1
|
Chen J, Liu X, Han S, Zhang M, Liu Z, Li Y, Zhang L. Comparative transcriptome analysis provides a glance into the regulation of the Krüppel homolog 1 on the reproduction and diapause of the predatory ladybeetle, Coccinella septempunctata. BMC Genomics 2025; 26:414. [PMID: 40301753 PMCID: PMC12039007 DOI: 10.1186/s12864-025-11459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 05/01/2025] Open
Abstract
As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-reared and widely employed in in pest management. The lady beetles can enter a long-term reproductive diapause phase in response to short photoperiods and low temperatures, for maintaining population during the overwintering process. Insect diapause is a physiological adaptative strategy that is characterized by a cessation of ovarian development, lipid accumulation and extended lifespan. Diapause regulating improve the long-term storage of C. septempunctata and release of natural enemies at the right time. In our previous research, as a main output of the juvenile hormone pathway, Krüppel homolog 1 (Kr-h1) was a key component of reproduction and diapause in C. septempunctata. However, the molecular mechanisms underlying the regulation of C. septempunctata reproduction and diapause by Kr-h1 transcription factor remains unknown. In this study, we utilized RNA-Sequencing to investigate the transcriptomic changes in C. septempunctata following RNA interference targeting the Kr-h1 gene. DEGs analysis revealed significant transcriptional alterations between the Kr-h1 knockdown group and the control group. Noteworthy findings include the downregulation of three genes related to reproduction (follicle cell protein,vitelline membrane protein, and vitellogenin) in the dsKr-h1 group, while genes involved in lipid metabolism, such as lipase and fatty acid synthase, were upregulated. These results suggested that Kr-h1 plays a critical role in the regulation of both reproductive processes and lipid metabolism in C. septempunctata. Our findings provided valuable insights into the molecular mechanisms regulating reproduction and diapause in C. septempunctata and contributed to the expanding understanding of the role of CsKr-h1 in insect physiology.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Xiaoxiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Shunda Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Maosen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Zhaohan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China.
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing, 100193, P. R. China.
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
2
|
Tian Z, Wang K, Guo S, Li JX, King-Jones K, Zhu F, Liu W, Wang XP. The PBAP chromatin remodeling complex mediates summer diapause via H3K4me3-driven juvenile hormone regulation in Colaphellus bowringi. Proc Natl Acad Sci U S A 2025; 122:e2422328122. [PMID: 40112108 PMCID: PMC11962415 DOI: 10.1073/pnas.2422328122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
Diapause, a developmental arrest mechanism, helps animals to survive seasonal changes via endocrine regulation. While obligate diapause is genetically programmed, facultative diapause is typically triggered by environmental cues such as photoperiod. In insects, this often leads to reproductive diapause characterized by reduced juvenile hormone (JH) signaling, resulting in ovarian arrest and lipid accumulation. However, the molecular link between photoperiod and hormonal control remains poorly understood. In this study, we investigated the cabbage beetle Colaphellus bowringi as our model system. This species exhibits a photoperiodic response, where short-day (SD) conditions promote reproduction, whereas long-day (LD) conditions induce diapause. Our research identified the PBAP chromatin remodeling complex as a key regulator of LD-induced summer diapause entry. Through RNAi screening of 56 transcriptional regulators that were differentially expressed between SD and LD females, we identified BAP170, a PBAP-specific component, as a key mediator of diapause. Knockdown of bap170 in SD females induced reproductive diapause traits, which were reversed by treatment with methoprene, a JH analog, suggesting that the PBAP complex regulates diapause by influencing JH production. We further demonstrated that the PBAP complex modulates JH biosynthesis via SET1/COMPASS-mediated trimethylation of H3K4. Transcriptome analysis and a second RNAi screen identified calmodulin, a calcium-binding messenger protein gene, as a direct target of PBAP-SET1/COMPASS-H3K4me3 signaling in the corpora allata (CA), the primary source of JH. These findings reveal how the chromatin remodeling machinery translates photoperiod signals into endocrine responses governing seasonal adaptation.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
