1
|
Veenstra JA. Neuropeptides from a praying mantis: what the loss of pyrokinins and tryptopyrokinins suggests about the endocrine functions of these peptides. PeerJ 2025; 13:e19036. [PMID: 40034667 PMCID: PMC11874938 DOI: 10.7717/peerj.19036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Neuropeptides play important roles in insects, but in many cases their functions remain obscure. Comparative neuropeptidome analyses may provide clues to what these functions might be. Praying mantises are predators and close relatives of cockroaches that are scavengers. Cockroach neuropeptidomes are well established, but little is known about mantis neuropeptides. The recently published genome assembly of the praying mantis Tenodera sinensis makes it Possible to change that. Methods The genome assembly from T. sinensis was analyzed for the presence of genes coding neuropeptides. For comparison, publicly available short read archives from this and other mantis species were also examined for the presence and expression of neuropeptides. Results As a rule, the neuropeptidomes of the Mantodea and Blattodea are almost identical; praying mantises and cockroaches use very similar neuropeptides. However, there is one surprising exception. Praying mantises lack the receptors for pyrokinins, including those for the tryptopyrokinins. No typical pyrokinin genes were found, but some species do have a tryptopyrokinin gene, in others this has also been lost and, in one species it is a speudogene. For most praying mantises there is no information where tryptopyrokinin is expressed, but in Deroplatys truncata it is in the thorax and thus not in the suboesophageal ganglion, as in other insects. In the genomic short read archives of two species-out of 52-sequences were found for a tryptopyrokinin specific receptor. The phylogenetic position of those two species implies that the receptor gene was independently lost on multiple occasions. The loss of the tryptopyrokinin gene also happened more than once. Discussion The multiple independent losses of the pyrokinin receptors in mantises suggests that these receptors are irrelevant in praying mantises. This is very surprising, since expression of tryptopyrokinin is very strongly conserved in two neuroendocrine cells in the suboeosphageal ganglion. In those species for which this is known, the expression of its receptor is in the salivary gland. As a neuroendocrine, tryptopyrokinin is unlikely to acutely regulate salivation, which in other insects is regulated by well characterized neurons. If the action of tryptopyrokinin were to prime the salivary gland for subsequent salivation, it would make perfect sense for a praying mantis to lose this capacity, as they can not anticipate when they will catch their next prey. Priming the salivary gland days before it is actually needed would be energetically costly. The other pyrokinins are known to facilitate feeding and may in a similar fashion prime muscles needed for moving to the food source and digesting it. This hypothesis provides a good explanation as to why praying mantises do not need pyrokinins, and also what the function of these ubiquitous arthropod neuropeptides may be.
Collapse
Affiliation(s)
- Jan A. Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Cocurullo M, Paganos P, Benvenuto G, Arnone MI. Characterization of thyrotropin-releasing hormone producing neurons in sea urchin, from larva to juvenile. Front Neurosci 2024; 18:1378520. [PMID: 38660219 PMCID: PMC11039832 DOI: 10.3389/fnins.2024.1378520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Most sea urchin species are indirect developers, going through a larval stage called pluteus. The pluteus possesses its own nervous system, consisting mainly of the apical organ neurons (controlling metamorphosis and settlement) and ciliary band neurons (controlling swimming behavior and food collection). Additional neurons are located in various areas of the gut. In recent years, the molecular complexity of this apparently "simple" nervous system has become apparent, with at least 12 neuronal populations identified through scRNA-sequencing in the species Strongylocentrotus purpuratus. Among these, there is a cluster of neurosecretory cells that produce a thyrotropin-releasing hormone-type neuropeptide (TRHergic) and that are also photosensory (expressing a Go-Opsin). However, much less is known about the organization of the nervous system in other sea urchin species. The aim of this work was to thoroughly characterize the localization of the TRHergic cells from early pluteus to juvenile stages in the Mediterranean sea urchin species Paracentrotus lividus combining immunostaining and whole mount in situ hybridization. We also compared the localization of TRHergic cells in early plutei of two other sea urchin species, Arbacia lixula and Heliocidaris tuberculata. This work provides new information on the anatomy and development of the nervous system in sea urchins. Moreover, by comparing the molecular signature of the TRHergic cells in P. lividus and S. purpuratus, we have obtained new insights how TRH-type neuropeptide signaling evolved in relatively closely related species.
