1
|
Bullo E, Chen P, Fiala I, Smýkal V, Doležel D. Coevolution of Drosophila-type timeless with partner clock proteins. iScience 2025; 28:112338. [PMID: 40322083 PMCID: PMC12049834 DOI: 10.1016/j.isci.2025.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Drosophila-type timeless (dTIM) is a key clock protein in fruit flies, regulating rhythmicity and light-mediated entrainment. However, functional experiments indicate that its contribution to the clock differs in various insects. Therefore, we conducted a comprehensive phylogenetic analysis of dTIM across animals and dated its origin, gene duplications, and losses. We identified variable and conserved protein domains and pinpointed animal lineages that underwent the biggest changes in dTIM. While dTIM modifications are only mildly affected by changes in the PER protein, even the complete loss of PER in echinoderms had no impact on dTIM. However, changes in dTIM always co-occur with the loss of CRYPTOCHROMES or JETLAG. This is exemplified by the remarkably accelerated evolution of dTIM in phylloxera and aphids. Finally, alternative d-tim splicing, characteristic of Drosophila melanogaster temperature-dependent function, is conserved to some extent in Diptera, albeit with unique alterations. Altogether, this study pinpoints major changes that shaped dTIM evolution.
Collapse
Affiliation(s)
- Enrico Bullo
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Ivan Fiala
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Vlastimil Smýkal
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - David Doležel
- Biology Centre of the Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
2
|
Liu Z, Idris NFB, Liu L, Hou C, Yang C, Zhan C, Liang S, Shen J, Lu K, Hu H, Dai F, Tong X. BmSV2A and BmSV2B Are Involved in Regulating GABAergic Neuron-Related Gene Expression in the Silkworm, Bombyx mori. INSECTS 2025; 16:251. [PMID: 40266755 PMCID: PMC11943286 DOI: 10.3390/insects16030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/25/2025]
Abstract
In insects, the number of life cycles varies inter- and intra-specifically, and it is widely accepted that the variation in the number of life cycles is an adaptive response to diverse environmental conditions. However, the molecular mechanism that underlies the variety and plasticity in the number of life cycles is largely unknown. In the silkworm, Bombyx mori, the Voltinism (V) locus has three alleles, V1(univoltine; dominant), V2 (bivoltine; standard), and V3 (polyvoltine; recessive), which are known to generate variation in the number of life cycles in a year under natural conditions, with obligatory diapause for the V1 allele, facultative diapause for V2, and non-diapause for V3. Here, we further confirm that the γ-aminobutyric acid (GABA)ergic neuron signal pathway modulates progeny diapause via controlling diapause hormone release. A population genetic analysis (Fst) revealed that the synaptic vesicle glycoprotein 2A and 2B (BmSV2A and BmSV2B) genes, tightly related to the transport of neurotransmitters, are located in the V locus. Importantly, using the CRISPR/Cas9 editing technique, we have discovered that the BmSV2A and BmSV2B genes increased or modified the expression of GABAergic neuron signal pathway genes, respectively. These results demonstrate that BmSV2A and BmSV2B, positioned within the V locus, could be involved in voltinism control via the GABAergic neuron signal pathway.
Collapse
Affiliation(s)
- Zhongyi Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Nur Fazleen Binti Idris
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Lulu Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Chunping Hou
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Chunyan Yang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Chengyu Zhan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Shubo Liang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
| | - Hai Hu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China; (Z.L.); (N.F.B.I.); (L.L.); (C.H.); (C.Y.); (C.Z.); (S.L.); (J.S.); (K.L.); (H.H.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Dai TM, Qiu JF, Luo C, Cui WZ, Liu K, Li JL, Peng R, Sima YH, Xu SQ. The circadian clock affects starvation resistance through the pentose phosphate pathway in silkworm, Bombyx mori. INSECT SCIENCE 2025; 32:55-68. [PMID: 38769889 DOI: 10.1111/1744-7917.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Disruption of the circadian clock can affect starvation resistance, but the molecular mechanism is still unclear. Here, we found that starvation resistance was significantly reduced in the core gene BmPer deficient mutant silkworms (Per-/-), but the mutant's starvation resistance increased with larval age. Under natural physiological conditions, the weight of mutant 5th instar larvae was significantly increased compared to wild type, and the accumulation ability of triglycerides and glycogen in the fat bodies was upregulated. However, under starvation conditions, the weight consumption of mutant larvae was increased and cholesterol utilization was intensified. Transcriptome analysis showed that beta-oxidation was significantly upregulated under starvation conditions, fatty acid synthesis was inhibited, and the expression levels of genes related to mitochondrial function were significantly changed. Further investigations revealed that the redox balance, which is closely related to mitochondrial metabolism, was altered in the fat bodies, the antioxidant level was increased, and the pentose phosphate pathway, the source of reducing power in cells, was activated. Our findings suggest that one of the reasons for the increased energy burden observed in mutants is the need to maintain a more robust redox balance in metabolic tissues. This necessitates the diversion of more glucose into the pentose phosphate pathway to ensure an adequate supply of reducing power.