- Department of Traditional Chinese Medicine, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Jia-Xu Li
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
3
|
Huang H, Li D, Xu M, Zhong S, Liu S, Gao X, Xu Y, Chen Z. Krüppel homolog 1 mediates juvenile hormone action to suppress photoperiodic reproductive diapause-related phenotypes in the female Chrysoperla nipponensis (Neuroptera: Chrysopidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:7. [PMID: 40116215 PMCID: PMC11926538 DOI: 10.1093/jisesa/ieaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Juvenile hormone (JH) has been revealed to be a critical factor in regulating photoperiod reproductive diapause in various insect species, however, little information is known about the detailed mechanisms. In this study, we investigated the roles of JH signaling in photoperiod reproductive diapause in a green lacewing, Chrysoperla nipponensis (Okamoto), which is a potentially important biological control predator. Our results showed that the short-day condition induces a diapause state including JH synthesis suppression, ovarian development arrest, and triglyceride accumulation. The interference of JH response genes, Krüppel homolog 1 (Kr-h1), in reproductive females exhibited a diapause-related phenotype such as ovarian development arrest and larger triglyceride storage. Exogenous JH III suppresses diapause to promote ovarian development and inhibit triglyceride synthesis. However, exogenous JH III fails to rescue the Kr-h1-silenced phenotype. Accordingly, our results demonstrate the critical role of Kr-h1 in regulating JH signaling to promote reproduction.
Collapse
Affiliation(s)
- Haiyi Huang
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Dandan Li
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Minghui Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaofeng Zhong
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Shaoye Liu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Xingke Gao
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Yongyu Xu
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| | - Zhenzhen Chen
- College of Plant Protection, State Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
4
|
Niu Y, Zhang S, Shi F, Zhao Y, Li M, Zong S, Tao J. Transcriptome analysis identifies key genes in juvenile hormone and ecdysteroid signaling pathways and their roles in regulating reproductive system development of adult Monochamus saltuarius. Int J Biol Macromol 2025; 295:139634. [PMID: 39788234 DOI: 10.1016/j.ijbiomac.2025.139634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Monochamus saltuarius is an important vector of pinewood nematode in Eurasia with a high reproductive capacity. Endocrine hormones play a key role in insect reproduction. Understanding the mechanism of internal regulation can provide targets for pest control. However, this type of research on M. saltuarius remain limited. Our study constructed transcriptome of the internal reproductive systems in male and female M. saltuarius across three development stages. Interference experiments targeting the MSALMet1 and exploring its critical role in reproduction. Transcriptome results revealed that 42 genes related to the juvenile hormone and ecdysteroid pathways were identified. Among them, 12 genes were significantly enriched in reproduction-related pathways, and the expression patterns of 14 genes aligned with the developmental trend of the internal reproductive system, suggesting that they may play a regulatory role in reproductive processes. Furthermore, protein-protein interaction networks elucidated the complex interactions among these genes, shedding light on their diverse functions. Notably, bioinformatics analysis and interference experiments revealed that MSALMet1 having the profound effect on reproductive system development in both sexes. These findings highlight the critical role of endocrine-related genes in regulating reproductive development and provide a theoretical foundation for regulating reproduction at molecular level, potentially contributing to M. saltuarius population control.