Collapse
Affiliation(s)
| | | | | | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Mochizuki T, Sakamoto M, Tanizawa Y, Seike H, Zhu Z, Zhou YJ, Fukumura K, Nagata S, Nakamura Y. Best Practices for Comprehensive Annotation of Neuropeptides of Gryllus bimaculatus. INSECTS 2023; 14:121. [PMID: 36835690 PMCID: PMC9960350 DOI: 10.3390/insects14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Genome annotation is critically important data that can support research. Draft genome annotations cover representative genes; however, they often do not include genes that are expressed only in limited tissues and stages, or genes with low expression levels. Neuropeptides are responsible for regulation of various physiological and biological processes. A recent study disclosed the genome draft of the two-spotted cricket Gryllus bimaculatus, which was utilized to understand the intriguing physiology and biology of crickets. Thus far, only two of the nine reported neuropeptides in G. bimaculatus were annotated in the draft genome. Even though de novo assembly using transcriptomic analyses can comprehensively identify neuropeptides, this method does not follow those annotations on the genome locus. In this study, we performed the annotations based on the reference mapping, de novo transcriptome assembly, and manual curation. Consequently, we identified 41 neuropeptides out of 43 neuropeptides, which were reported in the insects. Further, 32 of the identified neuropeptides on the genomic loci in G. bimaculatus were annotated. The present annotation methods can be applicable for the neuropeptide annotation of other insects. Furthermore, the methods will help to generate useful infrastructures for studies relevant to neuropeptides.
Collapse
Affiliation(s)
- Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hitomi Seike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Zhen Zhu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Ragionieri L, Verdonck R, Verlinden H, Marchal E, Vanden Broeck J, Predel R. Schistocerca neuropeptides - An update. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104326. [PMID: 34767790 DOI: 10.1016/j.jinsphys.2021.104326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 05/26/2023]
Abstract
We compiled a comprehensive list of 67 precursor genes encoding neuropeptides and neuropeptide-like peptides using the Schistocerca gregaria genome and several transcriptome datasets. 11 of these 67 precursor genes have alternative transcripts, bringing the total number of S. gregaria precursors identified in this study to 81. Based on this precursor information, we used different mass spectrometry approaches to identify the putative mature, bioactive peptides processed in the nervous system of S. gregaria. The thereby generated dataset for S. gregaria confirms significant conservation of the entire neuropeptidergic gene set typical of insects and also contains precursors typical of Polyneoptera only. This is in striking contrast to the substantial losses of peptidergic systems in some holometabolous species. The neuropeptidome of S. gregaria, apart from species-specific sequences within the known range of variation, is quite similar to that of Locusta migratoria and even to that of less closely related Polyneoptera. With the S. gregaria peptidomics data presented here, we have thus generated a very useful source of information that could also be relevant for the study of other polyneopteran species.
