1
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
2
|
Wang H, Bian H, Liu Z, Liu Y, Wang P, Liu K. Two pathways mediate toxicity of Cry1Ac in Mythimna separata: one is ABCC2-dependent and the other involves ABCC3-CAD interaction. Int J Biol Macromol 2025; 310:143392. [PMID: 40268035 DOI: 10.1016/j.ijbiomac.2025.143392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Mythimna separata is an important pest. The ATP-binding cassette (ABC) transporter proteins have been implicated in mediating toxicity of Bacillus thuringiensis Cry1 toxins in lepidopteran insects. Here we investigated the role of MsABCC3 in mediating toxicity of multiple Bt toxins by MsABCC3-expression in Hi5 insect cells and by gene-editing knockout in M. separata larvae. We assessed Cry1Ac toxicity in Hi5 cells expressing different putative M. separata receptors, including MsABCC3, MsABCC2 and cadherin (MsCAD). The cytotoxicity of activated Cry1Ac mediated by MsABCC3 was lower than that mediated by MsABCC2, but significantly higher than that mediated by MsCAD. In addition, co-expression of MsABCC3 and MsCAD resulted in Cry1Ac susceptibility comparable to that of MsABCC2, indicating a synergistic or cooperation interaction of MsCAD with the MsABCC3 transporter, but not with MsABCC2. Interestingly, co-expression of both MsABCC2 and MsABCC3 in Hi5 cells did not show a synergistic interaction. Bioassays revealed that MsABCC3 knockout in M. separata larvae conferred low resistance to Cry1Ac. Our results suggest that MsABCC3 along with MsCAD cooperatively participates as receptors of Cry1Ac and also that ABCC2 alone is involved in Cry1Ac toxicity. These findings provide new insight on the mechanism of resistance against Bt toxins in M. separata.
Collapse
Affiliation(s)
- Hanyue Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Huiran Bian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Yuanyuan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Kaiyu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
3
|
Zhang C, Wei J, Li W, Li N, Soe ET, Naing ZL, Tang J, Yu H, Fang F, Li X, Lu Y, Liu X, Crickmore N, Liang G. Eukaryotic Translation Initiation Factor 2 Modulates the Expression of Midgut Receptors to Confer Resistance to Bacillus thuringiensis Cry1Ac Toxin in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7179-7186. [PMID: 40094927 DOI: 10.1021/acs.jafc.5c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Studying the insect resistance mechanism to Bacillus thuringiensis (Bt) is beneficial to address the ever-growing problem of evolved resistance. Previous RNaseq data indicated that a eukaryotic translation initiation factor 2 (eIF2) expression showed significant differences in Cry1Ac-resistant Helicoverpa armigera strains. We investigated HaeIF2's role in Cry1Ac resistance. Quantitative PCR (qPCR) confirmed that HaeIF2 expression was significantly downregulated in Cry1Ac-resistant H. armigera (BtR). Overexpression and RNAi in midgut cells and larvae showed that HaeIF2's expression affects susceptibility to Cry1Ac by modulating the expression of receptors CAD, ABCC2, and ABCC3. Further studies demonstrated that HaeIF2 activates receptor expression by binding to eIF2 sites in the promoter regions. The downregulated three receptors in the BtR consistent with reduced HaeIF2 levels suggest HaeIF2 is involved in Cry1Ac resistance. These findings reveal insect resistance to Cry1Ac is due to coordinated transcriptional regulation of receptor molecules in the BtR strain, further expanding our understanding of the molecular basis of insect resistance to Bt.
