1
|
Kemp ET, Zandberg L, Harvey BH, Smuts CM, Baumgartner J. Iron and n-3 fatty acid depletion, alone and in combination, during early development provoke neurochemical changes, anhedonia, anxiety and social dysfunction in rats. Nutr Neurosci 2024; 27:698-714. [PMID: 37585720 DOI: 10.1080/1028415x.2023.2245615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Objectives: Both iron and omega-3 (n-3) fatty acids (FA) play important roles in the development and functioning of the brain. We investigated the effects of n-3 FA and iron deficiencies, alone and in combination, during early development on behaviour and brain monoamines in rats. Methods: Using a 2-factorial design, female Wistar rats were randomly allocated to one of four diet groups: Control, n-3 FA deficient (n-3 FAD), iron deficient (ID), or n-3 FAD + ID. Females received these diets throughout mating, pregnancy and lactation. Offspring (n = 24/group; male:female = 1:1) continued on the same diet until post-natal day 42-45, and underwent a sucrose preference test (SPT), novel object recognition test, elevated plus maze (EPM) and social interaction test (SIT). Results: ID offspring consumed less sucrose in the SPT and spent more time in closed arms and less time in open arms of the EPM than non-ID offspring. In female offspring only, ID and n-3 FAD reduced time approaching and together in the SIT, with an additive effect of ID and n-3 FAD for even less time approaching and spent together in the n-3 FAD + ID group compared to controls. ID offspring had higher striatal dopamine and norepinephrine and lower frontal cortex dopamine concentrations. N-3 FAD and ID affected frontal cortex serotonin concentrations in a sex-specific manner. Conclusions: Our results suggest that ID and n-3 FAD during early development provoke anhedonia, anxiety and social dysfunction in rats, with potential additive and attenuating effects when combined. These effects may in part be attributed to disturbances in brain neurochemistry and may be sex-specific.
Collapse
Affiliation(s)
- Erna T Kemp
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Lizelle Zandberg
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- School of Pharmacy and Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Cornelius M Smuts
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Jeannine Baumgartner
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
2
|
Tajabadi Farahani Z, Vaseghi S, Rajabbeigi E, Ghorbani Yekta B. The effect of olanzapine on spatial memory impairment, depressive-like behavior, pain perception, and BDNF and synaptophysin expression following childhood chronic unpredictable mild stress in adult male and female rats. Behav Brain Res 2024; 468:115039. [PMID: 38718877 DOI: 10.1016/j.bbr.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.
Collapse
Affiliation(s)
- Zahra Tajabadi Farahani
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Elham Rajabbeigi
- Department of Developmental Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Batool Ghorbani Yekta
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Peña JE, Corbett BF, Tamminga CA, Bhatnagar S, Hitti FL. Investigating Resistance to Antidepressants in Animal Models. Neuroscience 2024; 548:69-80. [PMID: 38697464 DOI: 10.1016/j.neuroscience.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/12/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.
Collapse
Affiliation(s)
- Julianna E Peña
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brian F Corbett
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States
| | - Frederick L Hitti
- Department of Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
4
|
Kamaei AK, Hosseini SF, Teimourparsaei P, Payamani M, Vaseghi S. The effect of acute crocin on behavioral changes and BDNF expression level in socially isolated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3929-3944. [PMID: 37987792 DOI: 10.1007/s00210-023-02843-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Social isolation is a reliable method used for the induction of depression and psychiatric disorders in rodents. It has been suggested that social isolation can lead to hyperlocomotion, as a schizophrenic-like symptom in rodents. On the other hand, crocin (the major constituent of Crocus sativus) induces a wide-range of neuroprotective and mood enhancer effects. In the present study, we aimed to investigate the effect of acute crocin on social isolation-induced behavioral changes and BDNF expression in the hippocampus. Novelty-suppressed feeding test, open field test, marble burying test, hot plate, forced swim test, and the shuttle box were used to assess anxiety-like behavior, locomotor activity, obsessive-compulsive-like (OCD-like) behavior, pain threshold, depressive-like behavior, and passive avoidance memory, respectively. Real-time PCR was used to assess BDNF hippocampal expression level. The results showed that social isolation decreased anxiety- and depressive-like behavior, pain threshold, and BDNF expression, and induced OCD-like behavior and hyperlocomotion. Crocin dose-dependently restored the effect of social isolation on pain threshold, locomotor activity, depressive-like behavior, OCD-like behavior, and BDNF expression. Passive avoidance memory performance was also unaffected. In conclusion, we showed a hyperlocomotion profile and OCD-like behaviors, and a robust decrease in pain threshold in socially isolated rats. It can be suggested that social isolation from adolescence induces a "hyperlocomotion state" that affects all the behavioral functions of rats. Also, the function of BDNF can be related to a hyperlocomotion state and OCD-like symptom. It seems that BDNF expression level can be related to the therapeutic effect of crocin.
Collapse
Affiliation(s)
- Amir-Kamyar Kamaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Seyedeh-Fatemeh Hosseini
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Parisa Teimourparsaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran
| | - Masoumeh Payamani
- Department of Psychology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
5
|
van Rensburg DJ, Lindeque Z, Harvey BH, Steyn SF. Ndufs4 KO mice: A model to study comorbid mood disorders associated with mitochondrial dysfunction. Pharmacol Biochem Behav 2024; 234:173689. [PMID: 38070656 DOI: 10.1016/j.pbb.2023.173689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/01/2024]
Abstract
The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.
Collapse
Affiliation(s)
- Daniël J van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
6
|
Dutra-Tavares AC, Souza TP, Silva JO, Semeão KA, Mello FF, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Neonatal phencyclidine as a model of sex-biased schizophrenia symptomatology in adolescent mice. Psychopharmacology (Berl) 2023; 240:2111-2129. [PMID: 37530885 DOI: 10.1007/s00213-023-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Sex-biased differences in schizophrenia are evident in several features of the disease, including symptomatology and response to pharmacological treatments. As a neurodevelopmental disorder, these differences might originate early in life and emerge later during adolescence. Considering that the disruption of the glutamatergic system during development is known to contribute to schizophrenia, we hypothesized that the neonatal phencyclidine model could induce sex-dependent behavioral and neurochemical changes associated with this disorder during adolescence. C57BL/6 mice received either saline or phencyclidine (5, 10, or 20 mg/kg) on postnatal days (PN) 7, 9, and 11. Behavioral assessment occurred in late adolescence (PN48-50), when mice were submitted to the open field, social interaction, and prepulse inhibition tests. Either olanzapine or saline was administered before each test. The NMDAR obligatory GluN1 subunit and the postsynaptic density protein 95 (PSD-95) were evaluated in the frontal cortex and hippocampus at early (PN30) and late (PN50) adolescence. Neonatal phencyclidine evoked dose-dependent deficits in all analyzed behaviors and males were more susceptible. Males also had reduced GluN1 expression in the frontal cortex at PN30. There were late-emergent effects at PN50. Cortical GluN1 was increased in both sexes, while phencyclidine increased cortical and decreased hippocampal PSD-95 in females. Olanzapine failed to mitigate most phencyclidine-evoked alterations. In some instances, this antipsychotic aggravated the deficits or potentiated subthreshold effects. These results lend support to the use of neonatal phencyclidine as a sex-biased neurodevelopmental preclinical model of schizophrenia. Olanzapine null effects and deleterious outcomes suggest that its use during adolescence should be further evaluated.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thainá P Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Juliana O Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Keila A Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Felipe F Mello
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro (UERJ), RJ, São Gonçalo, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|