1
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
2
|
Dhungana P, Wei X, Kang DS, Sim C. A Head-Specific Transcriptomic Study Reveals Key Regulatory Pathways for Winter Diapause in the Mosquito Culex pipiens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70032. [PMID: 39898769 DOI: 10.1002/arch.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
The primary vector of the West Nile virus, Culex pipiens, undergoes reproductive dormancy during the adverse winter season. While our current understanding has mainly focused on cellular signals and phenotypic shifts occurring at a global scale during diapause, information on tissue-specific transcriptomic changes remains limited. This knowledge gap is a major challenge in interpreting the regulatory mechanisms at the tissue level. To address this, the present work utilized RNA-seq technology to investigate the transcriptional changes in the head that house the brain and crucial endocrinal organs such as corpora allata. We obtained RNA samples from the heads of diapausing and nondiapausing female mosquitoes at two specific time intervals, ZT0 and ZT16, and then subjected them to sequencing. Our results revealed differences in differentially expressed genes between diapause and non-diapause at ZT0 and ZT16, highlighting the phenotypic and diel variations in gene expression. We also selected twelve genes associated with the diapause phenotype and examined the transcript abundance at six different time points over 24 h. qRT-PCR analysis showed similar up- and downregulation of transcripts between the diapause and nondiapause phenotypes thus validating the results of RNA-seq. In summary, our study identified new genes with phenotypic and diel differentiation in their expression, potentially linking photoperiod to seasonal reproductive dormancy in insects. The newly presented information will significantly advance our understanding of head-specific genes crucial for insect diapause.
Collapse
Affiliation(s)
| | - Xueyan Wei
- Department of Biology, Baylor University, Waco, Texas, USA
| | - David S Kang
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, Texas, USA
| |
Collapse
|
3
|
Han S, Chen J, Liu Z, Zhang M, Guo P, Liu X, Wang L, Shen Z, Zhang L. Identification and expression profiling of neuropeptides and neuropeptide receptor genes in a natural enemy, Coccinella septempunctata. Front Physiol 2024; 15:1464989. [PMID: 39444755 PMCID: PMC11496152 DOI: 10.3389/fphys.2024.1464989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Neuropeptides and their receptors constitute diverse and abundant signal molecules in insects, primarily synthesized and released primarily from neurosecretory cells within the central nervous system Neuropeptides act as neurohormones and euromodulators, regulating insect behavior, lifecycle, and physiology by binding to receptors on cell surface. As a typical natural predator of agricultural pests, the lady beetle, Coccinella septempunctata, has been commercially mass-cultured and widely employed in pest management. Insect diapause is a physiological and ecological adaptative strategy acquired in adverse environments. In biological control programs, knowledge about diapause regulation in natural enemy insects provides important insight for improving long-term storage, transportation, and field adoption of these biological control agents. However, little is known about the function of neuropeptides and their receptors in controlling reproductive diapause of C. septempunctata. It is unclear which neuropeptides affect diapause of C. septempunctata. Methods In this study, RNA-seq technology and bioinformatics were utilized to investigate genes encoding neuropeptides and their receptors in female adults of C. septempunctata. Quantitative real-time PCR (qRT-PCR) analysis was employed to examine gene expression across different development/diapause stages. Results A total of 17 neuropeptide precursor genes and 9 neuropeptide receptor genes were identified, implicated in regulating various behaviors such as feeding, reproduction, and diapause. Prediction of partial mature neuropeptides from precursor sequences was also performed using available information about these peptides from other species, conserved domains and motifs. During diapause induction, the mRNA abundance of AKH was notably higher on the 10th day compared to non-diapause females, but decreased by the 20th day. In contrast, GPHA showed lower expression levels on the 5th day of diapause induction compared to non-diapause females, but increased significantly by the 15th and 20th days. NPF was higher expressed in head and midgut while DH showed higher expression in the fat body and midgut. Additionally, NPF expression remained consistently lower throughout all stages of diapause induction compared to non-diapause conditions in females. Discussion This study represents the first sequencing, identification, and expression analysis of neuropeptides and neuropeptide receptor genes in C. septempunctata. Our results could provide a foundational framework for further investigations into the presence, functions, and potential targets of neuropeptides and their receptors, particularly in devising novel strategies for diapause regulation in C. septempunctata.
