1
|
Chen J, Wei F, Li Q, Wang J, Shao H, Hu J. Functional Characterization and Small Molecule Drug Screening of Sex Pheromone Receptors in Ectropis obliqua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9261-9270. [PMID: 40178067 DOI: 10.1021/acs.jafc.4c11828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Ectropis obliqua (Lepidoptera: Geometridae) is a major pest of tea plants in China. Sex pheromone traps are effective for monitoring and controlling its population. However, the specific mechanisms of sex pheromone recognition in this pest remain unclear. Fifty-seven candidate odorant receptors were identified using antennal transcriptome analysis, including two potential pheromone receptors (EoblOR17 and EoblOR45). Expression profiles indicated that EoblOR17 and EoblOR45 were highly expressed in the males. Among them, EoblOR17 was identified in response to the primary pheromone components of E. obliqua, Z3,epo6,Z9-18:H and Z3,Z6,Z9-18:H. The in vivo function of EoblOR17 was confirmed using RNA interference (RNAi) analysis. A small molecule (T7392) targeting EoblOR17 significantly reduced the mating rate of E. obliqua. Our findings provide a better understanding of the mechanisms of sex pheromone recognition in E. obliqua and provide a class of potential compounds to control this pest.
Collapse
Affiliation(s)
- Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Fengyuan Wei
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jinghan Wang
- College of Life Sciences, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, Zhejiang, China
| |
Collapse
|
2
|
Adams B, Mbarak Khamis F, Ahmed Yusuf A, Torto B. Zoophytophagous predator sex pheromone and visual cues of opposing reflectance spectra lure predator and invasive prey. J Adv Res 2025; 70:15-27. [PMID: 38710469 PMCID: PMC11976425 DOI: 10.1016/j.jare.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION In sub-Saharan Africa, the invasive South American leafminer Phthorimaea absoluta is the most damaging tomato pest. Females of the pest can reproduce both sexually and through parthenogenesis and lay their eggs on all tomato plant parts. The mirid predator Nesidiocoris tenuis, a biological control agent for the pest, is also a tomato pest when prey population is low. To date, however, no study has developed an eco-friendly solution that targets both the predator and its host in a tomato farming system. OBJECTIVE To develop a bio-based management system for both pest and predator based on the combined use of sexual communication in the predator and visual cues. METHODS We collected volatiles from both sexes of the Kenyan population of the predator N. tenuis and identified candidate sex pheromone components by coupled gas chromatography-mass spectrometry (GC-MS). We used electrophysiological assays to identify antennally-active odorants in the volatiles, followed by field trials with different pheromone-baited colored traps to validate the responses of both predator and prey. Thereafter, we compared the reflectance spectra of the colored traps with those of different tomato plant tissues. RESULTS Our results reveal an interplay between different sensory cues which in the predator-prey interaction may favor the predator. Antennae of both sexes of predator and prey detect the predator sex pheromone identified as 1-octanol and hexyl hexanoate. Unexpectedly, our field experiments led to the discovery of a lure for P. absoluta females, which were lured distinctly into a pheromone-baited trap whose reflectance spectrum mimicked that of ripe tomato fruit (long wavelength), an egg-laying site for females. Contrastingly, N. tenuis males were lured into baited white trap (short wavelength) when the predator is actively searching for prey. CONCLUSION Our results demonstrate the novel use of a predator sex pheromone and different visual cues to assess complex trophic interactions on tomatoes.
Collapse
Affiliation(s)
- Bashiru Adams
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Fathiya Mbarak Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya.
| | - Abdullahi Ahmed Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772 00100, Nairobi, Kenya; Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| |
Collapse
|
3
|
Zhang S, Yan S, Mei X, Wang G, Liu Y. Identification of a new lineage of pheromone receptors in mirid bugs (Heteroptera: Miridae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106277. [PMID: 40015869 DOI: 10.1016/j.pestbp.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 03/01/2025]
Abstract
Sex pheromones, typically released by females are crucial signals for the reductive biology of insects, primarily detected by sex pheromone receptors (PRs). A clade of PRs in three mirid bugs, Apolygus lucorum, Adelphocoris lineolatus, and Adelphocoris suturalis, has been found to respond to pheromones, (E)-2-hexenyl butyrate (E2HB) and hexyl butyrate (HB), with higher sensitivity to E2HB. In this study, we aimed to identify PRs responsible for the other two pheromone components, HB and (E)-4-oxo-2-hexenal (4-OHE), by using a combination of phylogenetic analyses, sequence similarity analyses, and in vitro functional studies. As a result, five new candidate PRs (AlucOR34, AlinOR9, AlinOR10, AsutOR9, and AsutOR10) positioned outside of the previously known PR clade were identified. All five PRs were found to respond to both E2HB and HB, with some PRs exhibiting a significant and sensitive binding to HB. However, PRs for 4-OHE remains unidentified. Overall, our study suggests that mirid bugs have evolved two distinct lineages of PRs with similar response profiles. This research offers valuable insights into sex pheromone recognition within the peripheral olfactory system and contributes to the identification of PRs in mirid bugs, providing new targets for developing the behavioral regulators for these insects.