Collapse
Affiliation(s)
- Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenxuan Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ningning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Huan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, Brighton BN1 9QG, U.K
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
4
|
Roy R, Abdelgaffar H, Kerns D, Huff M, Staton M, Yang F, Huang F, Jurat-Fuentes JL. Reduced processing and toxin binding associated with resistance to Vip3Aa in a strain of fall armyworm (Spodoptera frugiperda) from Louisiana. PEST MANAGEMENT SCIENCE 2025. [PMID: 40098443 DOI: 10.1002/ps.8775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Transgenic crops expressing Cry and Vip3Aa insecticidal proteins from the bacterium Bacillus thuringiensis are a primary tool for controlling fall armyworm (Spodoptera frugiperda) populations. The evolution of resistance to Cry proteins in the native range of the fall armyworm has increased reliance and intensified the selection of resistance to Vip3Aa. In this study, we identified mechanisms of resistance to Vip3Aa in the LA-RR strain of S. frugiperda originating from Louisiana (USA). RESULTS Midgut epithelial damage in susceptible larvae was evidenced by a significant drop in midgut pH after feeding on either Vip3Aa protoxin or activated toxin. In contrast, this midgut pH drop was only detected for activated Vip3Aa toxin in LA-RR larvae. Midgut fluids from LA-RR larvae displayed delayed processing of Vip3Aa protoxin when compared to fluids from susceptible larvae, and this slower processing was associated with reduced activity and expression of trypsin and chymotrypsin enzyme genes in the LA-RR strain. In bioassays, LA-RR larvae were significantly more susceptible to Vip3Aa protoxin pre-processed by midgut fluids from susceptible than from LA-RR larvae. In addition, midgut brush border membrane vesicles from LA-RR larvae exhibited lower specific Vip3Aa toxin binding than vesicles from the susceptible strain. CONCLUSION The results of this study support that both slower proteolytic processing and reduced specific binding are associated with resistance to Vip3Aa in a S. frugiperda strain from the Western hemisphere, the native range of this pest. This information increases our understanding of resistance to Vip3Aa and advances monitoring and fall armyworm management. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rajeev Roy
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Dawson Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Fei Yang
- Department of Entomology, University of Minnesota, St Paul, MN, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | | |
Collapse
|
5
|
Yue Y, Zhao X, Lu Z, Dou W, Luo Z, Lei K, Xu D, Zhang Y. Two secretory T2 RNases from a fungal pathogen target distinct insect cell transmembrane proteins to cause cytotoxicity. INSECT SCIENCE 2024. [PMID: 39711137 DOI: 10.1111/1744-7917.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence. Here, the Spodoptera frugiperda ovarian epithelial cells (sf9 cells) were used as models to investigate the interactions of the two fungus-produced RNase T2 proteins with the insect cells. Two transmembrane proteins, an ABC transporter (SfABCG) and an Innexin 7-like protein (Sfinx), were identified from the sf9 cells as interacting with BbRNT2 and BbTrv, respectively, through protein immunoprecipitation, yeast-two hybrid tests and protein pull-down assays. Although a slight decrease in the sf9 cell viability was examined by transfection of RNA interference of SfABCG or Sfinx, the transfected cells displayed a dramatically decreased sensitivity to BbRNT2 or BbTrv, suggesting the requirement of the two transmembrane proteins for BbRNT2 and BbTrv to enter the insect cells. These results reveal a mechanism of the cytotoxic molecules, T2 RNases, produced by the fungal pathogen, entering the insect cells via interaction with specific insect cell transmembrane proteins and causing cytotoxic damage.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- School of Basic Medicine Science, Chongqing University of Chinese Medicine, Chongqing, China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kangmin Lei
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dan Xu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Wang H, Li A, Bian H, Jin L, Ma S, Wang H, Yang Y, Bravo A, Soberón M, Liu K. Transcriptional regulation of Cry2Ab toxin receptor ABCA2 gene in insects involves GATAe and splicing of a 5' UTR intron. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106211. [PMID: 39672621 DOI: 10.1016/j.pestbp.2024.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression. Previous work identified HaGATAe transcriptional factor (TF) to be involved in the expression of multiple Cry1 receptor genes. Also, it was reported that 5´untranslated region (UTR) could be involved in regulation of gene expression in eukaryotic cells. The ABCA2 protein functions as Cry2A toxin receptor in multiple lepidopteran species. Here, we investigated regulation of HaABCA2 expression in Helicoverpa armigera and in different insect cell lines. Transient expression of HaABCA2 gene resulted in susceptibility to Cry2Ab in Sf9 cells. Transient expression of HaGATAe transcriptional factor in Sf9 cells enhanced the expression of multiple larval midgut proteins including SfABCA2, increasing the susceptibility to activated Cry2Ab. The silencing of HaGATAe expression in H. armigera larvae by RNAi, resulted in lower expression of HaABCA2 which correlated with reduced susceptibility to Cry2Ab. The GATAe-binding site in the promoter of HaABCA2 gene was identified by systematic truncations, site directed mutagenesis and DNA Pull-down analysis. In addition, 5' RACE analysis revealed that HaABCA2 transcripts in larval midgut cells had at least three different 5' UTRs. Here we also show that the retention of an intron in one of these 5' UTRs significantly inhibited the HaABCA2 expression. A short sequence after the start codon of translation of HaABCA2 was identified to be required for the intron removal. These findings provide new insight for mechanism of Cry2Ab resistance in H. armigera.