Collapse
Affiliation(s)
- ShunDa Han
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - JunJie Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - ZhaoHan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - MaoSen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - PengHui Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - XiaoXiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LongRui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - ZhongJian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - LiSheng Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
von Schmalensee L, Süess P, Roberts KT, Gotthard K, Lehmann P. A quantitative model of temperature-dependent diapause progression. Proc Natl Acad Sci U S A 2024; 121:e2407057121. [PMID: 39196619 PMCID: PMC11388385 DOI: 10.1073/pnas.2407057121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 08/29/2024] Open
Abstract
Winter diapause in insects is commonly terminated through cold exposure, which, like vernalization in plants, prevents development before spring arrives. Currently, quantitative understanding of the temperature dependence of diapause termination is limited, likely because diapause phenotypes are generally cryptic to human eyes. We introduce a methodology to tackle this challenge. By consecutively moving butterfly pupae of the species Pieris napi from several different cold conditions to 20 °C, we show that diapause termination proceeds as a temperature-dependent rate process, with maximal rates at relatively cold temperatures and low rates at warm and extremely cold temperatures. Further, we show that the resulting thermal reaction norm can predict P. napi diapause termination timing under variable temperatures. Last, we show that once diapause is terminated in P. napi, subsequent development follows a typical thermal performance curve, with a maximal development rate at around 31 °C and a minimum at around 2 °C. The sequence of these thermally distinct processes (diapause termination and postdiapause development) facilitates synchronous spring eclosion in nature; cold microclimates where diapause progresses quickly do not promote fast postdiapause development, allowing individuals in warmer winter microclimates to catch up, and vice versa. The unveiling of diapause termination as one temperature-dependent rate process among others promotes a parsimonious, quantitative, and predictive model, wherein winter diapause functions both as an adaptation against premature development during fall and winter and for synchrony in spring.
Collapse
Affiliation(s)
- Loke von Schmalensee
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- RT4, Climate, Ecosystems and Biodiversity, Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
| | - Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- RT4, Climate, Ecosystems and Biodiversity, Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm 10691, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany
| |
Collapse
|
5
|
Roberts KT, Steward RA, Süess P, Lehmann P, Wheat CW. A time course analysis through diapause reveals dynamic temporal patterns of microRNAs associated with endocrine regulation in the butterfly Pieris napi. Mol Ecol 2024:e17348. [PMID: 38597329 DOI: 10.1111/mec.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Organisms inhabiting highly seasonal environments must cope with a wide range of environmentally induced challenges. Many seasonal challenges require extensive physiological modification to survive. In winter, to survive extreme cold and limited resources, insects commonly enter diapause, which is an endogenously derived dormant state associated with minimized cellular processes and low energetic expenditure. Due to the high degree of complexity involved in diapause, substantial cellular regulation is required, of which our understanding primarily derives from the transcriptome via messenger RNA expression dynamics. Here we aim to advance our understanding of diapause by investigating microRNA (miRNA) expression in diapausing and direct developing pupae of the butterfly Pieris napi. We identified coordinated patterns of miRNA expression throughout diapause in both head and abdomen tissues of pupae, and via miRNA target identification, found several expression patterns to be enriched for relevant diapause-related physiological processes. We also identified two candidate miRNAs, miR-14-5p and miR-2a-3p, that are likely involved in diapause progression through their activity in the ecdysone pathway, a critical regulator of diapause termination. miR-14-5p targets phantom, a gene in the ecdysone synthesis pathway, and is upregulated early in diapause. miR-2a-3p has been found to be expressed in response to ecdysone, and is upregulated during diapause termination. Together, the expression patterns of these two miRNAs match our current understanding of the timing of hormonal regulation of diapause in P. napi and provide interesting candidates to further explore the mechanistic role of microRNAs in diapause regulation.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Rachel A Steward
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
| | - Philip Süess
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
6
|
Steward RA, Pruisscher P, Roberts KT, Wheat CW. Genetic constraints in genes exhibiting splicing plasticity in facultative diapause. Heredity (Edinb) 2024; 132:142-155. [PMID: 38291272 PMCID: PMC10923799 DOI: 10.1038/s41437-024-00669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.