Collapse
Affiliation(s)
- Sai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang M, Zhao S, Xue Z, Sun J, Hao J, Deng F, Huang J, Du C, Du Y. Identification of Candidate Olfactory Genes in the Antennal Transcriptome of Loxostege sticticalis Trapped by Three Different Sex Pheromone Blends. INSECTS 2025; 16:152. [PMID: 40003782 PMCID: PMC11855687 DOI: 10.3390/insects16020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity. The beet webworm, Loxostege sticticalis, is an omnivorous agricultural pest that endangers crops and poses a significant risk to the agricultural and animal husbandry production in northern China. In this study, Illumina sequencing was conducted on the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends. A total of 10,320 DEGs were identified, from which 46 candidate olfactory genes were selected for further analysis. These candidate olfactory genes comprise 13 odorant receptors, 6 ionotropic receptors (IRs), 3 gustatory receptors (GRs), 12 odorant-binding proteins, and 13 chemosensory proteins (CSPs). In summary, we analyzed the antennal transcriptome of male L. sticticalis trapped by three different sex pheromone blends and identified several candidate olfactory genes. This discovery offers a foundation for further molecular-level investigations into the olfactory system of L. sticticalis.
Collapse
Affiliation(s)
- Mengke Zhang
- Institute of Pesticides and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China;
- Ispxtech Inc., Hangzhou 310018, China;
| | - Sumei Zhao
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Zhiping Xue
- Baotou Agricultural and Animal Husbandry Science Research Institute, Baotou 014030, China;
| | - Jiaying Sun
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Jiangning Hao
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Fengzhi Deng
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | - Junxia Huang
- Inner Mongolia Autonomous Region Plant Protection and Quarantine Center, Hohhot 010010, China; (S.Z.); (J.S.); (J.H.); (F.D.); (J.H.)
| | | | - Yongjun Du
- Institute of Pesticides and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
5
|
Wang L, Wang Y, Zhang X, Fang M, Mei X, Zhang T. Identification of Female Sex Pheromone of a Plant Bug, Polymerus pekinensis Reuter (Hemiptera: Miridae). INSECTS 2025; 16:111. [PMID: 40003741 PMCID: PMC11855770 DOI: 10.3390/insects16020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Insect sex pheromones have been widely used in integrated pest control due to their efficiency, non-toxicity, specificity, and environmental sustainability. They are considered a key component of green pest management techniques. Polymerus pekinensis is a phytophagous plant bug on alfalfa (Medicago sativa L.) in East Asia. This study used gas chromatography-electroantennogram detection (GC-EAD) and gas chromatography-mass spectrometry (GC-MS) to analyze the whole-body extracts from male and female P. pekinensis. Octyl acetate (OA) and decyl acetate (DA) elicited the antennal response of males and were identified as the predominant components of female and male extracts, respectively. Subsequent field trials demonstrated that OA (>8 mg per lure) showed the strongest attraction to conspecific males. However, when DA was added in a lure (≥2 mg), a significant decline in captures occurred. These findings provide new insights into the understanding of sex pheromones in Miridae and benefit the development of sustainable management of P. pekinensis.
Collapse
Affiliation(s)
- Liuyang Wang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China; (L.W.); (X.Z.)
| | - Yubo Wang
- Dry-Land Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China; (Y.W.); (M.F.)
| | - Xiaofang Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China; (L.W.); (X.Z.)
| | - Meijuan Fang
- Dry-Land Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China; (Y.W.); (M.F.)