Collapse
Affiliation(s)
- Haixia Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Anjing Li
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Huiran Bian
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Lang Jin
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Silu Ma
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Hanyue Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
7
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
9
|
Jin M, Peng Y, Peng J, Zhang H, Shan Y, Liu K, Xiao Y. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Commun Biol 2023; 6:1064. [PMID: 37857697 PMCID: PMC10587110 DOI: 10.1038/s42003-023-05447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid evolution of resistance in agricultural pest poses a serious threat to global food security. However, the mechanisms of resistance through metabolic regulation are largely unknown. Here, we found that a GST gene cluster was strongly selected in North China (NTC) population, and it was significantly genetically-linked to lambda-cyhalothrin resistance. Knockout of the GST cluster using CRISPR/Cas9 significantly increased the sensitivity of the knockout strain to lambda-cyhalothrin. Haplotype analysis revealed no non-synonymous mutations or structural variations in the GST cluster, whereas GST_119 and GST_121 were significantly overexpressed in the NTC population. Silencing of GST_119 or co-silencing of GST_119 and GST_121 with RNAi significantly increased larval sensitivity to lambda-cyhalothrin. We also identified additional GATAe transcription factor binding sites in the promoter of NTC_GST_119. Transient expression of GATAe in Hi5 cells activated NTC_GST_119 and Xinjiang (XJ)_GST_119 transcription, but the transcriptional activity of NTC_GST_119 was significantly higher than that of XJ_GST_119. These results demonstrate that variations in the regulatory region result in complex expression changes in the GST cluster, which enhances lambda-cyhalothrin resistance in field-populations. This study deepens our knowledge of the evolutionary mechanism of pest adaptation under environmental stress and provides potential targets for monitoring pest resistance and integrated management.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Wei W, Wang L, Pan S, Wang H, Xia Z, Liu L, Xiao Y, Bravo A, Soberón M, Yang Y, Liu K. Helicoverpa armigera GATAe transcriptional factor regulates the expression of Bacillus thuringiensis Cry1Ac receptor gene ABCC2 by its interplay with additional transcription factors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105516. [PMID: 37532331 DOI: 10.1016/j.pestbp.2023.105516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Helicoverpa armigera is a worldwide pest that has been efficiently controlled by transgenic plants expressing Bt Cry toxins. To exert toxicity, Cry toxins bind to different receptors located in larval midgut cells. Previously, we reported that GATA transcription factor GATAe activates the expression of multiple H. armigera Cry1Ac receptors in different insect cell lines. Here, the mechanism involved in GATAe regulation of HaABCC2 gene expression, a key receptor of Cry1Ac, was analyzed. HaGATAe gene silencing by RNAi in H. armigera larvae confirmed the activation role of HaGATAe on the expression of HaABCC2 in the midgut. The contribution of all potential GATAe-binding sites was analyzed by site-directed mutagenesis using Hi5 cells expressing a reporter gene under regulation of different modified HaABCC2 promoters. DNA pull-down assays revealed that GATAe bound to different predicted GATA-binding sites and mutations of the different GATAe-binding sites identified two binding sites responsible for the promoter activity. The binding site B9, which is located near the transcription initiator site, has a major contribution on HaABCC2 expression. Also, DNA pull-down assays revealed that all other members of GATA TF family in H. armigera, besides GATAe, HaGATAa, HaGATAb, HaGATAc and HaGATAd also bound to the HaABCC2 promoter and decreased the GATAe dependent promoter activity. Finally, the potential participation in the regulation of HaABCC2 promoter of several TFs other than GATA TFs expressed in the midgut cells was analyzed. HaHR3 inhibited the GATAe dependent activity of the HaABCC2 promoter, while two other midgut-related TFs, HaCDX and HaSox21, also bound to the HaABCC2 promoter region and increased the GATAe dependent promoter activity. All these data showed that GATAe induces HaABCC2 expression by binding to HaGATAe binding sites in the promoter region and that additional TFs participate in modulating the HaGATAe-driven expression of HaABCC2.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Ling Wang
