline phosphatase (ALP), located on insect midgut cells, are needed for Cry toxicity. Although insect cell lines are useful experimental models for elucidating toxin action mechanism, most of them show low expression of Cry-receptors genes. The GATA transcription factor family plays important roles in regulating development and differentiation of intestine stem cells. Here, we investigated whether GATAs transcription factors are involved in the expression of Cry1Ac-receptors genes, using multiple insect cell lines. Four GATA genes were identified in the transcriptome of the midgut tissue from the lepidopteran larvae Helicoverpa armigera. These HaGATA genes were transiently expressed in three lepidopteran cell lines, Spodoptera frugiperda Sf9, H. armigera QB-Ha-E5 and Trichoplusia ni Hi5. Analysis of transcription activity using transcriptional gene-fusions showed that only H. armigera GATAe (HaGATAe) significantly increased the transcription of CAD, ABCC2 and ALP receptors genes in all insect cell lines. Key DNA regions for HaGATAe regulation were identified in the promoter sequence of these Cry-receptors genes by using promoter deletion mapping. The transient expression of HaGATAe in these cell lines, conferred sensitivity to Cry1Ac toxin, although in Hi5 cells the susceptibility to Cry1Ac was lower than in other two cell lines. High sensitivity to Cry1Ac correlated with simultaneous transcription of ABCC2 and CAD genes in Sf9 and QB-Ha-E5 cells. Our results reveal that HaGATAe enhances transcription of several lepidopteran Cry1Ac receptor genes in cultured insect cells.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yuemin Ma
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Sijia He
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Sato R, Adegawa S, Li X, Tanaka S, Endo H. Function and Role of ATP-Binding Cassette Transporters as Receptors for 3D-Cry Toxins. Toxins (Basel) 2019; 11:E124. [PMID: 30791434 PMCID: PMC6409751 DOI: 10.3390/toxins11020124] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
When ABC transporter family C2 (ABCC2) and ABC transporter family B1 (ABCB1) were heterologously expressed in non-susceptible cultured cells, the cells swelled in response to Cry1A and Cry3 toxins, respectively. Consistent with the notion that 3D-Cry toxins form cation-permeable pores, Bombyx mori ABCC2 (BmABCC2) facilitated cation-permeable pore formation by Cry1A when expressed in Xenopus oocytes. Furthermore, BmABCC2 had a high binding affinity (KD) to Cry1Aa of 3.1 × 10-10 M. These findings suggest that ABC transporters, including ABCC2 and ABCB1, are functional receptors for 3D-Cry toxins. In addition, the Cry2 toxins most distant from Cry1A toxins on the phylogenetic tree used ABC transporter A2 as a receptor. These data suggest that 3D-Cry toxins use ABC transporters as receptors. In terms of inducing cell swelling, ABCC2 has greater activity than cadherin-like receptor. The pore opening of ABC transporters was hypothesized to be linked to their receptor function, but this was repudiated by experiments using mutants deficient in export activity. The synergistic relationship between ABCC2 and cadherin-like receptor explains their ability to cause resistance in one species of insect.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Satomi Adegawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Xiaoyi Li
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Haruka Endo
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|