1
|
Mahmoud AMA, Helal MG, El-Sherbiny M, Said E, Nader MA, Shehatou GSG. Edaravone protects against cuprizone-induced demyelination in rats by modulating TNF-α/NF-ĸB/NLRP3 signaling and the kynurenine pathway. Eur J Pharmacol 2025; 999:177686. [PMID: 40294777 DOI: 10.1016/j.ejphar.2025.177686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disorder involving various pathways that affect disease progression and treatment. The kynurenine pathway (KP) has gained attention in MS studies, contributing to demyelination and disease progression. This study aimed to explore the pharmacological effects of edaravone (EDV) on the corpus callosum and the spinal cord in the cuprizone (CPZ) animal model of demyelination. Male Wistar rats were randomly divided into the control, CPZ, and CPZ-EDV groups. CPZ (500 mg/kg/day) was administered via oral gavage for eight weeks, and at the start of the 5th week, EDV (5 mg/kg/day,I.P.) was initiated and continued for 4 weeks. EDV ameliorated behavioral and motor deficits in CPZ-intoxicated rats and promoted the differentiation of oligodendrocyte progenitor cells by activating OLIG2, enhancing re-myelination. This was demonstrated by increased density of myelinated nerve fibers and OLIG2+ cells co-expressing myelin basic protein (MBP), indicating enhanced OPC differentiation and remyelination. EDV also reduced the inflammatory mediators TNF-α and NF-ĸB, and diminished the activation of NLRP3 inflammasome, inhibiting the release of IL-1β. Furthermore, EDV decreased indoleamine 2,3-dioxygenase-1 (IDO1) mRNA expression and activity, as well as the protein levels of kynurenine 3-monooxygenase (KMO), leading to reduced neurotoxic metabolites (quinolinic and anthranilic acid) while elevating the neuroprotective metabolite kynurenic acid (KYNA). In conclusion, EDV exerted neuroprotective effects by reducing inflammation, inhibiting the KP's neurotoxic metabolites, and promoting remyelination through OLIG2 activation. These effects are possibly attributed to EDV's action on TNF-α/NF-ĸB/NLRP3 signaling and the KP.
Collapse
Affiliation(s)
- Abdelrahman M A Mahmoud
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, New Mansoura University, New Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Huang L, Simonian R, Lopez MA, Karuppasamy M, Sanders VM, English KG, Fabian L, Alexander MS, Dowling JJ. X-linked myopathy with excessive autophagy: characterization and therapy testing in a zebrafish model. EMBO Mol Med 2025; 17:823-840. [PMID: 39994482 PMCID: PMC11982336 DOI: 10.1038/s44321-025-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
X-linked myopathy with excessive autophagy (XMEA), a rare childhood-onset autophagic vacuolar myopathy caused by mutations in VMA21, is characterized by proximal muscle weakness and progressive vacuolation. VMA21 encodes a protein chaperone of the vacuolar hydrogen ion ATPase, the loss of which leads to lysosomal neutralization and impaired function. At present, there is an incomplete understanding of XMEA, its mechanisms, consequences on other systems, and therapeutic strategies. A significant barrier to advancing knowledge and treatments is the lack of XMEA animal models. Therefore, we used CRISPR-Cas9 editing to engineer a loss-of-function mutation in zebrafish vma21. The vma21 mutant zebrafish phenocopy the human disease with impaired motor function and survival, liver dysfunction, and dysregulated autophagy indicated by lysosomal de-acidification, the presence of characteristic autophagic vacuoles in muscle fibers, altered autophagic flux, and reduced lysosomal marker staining. As proof-of-concept, we found that two drugs, edaravone and LY294002, improve swim behavior and survival. In total, we generated and characterized a novel preclinical zebrafish XMEA model and demonstrated its suitability for studying disease pathomechanisms and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Lily Huang
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3K3, Canada
| | - Rebecca Simonian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
| | - Michael A Lopez
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Muthukumar Karuppasamy
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Veronica M Sanders
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
| | - Katherine G English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
| | - Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA.