Collapse
Affiliation(s)
- Yiming Niu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Sainan Zhang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Fengming Shi
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Meng Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Hafeez A, Wang K, Liu W, Wang XP. Juvenile hormone regulates reproductive diapause through both canonical and noncanonical pathways in the bean bug Riptortus pedestris. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104233. [PMID: 39622304 DOI: 10.1016/j.ibmb.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Diapause is an adaptive developmental arrest commonly utilized by animals to cope with seasonal changes. Central to this process are hormonal events that bridge photoperiodic cues and physiological changes. In insect reproductive diapause, the absence of juvenile hormone (JH) serves as the primary endocrine event that governs key diapause traits, including ovarian developmental arrest and lipid accumulation. Conventionally, it is believed that the effects of JH are conveyed through the receptor Methoprene-tolerant (Met) and its transcriptional factor Krüppel homolog 1 (Kr-h1). However, our study with the bean bug Riptortus pedestris reveals that JH independently regulates lipid accumulation, bypassing Met and Kr-h1 pathways. R. pedestris enters reproduction under long-day (LD) conditions, while diapause occurs under short-day (SD) conditions. Treatment of SD females with the JH mimic methoprene stimulated reproductive activities, enhancing ovary development and reducing lipid accumulation. In contrast, silencing genes essential for JH biosynthesis in LD females led to pronounced diapause characteristics, including ovarian developmental arrest and substantial lipid accumulation. Interestingly, disruptions in the JH action genes, either Met or Kr-h1, solely affected ovary development, leaving lipid accumulation unchanged, indicating an independent pathway for regulating JH in lipid accumulation. This was further confirmed by RNA interference experiments in SD females, where knockdown of Met or Kr-h1 did not alter the effects of methoprene on lipid reduction. Collectively, these results suggest that JH controls ovary development through the established Met-Kr-h1 pathway, while it modulates lipid accumulation through an alternative, yet to be identified noncanonical pathway during reproductive diapause in R. pedestris.
Collapse
Affiliation(s)
- Abdul Hafeez
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kou Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biological Sciences, University of Alberta, Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Wang K, Zhao YL, Jiang YZ, Liu W, Wang XP. Seven up regulates reproductive diapause initiation via juvenile hormone biosynthesis in the cabbage beetle Colaphellus bowringi. INSECT SCIENCE 2025. [PMID: 39822051 DOI: 10.1111/1744-7917.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Reproductive diapause is an insect survival strategy in which reproduction temporarily halts in response to adverse environmental changes. This process is characterized by arrested ovarian development and lipid accumulation in females. A reduction in juvenile hormone (JH) biosynthesis is known to initiate reproductive diapause, but its regulatory mechanism remains unclear. Seven up (Svp), a transcription factor from the nuclear receptor family, plays a crucial role in various developmental processes in insects. In this study, using the cabbage beetle Colaphellus bowringi as a model, we observed higher expression of Svp in the heads of female adults under reproductive photoperiodic conditions (short-day [SD]) compared to diapause conditions (long-day [LD]). RNA interference-mediated knockdown of Svp in SD females induced typical diapause phenotypes, including ovarian arrest and lipid accumulation. The application of methoprene (ME), a JH receptor agonist, reversed these diapause phenotypes and restored reproduction, indicating that Svp's regulation of reproductive diapause is dependent on JH signaling. Additionally, Svp knockdown led to the downregulation of JH pathway genes and a reduction in JH titers. Further evidence suggested that Svp regulates the expression of JHAMT1, a critical gene in JH biosynthesis, which determines diapause entry in C. bowringi. These findings suggest that diapause-inducing photoperiods suppress Svp expression, blocking JH production and triggering diapause. This work reveals a critical transcription factor that regulates reproductive diapause initiation through modulating JH production, providing a potential target for controlling pests capable of entering reproductive diapause.
Collapse
Affiliation(s)
- Kou Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Lian Zhao
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan-Zi Jiang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Huo C, Liu S, Chang BH, Cheng Z, Zhang Y, Liu W, Zhang J, Zhao X. Zinc finger protein rotund is essential for wings and ovarian development by regulating lipid homeostasis in Locusta migratoria. Int J Biol Macromol 2025; 286:138448. [PMID: 39645108 DOI: 10.1016/j.ijbiomac.2024.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cys2-His2-type zinc finger (C2H2-ZF) proteins are involved in diverse biological processes. In insects, the wing and ovarian development is crucial for reproduction and evolution, yet the physiological roles of C2H2-ZF proteins in these processes remain underexplored. Here, RNA-seq analyses identified C2H2-ZF protein genes that were differentially expressed during wing formation in Locusta migratoria. Among these, the gene encoding a C2H2-ZF protein Rotund (Rn) was highly expressed in the wing pads of fourth- and fifth-instar nymphs. RNA interference mediated knockdown of LmRn in nymph stages resulted in pronounced abnormalities with curled wings and reduced wing area. LmRn knockdown led to reduced expression of lipid transport-related genes during wing morphogenesis, significantly decreased triglyceride (TG) level. In addition, we also find that LmRn knockdown impaired ovarian development and oocyte maturation in female adults, with decreased expression levels of lipid synthesis-related genes, and vitellogenin genes (VgA, and VgB) in the fat body. Meanwhile, the number of lipid droplets, TG content, and protein levels in the ovaries were significantly decreased after LmRn was silenced. Together, our findings reveal that LmRn is essential for wing and ovarian development by regulating lipid homeostasis in locusts, offering a potential target for insect pest management.
