1
|
Zou P, Wu L, Wen S, Pei Y, Hu Z, Zuo Y. Disruption of Spodoptera exigua serine protease 2 (Ser2) results in male sterility by CRISPR/Cas9 technology. PEST MANAGEMENT SCIENCE 2025; 81:498-506. [PMID: 39324728 DOI: 10.1002/ps.8451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/27/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Sperm development and behavior present promising targets for environmentally safer, target-specific biorational control strategies. Serine protease in seminal fluid proteins plays a crucial role in the post-mating reproductive processes of lepidopteran pest insects. The serine protease 2 has been identified as the initiatorin of the seminal fluid protein in Lepidoptera, and its loss of function leads to male sterility. Nevertheless, the genetic pattern of this gene mutation and the impacts of various mutant genotypes on the hatchability of the eggs of pests remain unclear. RESULTS This study focused on the cloning of Spodoptera exigua serine protease 2 (SeSer2), which is specifically expressed in male moths. The open reading frame of SeSer2 consists of 843 nucleotides, encoding 280 amino acids with structural characteristics typical of serine proteases in the S1 family. To validate the functional role of SeSer2 in the fertility of S. exigua, a targeted ~3574-bp deletion of SeSer2 was introduced using the CRISPR/Cas9 genome editing system, leading to premature truncation of the SeSer2 protein. The SeSer2 mutation had no significant impact on the growth and development of individuals of either sex. However, disruption of SeSer2 resulted in heritable male sterility. Although females mated with SeSer2-/- (SeSer2 knockout homozygote) males laid eggs normally, these eggs failed to hatch. SeSer2+/- (SeSer2 knockout heterozygote) male moths crossed with female moths produced viable offspring, indicating the gene's recessive role in egg hatching. CONCLUSION These findings strongly support the conclusion that the Ser2 gene is essential for male reproductive success in diverse lepidopterans. Targeting the Ser2 gene holds promise as a foundational element of a novel pest control strategy. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ping Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling, China
| | - Liying Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| | - Shuang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling, China
| | - Yakun Pei
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Zhaonong Hu
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| | - Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling, China
| |
Collapse
|
2
|
Sun H, Yue F, Tan M, Wang Y, Yan S, Jiang D. The synergistic potential of polyethylene glycol 400 for the control of Hyphantria cunea larvae by Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106182. [PMID: 39672611 DOI: 10.1016/j.pestbp.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 12/15/2024]
Abstract
The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of Beauveria bassiana (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against Hyphantria cunea larvae, with PEG demonstrating the most pronounced effect. PEG treatment markedly increased Bb spore adhesion and germination rates, while spore hydrophobicity and growth rates remained unaffected. Moreover, PEG-treated spores exhibited higher thermal tolerance compared to untreated ones. In the Bb + PEG treatment group, the hemocyte count, encapsulation and melanization activities, and the expression of related regulatory genes were significantly lower than those in the Bb treatment group. Additionally, pathogen recognition, signal transduction, and humoral immunity effector genes expression were markedly suppressed in the Bb + PEG group. A significant reduction in the content of total amino acids, free fatty acids, glucose, and trehalose, alongside decreased expression of key regulatory genes in the tricarboxylic acid cycle and glycolysis pathways, was observed in the Bb + PEG treatment group. Furthermore, PEG enhanced Bb-induced apoptosis in H. cunea larvae, as evidenced by the upregulation of apoptosis-related genes. Notably, PEG alone did not significantly impact the innate immunity, energy metabolism, or apoptosis in H. cunea larvae. Overall, PEG exhibits considerable potential in amplifying Bb's insecticidal activity by directly optimizing spore performance and indirectly modulating the larvae's innate immunity, energy metabolism, and apoptosis.
Collapse
Affiliation(s)
- Heyang Sun
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Fusen Yue
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Mingtao Tan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yanzi Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanchun Yan
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Dun Jiang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Li L, Zuo Y, Shi Y, Yang Y, Wu Y. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104042. [PMID: 38030045 DOI: 10.1016/j.ibmb.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
5
|
Qian W, Guo M, Peng J, Zhao T, Li Z, Yang Y, Li H, Zhang X, King-Jones K, Cheng D. Decapentaplegic retards lipolysis during metamorphosis in Bombyx mori and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103928. [PMID: 36870515 DOI: 10.1016/j.ibmb.2023.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/29/2023] [Accepted: 03/01/2023] [Indexed: 05/10/2023]
Abstract
Insect morphogen decapentaplegic (Dpp) functions as one of the key extracellular ligands of the Bone Morphogenetic Protein (BMP) signaling pathway. Previous studies in insects mainly focused on the roles of Dpp during embryonic development and the formation of adult wings. In this study, we demonstrate a new role for Dpp in retarding lipolysis during metamorphosis in both Bombyx mori and Drosophila melanogaster. CRISPR/Cas9-mediated mutation of Bombyx dpp causes pupal lethality, induces an excessive and premature breakdown of lipids in the fat body, and upregulates the expressions of several lipolytic enzyme genes, including brummer (bmm), lipase 3 (lip3), and hormone-sensitive lipase (hsl), and lipid storage droplet 1 (lsd1), a lipid droplets (LD)-associated protein gene. Further investigation in Drosophila reveals that salivary gland-specific knockdown of the dpp gene and fat body-specific knockdown of Mad involved in Dpp signaling phenocopy the effects of Bombyx dpp mutation on pupal development and lipolysis. Taken together, our data indicate that the Dpp-mediated BMP signaling in the fat body maintains lipid homeostasis by retarding lipolysis, which is necessary for pupa-adult transition during insect metamorphosis.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Mengge Guo
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Hao Li
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xing Zhang
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Bldg., Edmonton, Alberta, T6G 2E9, Canada.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Bi H, Xu X, Li X, Wang Y, Zhou S, Huang Y. CRISPR/Cas9-mediated Serine protease 2 disruption induces male sterility in Spodoptera litura. Front Physiol 2022; 13:931824. [PMID: 35991171 PMCID: PMC9382020 DOI: 10.3389/fphys.2022.931824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Male fertility is essential for reproduction and population growth in animals. Many factors affect male fertility, such as courtship behavior, sperm quantity, and sperm motility, among others. Seminal Fluid Proteins (SFPs) are vital components of seminal fluid in the male ejaculate, which affect male fertility, sperm activation, and female ovulation. However, the knowledge of SFPs is insufficient; the function of many SFPs remains unknown, and most described functions were mainly characterized in Drosophila or other laboratory models. Here, we focus on the Serine protease 2 (Ser2) gene in the lepidopteran pest Spodoptera litura. The Ser2 gene was specifically expressed in male adults. Disruption of the Ser2 gene mediated by CRISPR/Cas9 induced male sterility but females remained fertile. PCR-based detection of the next-generation mutants showed that male sterility was stably inherited. The qRT-PCR analysis of SlSer2 mutants showed that motor protein family genes and structural protein family genes were down-regulated, while protein modification family genes were up-regulated, suggesting that SlSer2 may be involved in sperm movement and activity. These results demonstrate that Ser2 is an important component of SFPs in seminal fluid and was identified for a useful sterile gene for pest control that may lead to new control strategies for lepidopteran insect pests such as S. litura.
Collapse
Affiliation(s)
- Honglun Bi
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
| | - Xia Xu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai, China
- *Correspondence: Shutang Zhou, ; Yongping Huang,
| |
Collapse
|
7
|
Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol (Lausanne) 2022; 13:876370. [PMID: 35600599 PMCID: PMC9114714 DOI: 10.3389/fendo.2022.876370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|