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3K3, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5G 1E8, Canada.
| |
Collapse
|
3
|
Cai Y, Gu H, Li L, Liu X, Bai Y, Shen L, Han B, Xu Y, Yao H. New TIPARP inhibitor rescues mitochondrial function and brain injury in ischemic stroke. Pharmacol Res 2024; 210:107508. [PMID: 39547463 DOI: 10.1016/j.phrs.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke is a high-mortality disease that urgently requires new therapeutic strategies. Insufficient cerebral blood supply can induce poly (ADP-ribose) polymerase (PARP) activation and mitochondrial dysfunction, leading to tissue damage and motor dysfunction. We demonstrate that the expression of TCDD inducible PARP (TIPARP) is elevated in ischemic stroke patients and mice. Knockdown of Tiparp reduces brain infarction and promotes recovery of motor function in ischemic stroke mice. A rationally designed TIPARP inhibitor, XG-04-B1, promotes repair of brain injury and recovery of motor function in ischemic stroke mice. Mechanistically, XG-04-B1 increases neuronal plasticity and inhibits astrocyte activation in ischemic stroke mice. In addition, eukaryotic translation initiation factor 3 subunit B (EIF3B) is a direct target of TIPARP. TIPARP interacts with EIF3B through nucleoplasmic redistribution, leading to mitochondrial dysfunction. Knockdown of Tiparp and inhibition of TIPARP via XG-04-B1 restore mitochondrial homeostasis in ischemic stroke mice. Taken together, TIPARP activation contributes to mitochondrial dysfunction and subsequent brain injury, and is therefore a promising therapeutic target for stroke.
Collapse
Affiliation(s)
- Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Hongfeng Gu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lu Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Xue Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Zeng S, Wang Y, Ai L, Huang L, Liu Z, He C, Bai Q, Li Y. Chronic intermittent hypoxia-induced oxidative stress activates TRB3 and phosphorylated JNK to mediate insulin resistance and cell apoptosis in the pancreas. Clin Exp Pharmacol Physiol 2024; 51:e13843. [PMID: 38302075 DOI: 10.1111/1440-1681.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
This study explores the potential mechanisms of obstructive sleep apnoea (OSA) complicates type 2 diabetes mellitus (T2DM) by which chronic intermittent hypoxia (CIH) induces insulin resistance and cell apoptosis in the pancreas through oxidative stress. Four- and eight-week CIH rat models were established, and Tempol (100 mg/kg/d), was used as an oxidative stress inhibitor. This study included five groups: 4-week CIH, 4-week CIH-Tempol, 8-week CIH, 8-week CIH-Tempol and normal control (NC) groups. Fasting blood glucose and insulin levels were measured in the serum. The expression levels of 8-hidroxy-2-deoxyguanosine (8-OHdG), tribbles homologue 3 (TRB3), c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (Ser307) (p-IRS-1ser307 ), protein kinase B (AKT), phosphorylated AKT (Ser473) (p-AKTser473 ), B cell lymphoma protein-2 (Bcl-2), cleaved-caspase-3 (Cl-caspase-3), and the islet cell apoptosis were detected in the pancreas. CIH induced oxidative stress in the pancreas. Compared with that in the NC group and CIH-Tempol groups individually, the homeostasis model assessment of insulin resistance (HOMA-IR) and apoptosis of islet cells was increased in the CIH groups. CIH-induced oxidative stress increased the expression of p-IRS-1Ser307 and decreased the expression of p-AKTSer473 . The expression levels of TRB3 and p-JNK were higher in the CIH groups than in both the CIH-Tempol and NC groups. Meanwhile, the expressions of Cl-caspase-3 and Bcl-2 were upregulated and downregulated, respectively, in the CIH groups. Hence, the present study demonstrated that CIH-induced oxidative stress might not only induce insulin resistance but also islet cell apoptosis in the pancreas through TRB3 and p-JNK.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yeying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, China
| | - Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Kunming Medical University, Kunming, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunxia He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiaohui Bai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Jantas D, Warszyński P, Lasoń W. Carnosic Acid Shows Higher Neuroprotective Efficiency than Edaravone or Ebselen in In Vitro Models of Neuronal Cell Damage. Molecules 2023; 29:119. [PMID: 38202702 PMCID: PMC10779571 DOI: 10.3390/molecules29010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This study compared the neuroprotective efficacy of three antioxidants-the plant-derived carnosic acid (CA), and two synthetic free radical scavengers: edaravone (ED) and ebselen (EB)-in in vitro models of neuronal cell damage. Results showed that CA protected mouse primary neuronal cell cultures against hydrogen peroxide-induced damage more efficiently than ED or EB. The neuroprotective effects of CA were associated with attenuation of reactive oxygen species level and increased mitochondrial membrane potential but not with a reduction in caspase-3 activity. None of the tested substances was protective against glutamate or oxygen-glucose deprivation-evoked neuronal cell damage, and EB even increased the detrimental effects of these insults. Further experiments using the human neuroblastoma SH-SY5Y cells showed that CA but not ED or EB attenuated the cell damage induced by hydrogen peroxide and that the composition of culture medium is the critical factor in evaluating neuroprotective effects in this model. Our data indicate that the neuroprotective potential of CA, ED, and EB may be revealed in vitro only under specific conditions, with their rather narrow micromolar concentrations, relevant cellular model, type of toxic agent, and exposure time. Nevertheless, of the three compounds tested, CA displayed the most consistent neuroprotective effects.
Collapse
Affiliation(s)
- Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Poland;
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Poland;
| |
Collapse
|
7
|
Atallah M, Yamashita T, Hu X, Hu X, Abe K. Edaravone Confers Neuroprotective, Anti-inflammatory, and Antioxidant Effects on the Fetal Brain of a Placental-ischemia Mouse Model. J Neuroimmune Pharmacol 2023; 18:640-656. [PMID: 37924374 DOI: 10.1007/s11481-023-10095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
Reduced uterine perfusion pressure (RUPP) is a well-established model which mimics many clinical features of preeclampsia (PE). Edaravone is a free radical scavenger with neuroprotective, antioxidant and anti-inflammatory effects against different models of cerebral ischemia. Therefore, we aimed to elucidate the different potential mechanisms through which PE affects fetal brain development using our previously established RUPP-placental ischemia mouse model. In addition, we investigated the neuroprotective effect of edaravone against the RUPP-induced fetal brain development alterations. On gestation day (GD) 13, pregnant mice were divided into four groups; sham (SV), edaravone (SE), RUPP (RV), and RUPP+edaravone (RE). SV and SE groups underwent sham surgeries, however, RV and RE groups were subjected to RUPP surgery via bilateral uterine ligation. Edaravone (3mg/kg) was injected via tail i.v. injection from GD 14-18. The fetal brains from different groups were collected on GD 18 and subjected to further investigations. The results showed that RUPP altered the structure of fetal brain cortex, induced neurodegeneration, increased the expression of the investigated pro-inflammatory markers; TNF-α, IL-6, IL-1β, and MMP-9. RUPP resulted in microglial and astrocyte activation in the fetal brains, in addition to upregulation of Hif-1α and iNOS. Edaravone conferred a neuroprotective effect via alleviating the inflammatory response, restoring the neuronal structure and decreasing oxidative stress in the developing fetal brain. In conclusion, RUPP-placental ischemia mouse model could be a useful tool to further understand the underlying mechanisms of PE-induced child neuronal alterations. Edaravone could be a potential adjuvant therapy during PE to protect the developing fetal brain. The current study investigated the effects of a placenta-induced ischemia mouse model using reduced uterine perfusion pressure (RUPP) surgery on the fetal brain development and the potential neuroprotective effects of the drug edaravone. The study found that the RUPP model caused neurodegeneration and a pro-inflammatory response in the developing fetal brain, as well as hypoxia and oxidative stress. However, maternal injection of edaravone showed a strong ability to protect against these detrimental effects and target multiple pathways associated with neuronal damage. The current study suggests that the RUPP model could be useful for further study of the impact of preeclampsia on fetal brain development and that edaravone may have potential as a therapy for protecting against this damage.