Collapse
Affiliation(s)
- Tai-Ming Dai
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jian-Feng Qiu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Cheng Luo
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Wen-Zhao Cui
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Kai Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Jiang-Lan Li
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Ruji Peng
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Yang-Hu Sima
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| | - Shi-Qing Xu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
4
|
Brady DJ, Saviane A, Battistolli M, Varponi I, Barca F, Shiomi K, Cappellozza S, Sandrelli F. Enhanced silk production and pupal weight in Bombyx mori through CRISPR/Cas9-mediated circadian Clock gene disruption. PLoS One 2025; 20:e0317572. [PMID: 39869590 PMCID: PMC11771929 DOI: 10.1371/journal.pone.0317572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/30/2024] [Indexed: 01/29/2025] Open
Abstract
The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity. This study investigates the role of the circadian clock gene Clock in B. mori using CRISPR/Cas9-mediated mutagenesis to establish the ClkΔ29 knock-out mutant strain. Dysregulation of the circadian clock in ClkΔ29 was demonstrated by altered temporal transcriptional profiles of core circadian clock genes in adult heads and disrupted circadian-controlled behaviors, including adult eclosion and egg hatching rhythms under constant darkness. By analysing larval development timing, as well as the weights of late instar larvae, pupae, and cocoon components in ClkΔ29 mutants and in ClkΔ1922 silkworms (carrying an independently generated Clk- null allele), we showed that CLK contributes to physiological processes regulating B. mori development and growth. Importantly, ClkΔ29 mutants reared on a standard sericulture diet exhibited significant increases in key economic traits, with silk production increasing by up to 7%, and pupal weight increasing by up to 25% compared to wild-type controls. This study highlights the potential of circadian clock gene manipulation to significantly enhance sericultural productivity. Future research should focus on elucidating the molecular mechanisms driving these phenotypes and determining whether they result from circadian clock functions or pleiotropic effects of B. mori Clk. These findings provide a foundation for advancing sustainable sericulture and developing new commercial applications for silkworm-derived products.
Collapse
Affiliation(s)
- Daniel J. Brady
- Department of Biology, University of Padova, Padova, Italy
- Fraunhofer Institute for Molecular Biology and Applied Ecology—IME, Branch for Bioresources, Schmallenberg, Germany
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padova, Padova, Italy
| | | | - Irene Varponi
- Department of Biology, University of Padova, Padova, Italy
| | - Federica Barca
- Department of Biology, University of Padova, Padova, Italy
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Matsumoto, Japan
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Sericulture Laboratory of Padova, Padova, Italy
| | | |
Collapse
|
5
|
Tobita H, Kiuchi T. Knockout of cryptochrome 1 disrupts circadian rhythm and photoperiodic diapause induction in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104153. [PMID: 38964485 DOI: 10.1016/j.ibmb.2024.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Most insects enter diapause, a state of physiological dormancy crucial for enduring harsh seasons, with photoperiod serving as the primary cue for its induction, ensuring proper seasonal timing of the process. Although the involvement of the circadian clock in the photoperiodic time measurement has been demonstrated through knockdown or knockout of clock genes, the involvement of clock gene cryptochrome 1 (cry1), which functions as a photoreceptor implicated in photoentrainment of the circadian clock across various insect species, remains unclear. In bivoltine strains of the silkworm, Bombyx mori, embryonic diapause is maternally controlled and affected by environmental conditions experienced by mother moths during embryonic and larval stages. Previous research highlighted the role of core clock genes, including period (per), timeless (tim), Clock (Clk) and cycle (cyc), in photoperiodic diapause induction in B. mori. In this study, we focused on the involvement of cry1 gene in B. mori photoperiodism. Phylogenetic analysis and conserved domain identification confirmed the presence of both Drosophila-type cry (cry1) and mammalian-type cry (cry2) genes in the B. mori genome, akin to other lepidopterans. Temporal expression analysis revealed higher cry1 gene expression during the photophase and lower expression during the scotophase, with knockouts of core clock genes (per, tim, Clk and cyc) disrupting this temporal expression pattern. Using CRISPR/Cas9-mediated genome editing, we established a cry1 knockout strain in p50T, a bivoltine strain exhibiting clear photoperiodism during both embryonic and larval stages. Although