Collapse
Affiliation(s)
- Caiyan Huo
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Shanxi, China
| | - Sikai Liu
- College of Life Science, Shanxi University, Shanxi, China
| | - Babar Hussain Chang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; Department of Plant Protection, Sub-Campus Umerkot, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Zhuowang Cheng
- College of Life Science, Shanxi University, Shanxi, China
| | - Yanan Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China; College of Life Science, Shanxi University, Shanxi, China
| | - Weimin Liu
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China
| | - Xiaoming Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Institute of Applied Biology, Shanxi University, Shanxi, China.
| |
Collapse
|
8
|
Guo S, An HM, Tian Z, Liu W, Wang XP. Downregulation of the DNA replication pathway genes stimulate reproductive diapause preparation in the cabbage beetle, Colaphellus bowringi. Int J Biol Macromol 2025; 286:138464. [PMID: 39645116 DOI: 10.1016/j.ijbiomac.2024.138464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Diapause is a prevalent strategy employed by insects to survive adverse environmental conditions, by halting development and reducing metabolic activity. Although the suppression of DNA replication aligns logically with these reduced developmental and physiological activities, the role of DNA replication in regulating insect diapause remains largely unknown. In this study, we used the cabbage beetle, Colaphellus bowringi, to investigate the role of DNA replication pathway in regulating reproductive diapause. Transcriptome analysis identified DNA replication as a key pathway during diapause preparation in female adults. Fourteen DNA replication genes were isolated, encompassing essential stages of DNA replication, including DNA unwinding, primer synthesis, and DNA synthesis. These genes exhibited consistently reduced expression in diapause females compared to those in reproductive females. RNA interference knockdown of these genes in reproductive female adults resulted in 11 out of 14 gene depletions, manifesting typical diapause traits such as suppressed vitellogenesis, arrested ovary growth, and increased lipid accumulation. Furthermore, we demonstrated 20-hydroxyecdysone (20E), through canonical signaling pathway, regulates the differential expression of DNA replication genes between reproductive and diapause states. Our findings suggest 20E deficiency suppresses DNA replication to induce reproductive diapause, and highlighting the DNA replication process as a potential target for pest management.
Collapse
Affiliation(s)
- Shuang Guo
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wen Liu
- Department of Biological Sciences, University of Alberta, G-504, Biological Sciences Bldg., Edmonton, Alberta T6G 2E9, Canada
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Shen Z, Luo Q, Mao J, Li Y, Wang M, Zhang L. Molecular identification of two thioredoxin genes and their function in antioxidant defense in Arma chinensis diapause. Front Physiol 2024; 15:1440531. [PMID: 39113938 PMCID: PMC11303210 DOI: 10.3389/fphys.2024.1440531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Thioredoxin (Trx), an important part of thioredoxin systems, plays crucial role in maintaining the intracellular redox balance by scavenging reactive oxygen species (ROS). However, few Trxs have been functionally characterized in Arma chinensis, especially in diapause. In this study, diapause induction condition promoted hydrogen peroxide accumulation and increased CAT enzymatic activity and ascorbate content, suggesting that A. chinensis was exposed to high level of ROS. Therefore, we identified AcTrx2 and AcTrx-like, and investigated the relationship with antioxidant defense. It was found that AcTrx2 expression was significantly induced, whereas AcTrx-like expression was the highest on day 10 under diapause conditions. The expression of AcTrx2 and AcTrx-like in fat body, a central metabolic organ of resisting oxidative stress, was significantly increased under diapause conditions, and was significantly improved by 5/15°C (diapause temperature). We investigated the knockdown of AcTrx2 and AcTrx-like in A. chinensis and found that some selected antioxidant genes were upregulated, indicating that the upregulated genes may be functional compensation for AcTrx2 and AcTrx-like silencing. We also found that the enzymatic activities of SOD and CAT, and the metabolite contents of hydrogen peroxide, ascorbate increased after AcTrx2 and AcTrx-like knockdown. These results suggested the AcTrx2 and AcTrx-like may play critical roles in antioxidant defense of A. chinensis diapause.