- Institute of Hubei Agriculture Academy, Wuhan 430070, China
| | - Shuang Pan
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Haixia Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Zhichao Xia
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Leilei Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China; Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca 62250, Morelos, Mexico
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
11
|
Zhang Q, Dou W, He LQ, Yu SS, Chen JQ, Zheng LY, Wang L, Smagghe G, Wang JJ. Pannier is a key regulator of embryogenesis, pupal development and female reproduction in the insect pest Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:1352-1361. [PMID: 36427005 DOI: 10.1002/ps.7305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most arthropods are famous for their large reproductive capacity, with the ovary playing a vital role in the process. The study of the regulatory mechanisms of ovarian development may have the potential for a reproduction-based pest management strategy. GATA-binding transcription factors (GATAs) as important regulatory factors mediate many physiological processes, including development, immunity, insecticide resistance and reproduction. The Pannier (pnr), a member of GATA family, was confirmed to be involved in ovarian development of Bactrocera dorsalis in our previous study. However, the direct evidence of pnr regulating the fly ovarian development is still lacking. RESULTS We used CRISPR/Cas9 to create Bdpnr loss-of-function mutations. Homozygous Bdpnr-/- mutants were nonviable, with most individuals dying during embryogenesis, some surviving to the larval stages, and the remaining few dying during pupation. In contrast, heterozygous individuals reached the adult stage, but ovarian development was disrupted, with concomitant decreases in egg laying and hatching rates. We also found that two genes encoding vitellogenin proteins (BdVg1 and BdVg2) and the vitellogenin receptor (BdVgR) were significantly down-regulated in heterozygous mutants compared to wild-type controls. CONCLUSION These results indicate that Bdpnr is required for embryonic and post-embryonic development, including the formation of ovaries. Bdpnr could therefore be considered as a molecular target for tephritid fly pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Qiang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shan-Shan Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Qing Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Yuan Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- International China-Belgium Joint Laboratory on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Liao C, Zhang D, Cheng Y, Yang Y, Liu K, Wu K, Xiao Y. Down-regulation of HaABCC3, potentially mediated by a cis-regulatory mechanism, is involved in resistance to Cry1Ac in the cotton bollworm, Helicoverpa armigera. INSECT SCIENCE 2023; 30:135-145. [PMID: 35603737 DOI: 10.1111/1744-7917.13080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/29/2023]
Abstract
Evolution of resistance to Cry proteins in multiple pest insects has been threatening the sustainable use of Bacillus thuringiensis (Bt)-transgenic crops. Better understanding about the mechanism of resistance to Cry proteins in insects is needed. Our preliminary study reported that the transcription of HaABCC3 was significantly decreased in a near-isogenic line (LFC2) of a Cry1Ac-resistant strain (LF60) of the global pest Helicoverpa armigera. However, the causality between HaABCC3 downregulation and resistance to Cry1Ac remains to be verified, and the regulatory mechanism underlying the HaABCC3 downregulation is still unclear. In this study, our data showed that both HaABCC3 and HaABCC3 downregulation were genetically linked to resistance to Cry1Ac in LF60. However, no InDels were observed in the coding sequence of HaABCC3 from LF60. Furthermore, F1 offspring from the cross of LF60 and a HaABCC2/3-knockout mutant exhibited moderate resistance to Cry1Ac toxin; this indicated that the high resistance to Cry1Ac toxin in LF60 may have resulted from multiple genetic factors, including HaABCC2 mis-splicing and HaABCC3 downregulation. Results from luciferase reporter assays showed that promoter activity of HaABCC3 in LF60 was significantly lower than that in the susceptible strain, which indicated that HaABCC3 downregulation was likely mediated by promoter variation. Consistently, multiple variations of the GATA- or FoxA-binding sites in the promoter region of HaABCC3 were identified. Collectively, all results in this study suggested that the downregulation of HaABCC3 observed in the H. armigera LF60 strain, which is resistant to Cry1Ac, may be mediated by a cis-regulatory mechanism.