Collapse
Affiliation(s)
- Rachel A Steward
- Zoology Department, Stockholm University, Stockholm, Sweden.
- Biology Department, Lund University, Lund, Sweden.
| | - Peter Pruisscher
- Zoology Department, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Roberts KT, Szejner-Sigal A, Lehmann P. Seasonal energetics: are insects constrained by energy during dormancy? J Exp Biol 2023; 226:jeb245782. [PMID: 37921417 DOI: 10.1242/jeb.245782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
In seasonal environments, many animals, including insects, enter dormancy, where they are limited to a fixed energy budget. The inability to replenish energetic stores during these periods suggests insects should be constrained by pre-dormancy energy stores. Over the last century, the community of researchers working on survival during dormancy has operated under the strong assumption that energy limitation is a key fitness trait driving the evolution of seasonal strategies. That is, energy use has to be minimized during dormancy because insects otherwise run out of energy and die during dormancy, or are left with too little energy to complete development, reproductive maturation or other costly post-dormancy processes such as dispersal or nest building. But if energy is so strongly constrained during dormancy, how can some insects - even within the same species and population - be dormant in very warm environments or show prolonged dormancy for many successive years? In this Commentary, we discuss major assumptions regarding dormancy energetics and outline cases where insects appear to align with our assumptions and where they do not. We then highlight several research directions that could help link organismal energy use with landscape-level changes. Overall, the optimal energetic strategy during dormancy might not be to simply minimize metabolic rate, but instead to maintain a level that matches the demands of the specific life-history strategy. Given the influence of temperature on energy use rates of insects in winter, understanding dormancy energetic strategies is critical in order to determine the potential impacts of climate change on insects in seasonal environments.
Collapse
Affiliation(s)
- Kevin T Roberts
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andre Szejner-Sigal
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
- Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Chen YH, Jiang T, Yasen A, Fan BY, Zhu J, Wang MX, Shen XJ. RNA N6-methyladenosine of DHAPAT and PAP involves in regulation of diapause of Bombyx mori via the lipid metabolism pathway. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:665-675. [PMID: 37555240 DOI: 10.1017/s0007485323000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
Collapse
Affiliation(s)
- Yan-Hua Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Tao Jiang
- Silkworm Egg Institute of Jiangsu Province, Wuxi, Jiangsu 214000, China
| | - Ayinuer Yasen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Bing-Yan Fan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Juan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Mei-Xian Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Xing-Jia Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
9
|
Boman J, Zhu Y, Höök L, Vila R, Talavera G, Backström N. Environmental stress during larval development induces DNA methylation shifts in the migratory painted lady butterfly (Vanessa cardui). Mol Ecol 2023. [PMID: 37088782 DOI: 10.1111/mec.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Seasonal environmental fluctuations provide formidable challenges for living organisms, especially small ectotherms such as butterflies. A common strategy to cope with harsh environments is to enter diapause, but some species avoid unsuitable conditions by migrating. Despite a growing understanding of migration in the life cycles of some butterfly species, it remains unknown how individuals register and store environmental cues to determine whether and where to migrate. Here, we explored how competition and host plant availability during larval development affect patterns of DNA methylation in the migratory painted lady (Vanessa cardui) butterfly. We identify a set of potentially functional methylome shifts associated with differences in the environment, indicating that DNA methylation is involved in the response to different conditions during larval development. By analysing the transcriptome for the same samples used for methylation profiling, we also uncovered a non-monotonic relationship between gene body methylation and gene expression. Our results provide a starting point for understanding the interplay between DNA methylation and gene expression in butterflies in general and how differences in environmental conditions during development can trigger unique epigenetic marks that might be important for behavioural decisions in the adult stage.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Yishu Zhu
- Animal Ecology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-Ajuntament de Barcelona, Barcelona, Spain
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Uppsala, Sweden
| |
Collapse
|