Collapse
Affiliation(s)
- Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaozhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Horticulture and Gardening, Tianjin Agricultural University, Tianjin, China
| | - Jianjun Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Chen JJ, Liu XX, Guo PH, Teets NM, Zhou JC, Chen WB, Luo QZ, Kanjana N, Li YY, Zhang LS. Regulation of forkhead box O transcription factor by insulin signaling pathway controls the reproductive diapause of the lady beetle, Coccinella septempunctata. Int J Biol Macromol 2024; 258:128104. [PMID: 37977460 DOI: 10.1016/j.ijbiomac.2023.128104] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. As a natural predator of agricultural pests, the lady beetle Coccinella septempunctata has been commercially mass-cultured and widely employed in pest management. In some insects, insulin signaling, in conjunction with the downstream transcription factor Forkhead box O (FoxO), are master regulators of multiple physiological processes involved in diapause, but it is unclear whether insulin signaling and FoxO affect the diapause of C. septempunctata. In this study, we use a combination of approaches to demonstrate that insulin signaling and FoxO mediate the diapause response in C. septempunctata. In diapausing beetles, application of exogenous insulin and knocking down expression of CsFoxo with RNA interference (RNAi) both rescued beetles from developmental arrest. In non-diapausing beetles, knocking down expression of the insulin receptor (CsInR) with RNA interference (RNAi) arrested ovarian development and decreased juvenile hormone (JH) content to levels comparable to the diapause state. Taken together, these results suggest that a shutdown of insulin signaling prompts the activation of the downstream FoxO gene, leading to the diapause phenotype.
Collapse
Affiliation(s)
- Jun-Jie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Xiao-Xiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Peng-Hui Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Jin-Cheng Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China; Plant Protection College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wan-Bin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Qiao-Zhi Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China
| | - Yu-Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China.
| | - Li-Sheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Enemy Insects, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuan Ming Yuan Road, Beijing 100193, PR China.
| |
Collapse
|
11
|
An HM, Dai YF, Zhu J, Liu W, Wang XP. MYST family histone acetyltransferases regulate reproductive diapause initiation. Int J Biol Macromol 2024; 256:128269. [PMID: 38029912 DOI: 10.1016/j.ijbiomac.2023.128269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Histone acetylation, a crucial epigenetic mechanism, has been suggested to play a role in diapause regulation, but this has not been confirmed through gene loss-of-function studies. In this work, we investigated the involvement of MYST family genes, which are key writers of histone acetylation, in initiating reproductive diapause using the cabbage beetle Colaphellus bowringi as a model. We identified C. bowringi orthologs of MYST, including Tip60, KAT6A, KAT7, and KAT8, from previous transcriptomes. Analyses of phylogenetic trees and protein domains indicated that these MYST proteins are structurally conserved across animal species. Expression of these MYST genes was found to be enriched in heads and ovaries of C. bowringi. Under reproductive photoperiod conditions, RNAi targeting MYST genes, especially KAT8, suppressed ovarian growth and yolk deposition, resembling the characteristics of diapausing ovaries. Additionally, KAT8 knockdown led to the upregulation of diapause-related genes, such as heat shock proteins and diapause protein 1, and the emergence of diapause-like guts. Moreover, KAT8 knockdown reduced the expression of a crucial enzyme involved in juvenile hormone (JH) biosynthesis, likely due to decreased H4K16ac levels. Consequently, our findings suggest that MYST family genes, specifically KAT8, influence the JH signal, thereby regulating the initiation of reproductive diapause.