Collapse
Affiliation(s)
- Chongyu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dandan Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongbo Yang
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
13
|
Wang H, Zhang C, Chen G, Li Y, Yang X, Han L, Peng Y. Downregulation of the CsABCC2 gene is associated with Cry1C resistance in the striped stem borer Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105119. [PMID: 35715058 DOI: 10.1016/j.pestbp.2022.105119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Chilo suppressalis is a major target pest of transgenic rice expressing the Bacillus thuringiensis (Bt) Cry1C toxin in China. The evolution of resistance of this pest is a major threat to Bt rice. Since Bt functions by binding to receptors in the midgut (MG) of target insects, identification of Bt functional receptors in C. suppressalis is crucial for evaluating potential resistance mechanisms and developing effective management strategies. ATP-binding cassette (ABC) transporters have been vastly reported to interact with Cry1A toxins, as receptors and their mutations cause insect Bt resistance. However, the role of ABC transporters in Cry1C resistance to C. suppressalis remains unknown. Here, we measured CsABCC2 expression in C. suppressalis Cry1C-resistant (Cry1C-R) and Cry1C-susceptible strains (selected in the laboratory) via quantitative real-time PCR (qRT-PCR); the transcript level of CsABCC2 in the Cry1C-R strain was significantly lower than that in the Cry1C-susceptible strain. Furthermore, silencing CsABCC2 in C. suppressalis via RNA interference (RNAi) significantly decreased Cry1C susceptibility. Overall, CsABCC2 participates in Cry1C mode of action, and reduced expression of CsABCC2 is functionally associated with Cry1C resistance in C. suppressalis.
Collapse
Affiliation(s)
- Huilin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Chuan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Geng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaowei Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
14
|
MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. PLoS Genet 2022; 18:e1010037. [PMID: 35113858 PMCID: PMC8846524 DOI: 10.1371/journal.pgen.1010037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/15/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
The benefits of biopesticides and transgenic crops based on the insecticidal Cry-toxins from Bacillus thuringiensis (Bt) are considerably threatened by insect resistance evolution, thus, deciphering the molecular mechanisms underlying insect resistance to Bt products is of great significance to their sustainable utilization. Previously, we have demonstrated that the down-regulation of PxmALP in a strain of Plutella xylostella (L.) highly resistant to the Bt Cry1Ac toxin was due to a hormone-activated MAPK signaling pathway and contributed to the resistance phenotype. However, the underlying transcriptional regulatory mechanism remains enigmatic. Here, we report that the PxGATAd transcription factor (TF) is responsible for the differential expression of PxmALP observed between the Cry1Ac susceptible and resistant strains. We identified that PxGATAd directly activates PxmALP expression via interacting with a non-canonical but specific GATA-like cis-response element (CRE) located in the PxmALP promoter region. A six-nucleotide insertion mutation in this cis-acting element of the PxmALP promoter from the resistant strain resulted in repression of transcriptional activity, affecting the regulatory performance of PxGATAd. Furthermore, silencing of PxGATAd in susceptible larvae reduced the expression of PxmALP and susceptibility to Cry1Ac toxin. Suppressing PxMAP4K4 expression in the resistant larvae transiently recovered both the expression of PxGATAd and PxmALP, indicating that the PxGATAd is a positive responsive factor involved in the activation of PxmALP promoter and negatively regulated by the MAPK signaling pathway. Overall, this study deciphers an intricate regulatory mechanism of PxmALP gene expression and highlights the concurrent involvement of both trans-regulatory factors and cis-acting elements in Cry1Ac resistance development in lepidopteran insects. Gene expression and regulation are associated with adaptive evolution in living organisms. The rapid evolution of insect resistance to Bt insecticidal Cry toxins is frequently associated with reduced expression of diverse midgut genes that code for Cry-toxin receptors. Nonetheless, our current knowledge about the regulation of gene expression of these pivotal receptor genes in insects is limited. Membrane-bound alkaline phosphatase (mALP) is a known receptor for Cry1Ac toxin in diverse insects and here, we report the transcriptional regulatory mechanism of the PxmALP gene related to Cry1Ac resistance in P. xylostella. We identified a MAPK signaling pathway that negatively regulates the PxGATAd transcriptional factor which is involved in the differential expression of PxmALP via interacting with the PxmALP promoter. Furthermore, a cis-acting element mutation repressing the regulatory activity of PxGATAd for PxmALP expression in the Cry1Ac resistant strain was identified. Our study provides an insight into the precise transcriptional regulatory mechanism that regulates PxmALP expression and is involved in the evolution of Bt Cry1Ac resistance in P. xylostella, which provides a paradigm for decoding the regulation landscape of midgut Cry-toxin receptor genes in insects.