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Tao Zhang
- Plant Protection Institute, HAAFS/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, China/IPM Innovation Center of Hebei Province/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, China; (L.W.); (X.Z.)
| |
Collapse
|
6
|
Cui W, Ge J, Chen D, Nie X, Dong L, Wang X, Kang L. Dibutyl phthalate released by solitary female locusts mediates sexual communication at low density. Proc Natl Acad Sci U S A 2024; 121:e2401926121. [PMID: 39018190 PMCID: PMC11287119 DOI: 10.1073/pnas.2401926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/16/2024] [Indexed: 07/19/2024] Open
Abstract
Sex pheromones play a crucial role in mate location and reproductive success. Insects face challenges in finding mates in low-density environments. The population dynamics of locusts vary greatly, ranging from solitary individuals to high-density swarms, leading to multiple-trait divergence between solitary and gregarious phases. However, differences in sexual communication between solitary and gregarious locusts have not been sufficiently explored. Herein, we found that solitary locusts but not gregarious ones heavily rely on a single compound, dibutyl phthalate (DBP), for sexual communication. DBP is abundantly released by solitary female locusts and elicits strong attraction of male solitary and gregarious locusts. Solitary adult males display much higher electrophysiological responses to DBP than adult females. Additionally, LmigOr13 was identified as the DBP-specific odorant receptor expressed in neurons housed in basiconic sensilla. Male LmigOr13-/- mutants generated by CRISPR/Cas9 have low electrophysiological responses and behavioral attraction to DBP in both laboratory and field cage experiments. Notably, the attractiveness of DBP to male locusts becomes more evident at lower population densities imposed by controlling the cage size. This finding sheds light on the utilization of a sex pheromone to promote reproductive success in extremely low-density conditions and provides important insights into alternative approaches for population monitoring of locusts.
Collapse
Affiliation(s)
- Weichan Cui
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Jin Ge
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Dafeng Chen
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Xin Nie
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Liushu Dong
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Le Kang
- State Key Laboratory of Integrated management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing100193, China
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding071002, China
| |
Collapse
|
7
|
Lu Y, Wyckhuys KAG, Wu K. Pest Status, Bio-Ecology, and Area-Wide Management of Mirids in East Asia. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:393-413. [PMID: 37758221 DOI: 10.1146/annurev-ento-121322-015345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Mirids (Hemiptera: Heteroptera: Miridae) feed upon a wide variety of cultivated and wild plants and can be economically important crop pests. They have traditionally been perceived as innocuous herbivores in East Asia; however, population levels of various mirid species have dramatically increased over the past decades. High-profile pests such as Apolygus spp., Adelphocoris spp., and Lygus spp. are now widely distributed across the region, and their infestation pressure is associated with climate, agroecological conditions, and farming practices. This review outlines how an in-depth understanding of pest biology, a systems-level characterization of pest ecology, and a comprehensive evaluation of integrated pest management tactics have enabled sustainable management of mirids across crop boundaries and harvest cycles. This work underscores how more holistic, integrative research approaches can accelerate the implementation of area-wide management of generalist pests, effectively prevent pest population build-up and yield impact, and shrink the environmental footprint of agriculture. In addition to highlighting the merits of interdisciplinary systems approaches, we discuss prospects and challenges for the sustainable management of polyphagous mirid pests in landscape matrices.
Collapse
Affiliation(s)
- Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia;
- Chrysalis Consulting, Hanoi, Vietnam
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China; ,
| |
Collapse
|
8
|
Villa SM, Chen JZ, Kwong Z, Acosta A, Vega NM, Gerardo NM. Specialized acquisition behaviors maintain reliable environmental transmission in an insect-microbial mutualism. Curr Biol 2023:S0960-9822(23)00724-8. [PMID: 37385254 DOI: 10.1016/j.cub.2023.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023]
Abstract
Understanding how horizontally transmitted mutualisms are maintained is a major focus of symbiosis research.1,2,3,4 Unlike vertical transmission, hosts that rely on horizontal transmission produce symbiont-free offspring that must find and acquire their beneficial microbes from the environment. This transmission strategy is inherently risky since hosts may not obtain the right symbiont every generation. Despite these potential costs, horizontal transmission underlies stable mutualisms involving a large diversity of both plants and animals.5,6,7,8,9 One largely unexplored way horizontal transmission is maintained is for hosts to evolve sophisticated mechanisms to consistently find and acquire specific symbionts from the environment. Here, we examine this possibility in the squash bug Anasa tristis, an insect pest that requires bacterial symbionts in the genus Caballeronia10 for survival and development.11 We conduct a series of behavioral and transmission experiments that track strain-level transmission in vivo among individuals in real-time. We demonstrate that nymphs can accurately find feces from adult bugs in both the presence and absence of those adults. Once nymphs locate the feces, they deploy feeding behavior that results in nearly perfect symbiont acquisition success. We further demonstrate that nymphs can locate and feed on isolated, cultured symbionts in the absence of feces. Finally, we show this acquisition behavior is highly host specific. Taken together, our data describe not only the evolution of a reliable horizontal transmission strategy, but also a potential mechanism that drives patterns of species-specific microbial communities among closely related, sympatric host species.