Collapse
Affiliation(s)
- Hao-Min An
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Fei Dai
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Dhungana P, Wei X, Meuti M, Sim C. Identification of CYCLE targets that contribute diverse features of circadian rhythms in the mosquito Culex pipiens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101140. [PMID: 37690215 PMCID: PMC10841209 DOI: 10.1016/j.cbd.2023.101140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Culex pipiens demonstrates robust circadian rhythms in adult eclosion, flight activity, mating, and development. These rhythmic patterns are believed to be controlled by the endogenous light-entrainable circadian clock that consists of positive and negative regulators working in a transcription-translation feedback loop. Moreover, these mosquitoes undergo seasonal diapause in exposure to the short photoperiod of late summer or early fall. However, the exact genetic and cellular mechanism behind the clock gene-mediated activity pattern, seasonal time measurement, and subsequent diapause initiation still need to be unraveled. To determine the possible linkage between clock genes and downstream processes, here we employed ChIP-sequencing to identify the direct targets of one of the core clock proteins, Cycle (CYC). The nearest genes with peaks mapping to their 1Kb upstream region of the transcription start site were extracted and scanned for consensus E box sequences, resulting in a dataset comprising the target genes possibly regulated by CYC. Based on the highest fold enrichment and functional relevance, we identified genes relating to five gene categories of potential interest, including peptide/receptors, neurotransmission, olfaction, immunity, and reproductive growth. Of these, we validated fourteen genes with ChIP-qPCR and qRT-PCR. These genes showed a significantly high expression in dusk compared to dawn in concert with the activity level of the CYC transcription factor and are thus strong candidates for mediating circadian rhythmicity and possibly regulating seasonal shifts in mosquito reproductive activity.
Collapse
Affiliation(s)
- Prabin Dhungana
- Department of Biology, Baylor University, Waco, TX 76798, USA. https://twitter.com/@Prabin_988
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Megan Meuti
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA. https://twitter.com/@MeganMeuti
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
13
|
Sun R, Jiang L, Chen W, Xu Y, Yi X, Zhong G. Azadirachtin exposure inhibit ovary development of Spodoptera litura (Lepidoptera: Noctuidae) by altering lipids metabolism event and inhibiting insulin signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115151. [PMID: 37356396 DOI: 10.1016/j.ecoenv.2023.115151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Lipids are main energy source for insects reproduction, which are becoming emerging target for pest management. Azadirachtin (AZA) is a multi-targeted and promising botanical insecticide, but its reproduction toxicity mechanism related to lipids metabolism is poorly understood. Here, we applied lipidomic and transcriptomic to provide a comprehensive resource for describing the effect of AZA on lipids remodeling in ovary of Spodoptera litura. The results showed that AZA exposure obviously altered the contents of 130 lipids subclasses (76 upregulated and 54 downregulated). In detail, AZA exposure changed the length and saturation degrees of fatty acyl chain of most glycerolipid, phospholipid and sphingolipid as well as the expression of genes related to biosynthesis of unsaturated fatty acids and fatty acids elongation. Besides, following the abnormal lipids metabolism, western blot analysis suggested that AZA induce insulin resistance-like phenotypes by inhibiting insulin receptor substrates (IRS) /PI3K/AKT pathway, which might be responsible for the ovary abnormalities of S. litura. Collectively, our study provided insights into the lipids metabolism event in S. litura underlying AZA exposure, these key metabolites and genes identified in this study would also provide important reference for pest control in future.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liwei Jiang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlong Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Chen ZZ, Wang X, Kong X, Zhao YM, Xu MH, Gao YQ, Huang HY, Liu FH, Wang S, Xu YY, Kang ZW. Quantitative transcriptomic and proteomic analyses reveal the potential maintenance mechanism of female adult reproductive diapause in Chrysoperla nipponensis. PEST MANAGEMENT SCIENCE 2023; 79:1897-1911. [PMID: 36683402 DOI: 10.1002/ps.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yue-Ming Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hai-Yi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fang-Hua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhi-Wei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