Collapse
|
15
|
Wang Y, Adegawa S, Miyamoto K, Takasu Y, Iizuka T, Wada S, Mang D, Li X, Kim S, Sato R, Watanabe K. ATP-binding cassette transporter subfamily C members 2, 3 and cadherin protein are susceptibility-determining factors in Bombyx mori for multiple Bacillus thuringiensis Cry1 toxins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103649. [PMID: 34560243 DOI: 10.1016/j.ibmb.2021.103649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Field-evolved resistance of insect pests to Bacillus thuringiensis (Bt) toxins (Cry toxins) is a threat to the efficacy of Bt-based bio-insecticides and transgenic crops. Recent reports have suggested that ATP-binding cassette transporter subfamily C2 (ABCC2) and cadherin-like receptor play important roles in conferring susceptibility to Cry1 toxins. However, the receptors involved in Bt susceptibility in each insect remain unclear. To determine the receptors that are involved in the susceptibility of Bombyx mori to Cry1 toxins (1Ab, 1Ac and 1Fa), we conducted diet overlay bioassay using B. mori strains disrupted with one or two receptor (s) among BmABCC2, BmABCC3, and cadherin-like receptor (BtR175) generated by transcription activator-like effector nuclease (TALEN)-mediated gene editing. The single-knockout strains for BmABCC2 showed resistance to Cry1Ab and Cry1Ac, whereas only strains with double knockout of BmABCC2 and BmABCC3 exhibited high resistance to Cry1Fa. Progeny populations generated from the crossing of heterozygotes for BtR175 knockout allele included 25% theoretical homozygotes for the BtR175 knockout allele and they showed resistance to Cry1Ab and Cry1Ac. Then, through a cell swelling assay using Sf9 cells ectopically expressing the receptor, we analyzed the mechanisms underlying the different contributions of BmABCC2, BmABCC3, and BtR175 to larval susceptibility. The receptor activity of BmABCC2 for Cry1Ab and Cry1Ac was far higher than that of BmABCC3, and BtR175 synergistically enhanced the receptor activity of BmABCC2. This result well explained the important involvement of BmABCC2 and BtR175 in the larval susceptibility to Cry1A toxins. By contrast, the receptor activities of BmABCC2 and BmABCC3 for Cry1Fa were observed at a similar level and synergistic effect of BtR175 was small. This finding explains the equal importance of BmABCC2 and BmABCC3 and very small contribution of BtR175 on larval susceptibility to Cry1Fa. Thus, we demonstrated the different importance of BmABCC2, BmABCC3, and BtR175 to various Cry1 toxins as susceptibility-determining factors in B. mori larvae and the underlying basis for the observed differences. Furthermore, a weak correlation was indicated between the binding affinity and receptor activities of BmABCC2 and BmABCC3 to Cry1 toxins.
Collapse
Affiliation(s)
- Yonghao Wang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Satomi Adegawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Kazuhisa Miyamoto
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoko Takasu
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Sanae Wada
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Xiaoyi Li
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Seungwon Kim
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo 184-8588, Japan.