the wild-type strain displayed circadian rhythm in eclosion under continuous darkness, the cry1 knockout strain exhibited arrhythmic eclosion, implicating B. mori cry1 in the circadian clock feedback loop governing behavior rhythms. Females of the cry1 knockout strain failed to control photoperiodic diapause induction during both embryonic and larval stages, mirroring the diapause phenotype of the wild-type individuals reared under constant darkness, indicating that B. mori CRY1 contributes to photoperiodic time measurement as a photoreceptor. Furthermore, photoperiodic diapause induction during the larval stage was abolished in a cry1/tim double-knockout strain, suggesting that photic information received by CRY1 is relayed to the circadian clock. Overall, this study represents the first evidence of cry1 involvement in insect photoperiodism, specifically in diapause induction.
Collapse
Affiliation(s)
- Hisashi Tobita
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
6
|
Fishman B, Tauber E. Epigenetics and seasonal timing in animals: a concise review. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:565-574. [PMID: 37695537 PMCID: PMC11226475 DOI: 10.1007/s00359-023-01673-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Seasonal adaptation in animals is a complex process that involves genetic, epigenetic, and environmental factors. The present review explores recent studies on epigenetic mechanisms implicated in seasonal adaptation in animals. The review is divided into three main sections, each focusing on a different epigenetic mechanism: DNA methylation, histone modifications, and non-coding RNA. Additionally, the review delves into the current understanding of how these epigenetic factors contribute to the regulation of circadian and seasonal cycles. Understanding these molecular mechanisms provides the first step in deciphering the complex interplay between genetics, epigenetics, and the environment in driving seasonal adaptation in animals. By exploring these mechanisms, a better understanding of how animals adapt to changing environmental conditions can be achieved.
Collapse
Affiliation(s)
- Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Hidalgo S, Chiu JC. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:585-599. [PMID: 37584703 PMCID: PMC11057393 DOI: 10.1007/s00359-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Shimizu I. Photoperiodism of Diapause Induction in the Silkworm, Bombyx mori. Zoolog Sci 2024; 41:141-158. [PMID: 38587909 DOI: 10.2108/zs230036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/08/2023] [Indexed: 04/10/2024]
Abstract
The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.
Collapse
Affiliation(s)
- Isamu Shimizu
- Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan,
| |
Collapse
|
9
|
Hasebe M, Sato M, Ushioda S, Kusuhara W, Kominato K, Shiga S. Significance of the clock gene period in photoperiodism in larval development and production of diapause eggs in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104615. [PMID: 38237657 DOI: 10.1016/j.jinsphys.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Mizuka Sato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shoichiro Ushioda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Wakana Kusuhara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuki Kominato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
10
|
Fyie LR, Westby KM, Meuti ME. Light pollution disrupts circadian clock gene expression in two mosquito vectors during their overwintering dormancy. Sci Rep 2024; 14:2398. [PMID: 38287057 PMCID: PMC10824765 DOI: 10.1038/s41598-024-52794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
Artificial light at night (ALAN) is an increasingly important form of environmental disturbance as it alters Light:Dark cycles that regulate daily and seasonal changes in physiology and phenology. The Northern house mosquito (Culex pipiens) and the tiger mosquito (Aedes albopictus) enter an overwintering dormancy known as diapause that is cued by short days. These two species differ in diapause strategy: Cx. pipiens diapause as adult females while Ae. albopictus enter a maternally-programmed, egg diapause. Previous studies found that ALAN inhibits diapause in both species, but the mechanism is unknown. As the circadian clock is implicated in the regulation of diapause in many insects, we examined whether exposure to ALAN altered the daily expression of core circadian cloc genes (cycle, Clock, period, timeless, cryptochrome 1, cryptochrome 2, and Par domain protein 1) in these two species when reared under short-day, diapause-inducing conditions. We found that exposure to ALAN altered the abundance of several clock genes in adult females of both species, but that clock gene rhythmicity was maintained for most genes. ALAN also had little effect on clock gene abundance in mature oocytes that were dissected from female Ae. albopictus that were reared under short day conditions. Our findings indicate that ALAN may inhibit diapause initiation through the circadian clock in two medically-important mosquitoes.