15
|
Lee J, Lee DW. Burkholderia gut symbiont induces insect host fecundity by modulating Kr-h1 gene expression. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21987. [PMID: 36448663 DOI: 10.1002/arch.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Full-length cDNAs of the Broad-Complex (BR-C) from Riptortus pedestris were cloned. Moreover, Kr-h1 and BR-C expression levels in apo-symbiotic and symbiotic host insects were compared to verify whether they are modulated by Burkholderia gut symbionts. Interestingly, Kr-h1 expression level was significantly increased in symbiotic females. To determine how Kr-h1 affects fecundity in insects, the biosynthesis of two reproduction-associated proteins, hexamerin-α and vitellogenin, was investigated in R. pedestris females. Hexamerin-α and vitellogenin expression at the transcriptional and translational levels decreased in Kr-h1-suppressed symbiotic females, subsequently reduced egg production. These results suggest that Burkholderia gut symbiont modulates Kr-h1 expression to enhance ovarian development and egg production of R. pedestris by increasing the biosynthesis of the two proteins.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
- Department of SmartBio, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
16
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
17
|
MAPK Signaling Pathway Is Essential for Female Reproductive Regulation in the Cabbage Beetle, Colaphellus bowringi. Cells 2022; 11:cells11101602. [PMID: 35626638 PMCID: PMC9140119 DOI: 10.3390/cells11101602] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a well-conserved intracellular signal transduction pathway, and has important roles in mammalian reproduction. However, it is unknown whether MAPK also regulates insect reproductive mechanisms. Therefore, we investigated the role of the MAPK signaling pathway in ovarian growth and oviposition in the cabbage beetle Colaphellus bowringi, an economically important pest of Cruciferous vegetables. As an initial step, 14 genes from the extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK (P38) cascades were knocked down using RNA interference (RNAi). The results revealed that RNAi knockdown of MAPK-ERK kinase (MEK), ERK, Kinase suppressor of RAS 2 (KSR2), and P38 induced ovarian development stagnation, low fecundity, and decreased longevity, which indicate that ERK and P38 signaling pathways are important for female C. bowringi survival and reproduction. The potential regulatory role of ERK and P38 pathways in the female reproductive process was investigated using quantitative real-time PCR. We found that ERK pathway possibly regulated ecdysone biosynthesis and P38 pathway possibly involved in the germline stem cell (GSC) development and differentiation. Our findings demonstrated the importance of the MAPK signaling pathway in the female reproduction of insects, and further enhanced the molecular mechanism of female reproductive regulation in insects.
Collapse
|
18
|
Gao Q, Li B, Tian Z, De Loof A, Wang JL, Wang XP, Liu W. Key role of juvenile hormone in controlling reproductive diapause in females of the Asian lady beetle Harmonia axyridis. PEST MANAGEMENT SCIENCE 2022; 78:193-204. [PMID: 34469049 DOI: 10.1002/ps.6619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The Asian lady beetle Harmonia axyridis is an important predator of several agricultural pests, including aphids and whiteflies, and thus can contribute to pest management. Commercial viability as a pest control method requires that the beetle can be mass-reared, and that workable conditions for extended shelf-life can be guaranteed. One of the features of Harmonia's life cycle is that it enters diapause in the adult stage when the length of the photophase starts shortening in late summer. Reduction of juvenile hormone (JH) titer has been demonstrated to be the common endocrine mechanism inducing reproductive diapause in insects. However, whether H. axyridis enters diapause dependent on JH shutdown and how the JH level is regulated before diapause remains unknown. RESULTS Like in other insects, the absence of JH triggers the induction and maintenance of reproductive diapause in H. axyridis, indicated by JH measurements and the knockdown of an intracellular JH receptor methoprene-tolerant (Met). Methoprene, a JH analog, significantly reversed diapause into reproduction via Met. Combined with RNA-sequencing and RNA interference, we also demonstrated that JH biosynthesis rather than the JH degradation pathway determines the reduction of JH titer in diapausing females. CONCLUSION Our results reveal the vital role of JH in regulating reproductive diapause in female H. axyridis. Harmonia axyridis diapause could thus be manipulated by targeting JH production and JH signaling. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao Gao