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, NARO, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan.
| |
Collapse
|
16
|
Liu Y, Jin M, Wang L, Wang H, Xia Z, Yang Y, Bravo A, Soberón M, Xiao Y, Liu K. SfABCC2 transporter extracellular loops 2 and 4 are responsible for the Cry1Fa insecticidal specificity against Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103608. [PMID: 34119653 DOI: 10.1016/j.ibmb.2021.103608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that kill insect pests. Insect specificity of Cry toxins relies on their binding to larval gut membrane proteins such as cadherin and ATP-binding cassette (ABC) transporter proteins. Mutations in ABC transporters have been implicated in high levels of resistance to Cry toxins in multiple pests. Spodoptera frugiperda is an insect pest susceptible to Cry1Fa and Cry1Ab toxins while Mythimna separata is tolerant to Cry1Fa and less susceptible to Cry1Ab. Here, we analyzed the potential role of ABCC2 in determining the susceptibility of S. frugiperda to Cry1Fa and Cry1Ab, by expressing SfABCC2 or MsABCC2 in Hi5 insect cell line and by the systematic replacements of extracellular loops (ECLs) between these two proteins. Expression of SfABCC2 in Hi5 conferred susceptibility to both Cry1Fa and Cry1Ab, in contrast to the expression of MsABCC2 that mediated low toxicity to Cry1Ab and no toxicity to Cry1Fa in agreement with their larvicidal toxicities. The SfABCC2 and MsABCC2 amino acid sequences showed differential residues among ECL1, ECL2, ECL4 and ECL6 loops, while ECL3 and ECL5 share the same primary sequence. The exchange of ECLs between SfABCC2 and MsABCC2 demonstrated that ECL4 and ECL2 contribute to Cry1Fa toxicity, where ECL4 plays a major role. The medium region (named M2) of ECL4 was identified as the most important region of SfABCC2 involved in Cry1Fa toxicity as shown by point mutations in this region. These findings will be helpful to understand the mechanisms of action of Bt toxins in S. frugiperda.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, 430079, PR China
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ling Wang
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Fertility, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Haixia Wang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, 430079, PR China
| | - Zhichao Xia
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, 430079, PR China
| | - Yongbo Yang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, 430079, PR China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
17
|
MAPK-Activated Transcription Factor PxJun Suppresses PxABCB1 Expression and Confers Resistance to Bacillus thuringiensis Cry1Ac Toxin in Plutella xylostella (L.). Appl Environ Microbiol 2021; 87:e0046621. [PMID: 33893113 DOI: 10.1128/aem.00466-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deciphering the molecular mechanisms underlying insect resistance to Cry toxins produced by Bacillus thuringiensis (Bt) is pivotal for the sustainable utilization of Bt biopesticides and transgenic Bt crops. Previously, we identified that mitogen-activated protein kinase (MAPK)-mediated reduced expression of the PxABCB1 gene is associated with Bt Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). However, the underlying transcriptional regulation mechanism remains enigmatic. Here, the PxABCB1 promoter in Cry1Ac-susceptible and Cry1Ac-resistant P. xylostella strains was cloned and analyzed and found to contain a putative Jun binding site (JBS). A dual-luciferase reporter assay and yeast one-hybrid assay demonstrated that the transcription factor PxJun repressed PxABCB1 expression by interacting with this JBS. The expression levels of PxJun were increased in the midguts of all resistant strains compared to the susceptible strain. Silencing of PxJun expression significantly elevated PxABCB1 expression and Cry1Ac susceptibility in the resistant NIL-R strain, and silencing of PxMAP4K4 expression decreased PxJun expression and also increased PxABCB1 expression. These results indicate that MAPK-activated PxJun suppresses PxABCB1 expression to confer Cry1Ac resistance in P. xylostella, deepening our understanding of the transcriptional regulation of midgut Cry receptor genes and the molecular basis of insect resistance to Bt Cry toxins. IMPORTANCE The transcriptional regulation mechanisms underlying reduced expression of Bt toxin receptor genes in Bt-resistant insects remain elusive. This study unveils that a transcription factor PxJun activated by the MAPK signaling pathway represses PxABCB1 expression and confers Cry1Ac resistance in P. xylostella. Our results provide new insights into the transcriptional regulation mechanisms of midgut Cry receptor genes and deepen our understanding of the molecular basis of insect resistance to Bt Cry toxins. To our knowledge, this study identified the first transcription factor that can be involved in the transcriptional regulation mechanisms of midgut Cry receptor genes in Bt-resistant insects.