Collapse
Affiliation(s)
- Lapo Ragionieri
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| | - Rik Verdonck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium; Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Heleen Verlinden
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Elisabeth Marchal
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Division of Animal Physiology and Neurobiology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | - Reinhard Predel
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
5
|
Zeng H, Qin Y, Du E, Wei Q, Li Y, Huang D, Wang G, Veenstra JA, Li S, Li N. Genomics- and Peptidomics-Based Discovery of Conserved and Novel Neuropeptides in the American Cockroach. J Proteome Res 2020; 20:1217-1228. [PMID: 33166158 DOI: 10.1021/acs.jproteome.0c00596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a model hemimetabolous insect species and an invasive urban pest that is globally distributed, the American cockroach, Periplaneta americana, is of great interest in both basic and applied research. Previous studies on P. americana neuropeptide identification have been based on biochemical isolation and molecular cloning. In the present study, an integrated approach of genomics- and peptidomics-based discovery was performed for neuropeptide identification in this insect species. First, 67 conserved neuropeptide or neurohormone precursor genes were predicted via an in silico analysis of the P. americana genome and transcriptome. Using a large-scale peptidomic analysis of peptide extracts from four different tissues (the central nervous system, corpora cardiac and corpora allata complex, midgut, and male accessory gland), 35 conserved (predicted) neuropeptides and a potential (novel) neuropeptide were then identified. Subsequent experiments revealed the tissue distribution, sex difference, and developmental patterns of two conserved neuropeptides (allatostatin B and short neuropeptide F) and a novel neuropeptide (PaOGS36577). Our study shows a comprehensive neuropeptidome and detailed spatiotemporal distribution patterns, providing a solid basis for future functional studies of neuropeptides in the American cockroach (data are available via ProteomeXchange with identifier PXD021660).
Collapse
Affiliation(s)
- Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Erxia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Qiulan Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, Université de Bordeaux, Pessac F33615, France
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
6
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
7
|
Homberg U, Hensgen R, Rieber E, Seyfarth J, Kern M, Dippel S, Dircksen H, Spänig L, Kina YP. Orcokinin in the central complex of the locust Schistocerca gregaria: Identification of immunostained neurons and colocalization with other neuroactive substances. J Comp Neurol 2020; 529:1876-1894. [PMID: 33128250 DOI: 10.1002/cne.25062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signaling within the central complex. To complement these data, we have identified all orcokinin-immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin-A type peptides in the desert locust. Double label experiments showed that all orcokinin-immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip-allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin-peptides of the orcokinin-A gene act as neuroactive substances at all stages of signal processing in this brain area.
Collapse
Affiliation(s)
- Uwe Homberg
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Ronja Hensgen
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Evelyn Rieber
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jutta Seyfarth
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Martina Kern
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | | | - Lisa Spänig
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Yelda Pakize Kina
- Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
8
|
Veenstra JA. Gonadulins, the fourth type of insulin-related peptides in decapods. Gen Comp Endocrinol 2020; 296:113528. [PMID: 32526328 DOI: 10.1016/j.ygcen.2020.113528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
Insulin and related peptides play important roles in the regulation of growth and reproduction. Until recently three different types of insulin-related peptides had been identified from decapod crustaceans. The identification of two novel insulin-related peptides from Sagmariasus verreauxi and Cherax quadricarinatus suggested that there might a fourth type. Publicly available short read archives show that orthologs of these peptides are commonly present in these animals. Most decapods have two genes coding such peptides, but Penaeus species have likely only one and some palaemonids have three. Interestingly, expression levels can vary more than thousand-fold in the gonads of Portunus trituberculatus, where gonadulin 1 is expressed by the testis and gonadulin 2 by the ovary. Although these peptides are also expressed in other tissues, the occasionally very high expression in the gonads led to them being called gonadulins.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France.
| |
Collapse
|
9
|
Kotwica-Rolinska J, Krištofová L, Chvalová D, Pauchová L, Provazník J, Hejníková M, Sehadová H, Lichý M, Vaněčková H, Doležel D. Functional analysis and localisation of a thyrotropin-releasing hormone-type neuropeptide (EFLa) in hemipteran insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103376. [PMID: 32339620 PMCID: PMC7294237 DOI: 10.1016/j.ibmb.2020.103376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 05/07/2023]
Abstract
EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Lucie Krištofová
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Daniela Chvalová
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Lucie Pauchová
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Jan Provazník
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Markéta Hejníková
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic
| | - Hana Sehadová
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Martin Lichý
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Hana Vaněčková
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - David Doležel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|