1
|
Salvesen HA, Dearden PK. Genome editing in hymenoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104300. [PMID: 40081542 DOI: 10.1016/j.ibmb.2025.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The application of genome editing tools in Hymenoptera has transformative potential for functional genetics and understanding their unique biology. Hymenoptera comprise one of the most diverse Orders of animals, and the development of methods for efficiently creating precise genome modifications could have applications in conservation, pest management and agriculture. To date, sex determination, DNA methylation, taste and smell sensory systems as well as phenotypic markers have been selected for gene editing investigations. From these data, insights into eusociality, the nature of haplodiploidy and the complex communication systems that Hymenoptera possess have provided an understanding of their evolutionary history that has led them to become so diverse and successful. Insights from these functional genetics analyses have been supported by the ever-improving suite of CRIPSR tools and further expansion will allow more specific biological hypotheses to be tested and applications beyond the lab. Looking ahead, genome editing tools have potential for Hymenopteran applications in modifying biocontrol agents of agricultural pests and for use in managing invasive species through the development of technologies such as gene drives. This review provides accessibility to information regarding the status of Hymenopteran genome editing, intending to support the considered development of CRISPR tools in novel species as well as innovation and refinement of methods in species in which it has already been achieved.
Collapse
Affiliation(s)
- Hamish A Salvesen
- Lab for Evolution and Development, Department of Biochemistry, University of Otago, New Zealand.
| | - Peter K Dearden
- Lab for Evolution and Development, Department of Biochemistry, University of Otago, New Zealand
| |
Collapse
|
2
|
Yoshida Y, Aoki M, Nagase K, Marubashi K, Kojima H, Itakura S, Komatsu S, Sugibayashi K, Todo H. Plasmid DNA Delivery into the Skin via Electroporation with a Depot-Type Electrode. Pharmaceutics 2024; 16:1219. [PMID: 39339255 PMCID: PMC11435037 DOI: 10.3390/pharmaceutics16091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Objectives: Non-viral mediated plasmid DNA transfection by electroporation (EP) is an established method for gene transfection. In this study, the usefulness of direct EP at an intradermal (i.d.) site (DEP) with implanted electrodes to achieve a high protein expression level was investigated. In addition, DEP application with various intervals with a low application voltage was also evaluated to confirm its effect on protein expression. Methods: Green fluorescent protein (GFP)- and luciferase-encoding DNA were administrated, and GFP and luciferase were evaluated. Results: A higher protein expression level was observed after green fluorescent protein (GFP)- and luciferase-encoding DNA were delivered by i.d. injection followed by DEP application. When luciferase expression was observed with an in vivo imaging system, continuous expression was confirmed over 21 days after i.d. injection followed by DEP at 100 V. This approach provided increased gene expression levels compared with conventional EP methods via the stratum corneum layer. In addition, the effect of application voltage on luciferase expression was investigated; two-time applications (repeated DEP) at 20 V with 5 min intervals showed similar luciferase expression level to single DEP application with 100 V. Histological observations showed the skin became thicker after a single DEP at 100 V, whereas no apparent thickness changes were confirmed after repeated DEP at 20 V with 5 min intervals. Conclusions: This study revealed that direct i.d. voltage application achieved high protein expression levels even at low voltages. Skin is a promising administration site for DNA vaccines, so this approach may be effective for DNA vaccine delivery into skin tissue.
Collapse
Affiliation(s)
- Yuya Yoshida
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Manami Aoki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kalin Nagase
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Koichi Marubashi
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Hiroyuki Kojima
- Pharmaceutical Research and Technology Labs., Astellas Pharma Inc., 180 Ozumi, Yaizu 425-0072, Shizuoka, Japan
| | - Shoko Itakura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Syuuhei Komatsu
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-0295, Saitama, Japan
| |
Collapse
|
3
|
Wang Y, He X, Qiao L, Yu Z, Chen B, He Z. CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis. PEST MANAGEMENT SCIENCE 2022; 78:3294-3304. [PMID: 35484862 DOI: 10.1002/ps.6954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of interrupting malaria transmission. However, the development of functional genomics and genetics-based vector control strategies against An. sinensis remain limited because of insufficient site-specific genome editing tools. RESULTS We report the first successful application of the CRISPR/Cas9 mediated knock-in for highly efficient, site-specific mutagenesis in An. sinensis. The EGFP marker gene driven by the 3 × P3 promoter was precisely integrated into the odorant receptor co-receptor (Orco) by direct injections of Cas9 protein, double-stranded DNA donor, and Orco-gRNA. We achieved a mutation rate of 3.77%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed by polymerase chain reaction (PCR) amplification and sequencing. The Orco mutation severely impaired mosquito sensitivity to some odors and their ability to locate and discriminate a human host. CONCLUSION Orco was confirmed as a key mediator of multiple olfactory-driven behaviors in the An. sinensis life cycle, highlighting the importance of Orco as a key molecular target for malaria control. The results also demonstrated that CRISPR/Cas9 was a simple and highly efficient genome editing technique for An. sinensis and could be used to develop genetic control tools for this vector. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- You Wang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Xingfei He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhengrong Yu
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Zhengbo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
4
|
Liu L, Ma X, Bilal M, Wei L, Tang S, Luo H, Zhao Y, Wang Z, Duan X. Toxicity and inhibition mechanism of gallic acid on physiology and fermentation performance of Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:76. [PMID: 38647760 PMCID: PMC10992115 DOI: 10.1186/s40643-022-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Gallic acid is a natural phenolic acid that has a stress inhibition effect on Escherichia coli. This study by integrates fermentation characteristics and transcriptional analyses to elucidate the physiological mechanism of E. coli 3110 response to gallic acid. Compared with the control (without stress), the cell growth was severely retarded, and irregular cell morphology appeared in the case of high levels of gallic acid stress. The glucose consumption of E. coli was reduced successively with the increase of gallic acid content in the fermentation medium. After 20 h of gallic acid stress, cofactor levels (ATP, NAD+ and NADH) of E. coli 3110 were similarly decreased, indicating a more potent inhibitory effect of gallic acid on E. coli. The transcriptional analysis revealed that gallic acid altered the gene expression profiles related to five notable differentially regulated pathways. The genes related to the two-component system were up-regulated, while the genes associated with ABC-transporter, energy metabolism, carbon metabolism, and fatty acid biosynthesis were down-regulated. This is the first report to comprehensively assess the toxicity of gallic acid on E. coli. This study has implications for the efficient production of phenolic compounds by E. coli and provides new ideas for the study of microbial tolerance to environmental stress and the identification of associated tolerance targets.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xiaolong Ma
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Linlin Wei
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shijie Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|