Collapse
|
18
|
The Essential and Enigmatic Role of ABC Transporters in Bt Resistance of Noctuids and Other Insect Pests of Agriculture. INSECTS 2021; 12:insects12050389. [PMID: 33924857 PMCID: PMC8145640 DOI: 10.3390/insects12050389] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary The insect family, Noctuidae, contains some of the most damaging pests of agriculture, including bollworms, budworms, and armyworms. Transgenic cotton and maize expressing Cry-type insecticidal proteins from Bacillus thuringiensis (Bt) are protected from such pests and greatly reduce the need for chemical insecticides. However, evolution of Bt resistance in the insects threatens the sustainability of this environmentally beneficial pest control strategy. Understanding the interaction between Bt toxins and their targets in the insect midgut is necessary to evaluate the risk of resistance evolution. ABC transporters, which in eukaryotes typically expel small molecules from cells, have recently been proposed as a target for the pore-forming Cry toxins. Here we review the literature surrounding this hypothesis in noctuids and other insects. Appreciation of the critical role of ABC transporters will be useful in discovering counterstrategies to resistance, which is already evolving in some field populations of noctuids and other insects. Abstract In the last ten years, ABC transporters have emerged as unexpected yet significant contributors to pest resistance to insecticidal pore-forming proteins from Bacillus thuringiensis (Bt). Evidence includes the presence of mutations in resistant insects, heterologous expression to probe interactions with the three-domain Cry toxins, and CRISPR/Cas9 knockouts. Yet the mechanisms by which ABC transporters facilitate pore formation remain obscure. The three major classes of Cry toxins used in agriculture have been found to target the three major classes of ABC transporters, which requires a mechanistic explanation. Many other families of bacterial pore-forming toxins exhibit conformational changes in their mode of action, which are not yet described for the Cry toxins. Three-dimensional structures of the relevant ABC transporters, the multimeric pore in the membrane, and other proteins that assist in the process are required to test the hypothesis that the ATP-switch mechanism provides a motive force that drives Cry toxins into the membrane. Knowledge of the mechanism of pore insertion will be required to combat the resistance that is now evolving in field populations of insects, including noctuids.
Collapse
|
19
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
20
|
Azizoglu U, Jouzani GS, Yilmaz N, Baz E, Ozkok D. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139169. [PMID: 32460068 DOI: 10.1016/j.scitotenv.2020.139169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Entomopathogenic bacteria (EPBs), insect pathogens that produce pest-specific toxins, are environmentally-friendly alternatives to chemical insecticides. However, the most important problem with EPBs application is their limited field stability. Moreover, environmental factors such as solar radiation, leaf temperature, and vapor pressure can affect the pathogenicity of these pathogens and their toxins. Scientists have conducted intensive research to overcome such problems. Genetic engineering has great potential for the development of new engineered entomopathogens with more resistance to adverse environmental factors. Genetically modified entomopathogenic bacteria (GM-EPBs) have many advantages over wild EPBs, such as higher pathogenicity, lower spraying requirements and longer-term persistence. Genetic manipulations have been mostly applied to members of the bacterial genera Bacillus, Lysinibacillus, Pseudomonas, Serratia, Photorhabdus and Xenorhabdus. Although many researchers have found that GM-EPBs can be used safely as plant protection bioproducts, limited attention has been paid to their potential ecological impacts. The main concerns about GM-EPBs and their products are their potential unintended effects on beneficial insects (predators, parasitoids, pollinators, etc.) and rhizospheric bacteria. This review address recent update on the significant role of GM-EPBs in biological control, examining them through different perspectives in an attempt to generate critical discussion and aid in the understanding of their potential ecological impacts.
Collapse
Affiliation(s)
- Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey.
| | - Gholamreza Salehi Jouzani
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Nihat Yilmaz
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Ethem Baz
- Laboratory and Veterinary Health Department, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| | - Duran Ozkok
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Turkey
| |
Collapse
|