Collapse
Affiliation(s)
- Marwa Atallah
- Vertebrates Comparative Anatomy and Embryology, Zoology Department, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt.
| | - Toru Yamashita
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xiao Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Xinran Hu
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
- National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Liu P, Liu H, Wei L, Shi X, Wang W, Yan S, Zhou W, Zhang J, Han S. Docetaxel-induced cognitive impairment in rats can be ameliorated by edaravone dexborneol: Evidence from the indicators of biological behavior and anisotropic fraction. Front Neurosci 2023; 17:1167425. [PMID: 37077321 PMCID: PMC10106566 DOI: 10.3389/fnins.2023.1167425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
ObjectiveThis study aimed to investigate the effect of Edaravone Dexborneol (ED) on impaired learning and memory in docetaxel (DTX)-treated rats using cognitive behavior assessments and magnetic resonance diffusion tensor imaging (DTI).Materials and methodsIn total, 24 male Sprague–Dawley rats were divided into control, low-dose DTX (L-DTX) model, and high-dose DTX(H-DTX) model groups, with eight rats in each group, numbered 1–8. The rats were intraperitoneally injected with 1.5 mL of either normal saline (control group), or 3 mg/kg and 6 mg/kg DTX (L-DTX and H-DTX groups, respectively), once a week for 4 weeks. The learning and memory abilities of each group were tested using a water maze. At the end of the water maze test, rats 1–4 in each group were treated with ED (3 mg/kg, 1 mL), and rats 5–8 were injected with an equal volume of normal saline once a day for 2 weeks. The learning and memory abilities of each group were evaluated again using the water maze test, and the image differences in the hippocampus of each group were analyzed using DTI.Results(1) H-DTX group (32.33 ± 7.83) had the longest escape latency, followed by the L-DTX group (27.49 ± 7.32), and the Control group (24.52 ± 8.11) having the shortest, with the difference being statistically significant (p < 0.05). (2) Following ED treatment, compared to rats treated with normal saline, the escape latency of the L-DTX (12.00 ± 2.79 vs. 10.77 ± 3.97, p < 0.05), and the H-DTX (12.52 ± 3.69 vs. 9.11 ± 2.88, p < 0.05) rats were significantly shortened. The residence time in the target quadrant of H-DTX rats was significantly prolonged (40.49 ± 5.82 vs. 55.25 ± 6.78, p < 0.05). The CNS damage in the L-DTX rats was repaired to a certain extent during the interval between the two water maze tests (28.89 ± 7.92 vs. 12.00 ± 2.79, p < 0.05). (3) The fractional anisotropy (FA) value of DTI in the hippocampus of rats in the different groups showed variable trends. After treatment with ED, though the FA values of most areas in the hippocampus of rats in L-DTX and H-DTX groups were higher than before, they did not reach the normal level.ConclusionED can ameliorate the cognitive dysfunctions caused by DTX in rats by improving the learning and memory impairment, which is reflected in the recovery of biological behavior and DTI indicators of the hippocampus.
Collapse
Affiliation(s)
- Ping Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Hai Liu
- Department of Urology Surgery, The People’s Hospital of Qijiang District, Chongqing, China
| | - Lijun Wei
- Department of Urology Surgery, The People’s Hospital of Qijiang District, Chongqing, China
| | - Xun Shi
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Wei Wang
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
| | - Shengxiang Yan
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, China
| | - Wenya Zhou
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiangong Zhang
- Department of Nuclear Medicine, The First People’s Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, China
- *Correspondence: Jiangong Zhang, ; Suxia Han,
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
- *Correspondence: Jiangong Zhang, ; Suxia Han,
| |
Collapse
|
9
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Potential Diets to Improve Mitochondrial Activity in Amyotrophic Lateral Sclerosis. Diseases 2022; 10:diseases10040117. [PMID: 36547203 PMCID: PMC9777491 DOI: 10.3390/diseases10040117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, the pathogenesis of which is based on alternations in the mitochondria of motor neurons, causing their progressive death. A growing body of evidence shows that more efficient mitophagy could prevent and/or treat this disorder by suppressing mitochondrial dysfunction-induced oxidative stress and inflammation. Mitophagy has been considered one of the main mechanisms responsible for mitochondrial quality control. Since ALS is characterized by enormous oxidative stress, several edible phytochemicals that can activate mitophagy to remove damaged mitochondria could be considered a promising option to treat ALS by providing neuroprotection. Therefore, it is of great significance to explore the mechanisms of mitophagy in ALS and to understand the effects and/or molecular mechanisms of phytochemical action, which could translate into a treatment for neurodegenerative diseases, including ALS.