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bei Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhong Tian
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Jia-Lu Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Tian Z, Guo S, Li JX, Zhu F, Liu W, Wang XP. Juvenile hormone biosynthetic genes are critical for regulating reproductive diapause in the cabbage beetle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103654. [PMID: 34571141 DOI: 10.1016/j.ibmb.2021.103654] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In insects, the juvenile hormone (JH) biosynthetic pathway regulates the in vivo JH titer. Thus, its downregulation potentially contributes to the lowering of JH titers typically observed in insects undergoing reproductive diapause, a developmental arrest at the adult stage. However, no systematic evidence has yet been presented to demonstrate the physiological and genetic roles of JH biosynthetic genes in reproductive diapause. In this work, we performed RNA interference (RNAi)-based reverse genetic analyses by targeting JH biosynthetic genes, followed by analysis of the reproductive diapause traits in Colaphellus bowringi, an economically important cabbage beetle. We identified a total of 22 genes encoding homologues of enzymes involved in the mevalonate pathway and the JH branch of JH biosynthesis in C. bowringi. Among these, 18 genes showed significant downregulation of their expression in the long day-induced diapausing females, compared to the short day-induced reproductive females. RNAi knockdown of almost any one of the 18 genes in reproductive females reduced the expression of the JH-responsive gene, Krüppel homolog1 (Kr-h1), indicating a lowered circulating JH. Most importantly, depleting transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase 2 (HMGR2), farnesyl-pyrophosphate synthase 1 (FPPS1) and juvenile hormone acid methyltransferase 1 (JHAMT1) induced diapause-associated traits, including immature and inactive ovaries, large accumulations of lipids and adult burrowing behavior. Meanwhile, genes related to ovarian development, lipid accumulation and stress response showed expression patterns like those of diapausing females. RNAi-mediated diapause phenotypes could be reversed to reproductive phenotypes by application of methoprene, a JH receptor agonist. These results suggest that photoperiodic reproductive diapause in C. bowringi is triggered by transcriptional suppression of JH biosynthetic genes, with HMGR2, FPPS1 and JHAMT1 playing a critical role in this process. This work provides sufficient evidence to reveal the physiological roles of JH biosynthetic genes in reproductive diapause.
Collapse
Affiliation(s)
- Zhong Tian
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Guo
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Xu Li
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fen Zhu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Ping Wang
- Hubei Key Laboratory of Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Pandey A, Bloch G. Krüppel-homologue 1 Mediates Hormonally Regulated Dominance Rank in a Social Bee. BIOLOGY 2021; 10:biology10111188. [PMID: 34827180 PMCID: PMC8614866 DOI: 10.3390/biology10111188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Dominance hierarchies are ubiquitous in invertebrates and vertebrates, but little is known on how genes influence dominance rank. Our gaps in knowledge are specifically significant concerning female hierarchies, particularly in insects. To start filling these gaps, we studied the social bumble bee Bombus terrestris, in which social hierarchies among females are common and functionally significant. Dominance rank in this bee is influenced by multiple factors, including juvenile hormone (JH) that is a major gonadotropin in this species. We tested the hypothesis that the JH responsive transcription factor Krüppel homologue 1 (Kr-h1) mediates hormonal influences on dominance behavior. We first developed and validated a perfluorocarbon nanoparticles-based RNA interference protocol for knocking down Kr-h1 expression. We then used this procedure to show that Kr-h1 mediates the influence of JH, not only on oogenesis and wax production, but also on aggression and dominance rank. To the best of our knowledge, this is the first study causally linking a gene to dominance rank in social insects, and one of only a few such studies on insects or on female hierarchies. These findings are important for determining whether there are general molecular principles governing dominance rank across gender and taxa.
Collapse
Affiliation(s)
- Atul Pandey
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (A.P.); (G.B.)
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Correspondence: (A.P.); (G.B.)
| |
Collapse
|