Collapse
Affiliation(s)
- Scott M Villa
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA; Department of Biology, Davidson College, 209 Ridge Rd., Davidson, NC 28035, USA.
| | - Jason Z Chen
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Zeeyong Kwong
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Alice Acosta
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Vega
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Nicole M Gerardo
- Department of Biology, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Shang L, Li ZC, Tian K, Yang B, Wang GR, Lin KJ. Identification and Functional Characterization of Sex Pheromone Receptors in the Oriental Fruit Moth, Grapholita molesta (Lepidoptera: Tortricidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9845-9855. [PMID: 35917146 DOI: 10.1021/acs.jafc.2c02784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oriental fruit moth, Grapholita molesta, is a worldwide pest that damages Rosaceae fruit trees. Sex pheromones play an important role in controlling this pest; however, the corresponding chemosensation mechanism is currently unknown. In this study, 60 candidate odorant receptors, including eight pheromone receptors (PRs), were identified by antennal transcriptome analysis. Expression profiles indicated that most PRs were highly expressed in the males, except GmolOR21 and GmolOR22, which were specifically expressed in the females. Among them, GmolOR2 was identified in response to the main sex pheromone Z8-12:OAc and E8-12:OAc, and its in vivo function was confirmed by RNA interference analysis. Electrophysiological analysis showed that the males had a significantly reduced sensitivity to the main pheromones after the knockdown of GmolOR2. Our research makes a better understanding of pheromone chemoreception and provides a theoretical basis to developing novel, efficient, and environmentally friendly insect attractants.
Collapse
Affiliation(s)
- Lei Shang
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia, Hohhot 010010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Cong Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ke Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ke-Jian Lin
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Inner Mongolia, Hohhot 010010, China
| |
Collapse
|
10
|
Khashaveh A, An X, Shan S, Pang X, Li Y, Fu X, Zhang Y. The microRNAs in the antennae of Apolygus lucorum (Hemiptera: Miridae): Expression properties and targets prediction. Genomics 2022; 114:110447. [PMID: 35963492 DOI: 10.1016/j.ygeno.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and contribute to numerous physiological processes. However, little is known about the functions of miRNAs in insect chemosensation. In this study, nine small RNA libraries were constructed and sequenced from the antennae of nymphs, adult males, and adult females of Apolygus lucorum. In total, 399 (275 known and 124 novel) miRNAs were identified. miR-7-5p_1 was the most abundant miRNA. Altogether, 69,708 target genes related to biogenesis, membrane, and binding activities were predicted. In particular, 15 miRNAs targeted 16 olfactory genes. Comparing the antennae of nymphs and adult males and females, 94 miRNAs were differentially expressed. Alternatively, a subset of differentially expressed miRNAs was verified by qPCR, supporting the reliability of the sequencing results. This study provides a global miRNA transcriptome for the antennae of A. lucorum and valuable information for further investigations of the functions of miRNAs in the regulation of chemosensation.
Collapse
Affiliation(s)
- Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqian Pang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Fu
- School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Zhang S, Wang X, Wang G, Liu F, Liu Y. An odorant receptor of the green mirid bug, Apolygus lucorum, tuned to linalool. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 144:103764. [PMID: 35367588 DOI: 10.1016/j.ibmb.2022.103764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
A highly sensitive olfactory system is required for various insect behaviors, including oviposition site selection, host location, and mate recognition. Odorant receptors (ORs) play a critical role in odorant detection. In this study, we cloned four OR genes referred to as AlucORs (AlucOR4, AlucOR39, AlucOR43, and AlucOR47) from the green mirid bug, Apolygus lucorum, and used Real-time quantitative PCR to show that expression of all four ORs was considerably biased to antennae. Functional analysis, performed using a Xenopus oocyte expression system, revealed that AlucOR47 was robustly and sensitively tuned to the important plant volatile, linalool, and its analogs, linalyl acetate and linalool tetrahydride. Electroantennogram recordings showed that all three ligands elicited obvious responses in male and female mirid bug antennae, with the response to linalool being the strongest. In behavioral assays, male and female mirid bugs displayed significant aversions to linalool. Additionally, the repellent behavior effect of A. lucorum in response to linalool disappeared after knocking down AlucOR47 by RNA interference (RNAi). Taken together, these results indicate that AlucOR47 is necessary for linalool perception in A. lucorum. Our results suggest that AlucOR47 may play a role in plant-insect interactions and provide insight into potential means of biological control against mirid bugs.
Collapse
Affiliation(s)
- Sai Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|