Collapse
Affiliation(s)
- Lydia R Fyie
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA.
| | - Katie M Westby
- Tyson Research Center, Washington University in St. Louis, 6750 Tyson Valley Road, Eureka, MO, 63025, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH, 43210, USA
| |
Collapse
|
11
|
Kourti A, Kontogiannatos D, Gkouvitsas T, Hatzopoulos P. Circadian clock genes and photoperiodic diapause in the moth Sesamia nonagrioides. Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110849. [PMID: 36948355 DOI: 10.1016/j.cbpb.2023.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Insects, like most organisms, have an internal circadian clock that oscillates with a daily rhythmicity, and a timing mechanism (photoperiodic clock) that mediates seasonal events, including diapause. It has been argued that there is a connection between the two clocks. The Mediterranean corn stalk borer moth, Sesamia nonagrioides, undergoes facultative diapause governed by photoperiod. To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we cloned and investigated the expression profiles of the clock genes Snper, Sntim, Sncyc and Sncry1 in the aforementioned moth species. Our previous results suggested that these genes might be implicated in the regulation of the diapause programming in S. nonagrioides. Here we studied the expression patterns of these four clock genes in larvae reared under abnormal non-24 h light-dark cycles (L10:D62 and L10:D14:L10:D62) in order to assess whether disruption of circadian clock would have any effect in the photoperiodic regulation of diapause. In the L10:D14:L10:D62 cycle abnormal expression patterns of the Sntim/Sncry1 and Snper/Sncyc, pairs were found, compared to normal 24 h light-dark photoperiods suggesting that individual clock genes are acting independently in the molecular diapause program of S. nonagrioides. Photoperiod therefore appears to be the crucial signal for the regulation of these four genes.
Collapse
Affiliation(s)
- Anna Kourti
- Department of Biotechnology, Laboratory of Molecular Biology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | - Dimitrios Kontogiannatos
- Department of Biotechnology, Laboratory of Molecular Biology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Theodoros Gkouvitsas
- Department of Biotechnology, Laboratory of Molecular Biology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Polydefkis Hatzopoulos
- Department of Biotechnology, Laboratory of Molecular Biology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
12
|
Matsuda N. Hatching rhythm and clock gene expression in the egg of the pea aphid, Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104489. [PMID: 36746317 DOI: 10.1016/j.jinsphys.2023.104489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Many insects exhibit diel rhythms in physiology and behavior, driven by an endogenous circadian clock. Although aphids are paradigmatic insects whose photoperiodic time measurement is based on a heavily damped circadian clock, there is a lack of empirical data on such a damped circadian clock. The present study investigated the temporal distribution of hatching and the temporal expression patterns of circadian clock genes in the pea aphid, Acyrthosiphon pisum under light-dark (LD) cycles and constant darkness (DD). Hatching occurred intensively in the early photophase, and this rhythm persisted under LD cycles, but damped under DD for a few days. Of the six clock genes analyzed, cyc showed a temporal change in expression under LD cycles, whereas this temporal change was lost under DD. These results suggest that the circadian clock of A. pisum is easily damped during the embryonic stage, supporting the heavily damped oscillator model in photoperiodic time measurement of aphids.
Collapse
Affiliation(s)
- Naoki Matsuda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|