Collapse
|
10
|
Repurposed Edaravone, Metformin, and Perampanel as a Potential Treatment for Hypoxia-Ischemia Encephalopathy: An In Vitro Study. Biomedicines 2022; 10:biomedicines10123043. [PMID: 36551799 PMCID: PMC9775340 DOI: 10.3390/biomedicines10123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Hypoxia-ischemia encephalopathy results from the interruption of oxygen delivery and blood flow to the brain. In the developing brain, it can lead to a brain injury, which is associated with high mortality rates and comorbidities. The hippocampus is one of the brain regions that may be affected by hypoxia-ischemia with consequences on cognition. Unfortunately, clinically approved therapeutics are still scarce and limited. Therefore, in this study, we aimed to test three repurposed drugs with good pharmacological properties to evaluate if they can revert, or at least attenuate, the deleterious effects of hypoxia-ischemia in an in vitro model. Edaravone, perampanel, and metformin are used for the treatment of stroke and amyotrophic lateral sclerosis, some forms of epileptic status, and diabetes type 2, respectively. Through cell viability assays, morphology analysis, and detection of reactive oxygen species (ROS) production, in two different cell lines (HT-22 and SH-SY5Y), we found that edaravone and low concentrations of perampanel are able to attenuate cell damage induced by hypoxia and oxygen-glucose deprivation. Metformin did not attenuate hypoxic-induced events, at least in the initial phase. Among these repurposed drugs, edaravone emerged as the most efficient in the attenuation of events induced by hypoxia-ischemia, and the safest, since it did not exhibit significant cytotoxicity, even in high concentrations, and induced a decrease in ROS. Our results also reinforce the view that ROS and overexcitation play an important role in the pathophysiology of hypoxia-ischemia brain injury.
Collapse
|
11
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. A New Concept of Associations between Gut Microbiota, Immunity and Central Nervous System for the Innovative Treatment of Neurodegenerative Disorders. Metabolites 2022; 12:1052. [PMID: 36355135 PMCID: PMC9692629 DOI: 10.3390/metabo12111052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Nerve cell death accounts for various neurodegenerative disorders, in which altered immunity to the integrated central nervous system (CNS) might have destructive consequences. This undesirable immune response often affects the progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, schizophrenia and/or amyotrophic lateral sclerosis (ALS). It has been shown that commensal gut microbiota could influence the brain and/or several machineries of immune function. In other words, neurodegenerative disorders may be connected to the gut-brain-immune correlational system. The engrams in the brain could retain the information of a certain inflammation in the body which might be involved in the pathogenesis of neurodegenerative disorders. Tactics involving the use of probiotics and/or fecal microbiota transplantation (FMT) are now evolving as the most promising and/or valuable for the modification of the gut-brain-immune axis. More deliberation of this concept and the roles of gut microbiota would lead to the development of stupendous treatments for the prevention of, and/or therapeutics for, various intractable diseases including several neurodegenerative disorders.
Collapse
|
12
|
Schröder S, Wang M, Sima D, Schröder J, Zhu X, Zheng X, Liu L, Li T, Wang Q, Friedemann T, Liu T, Pan W. Slower progression of amyotrophic lateral sclerosis with external application of a Chinese herbal plaster–The randomized, placebo-controlled triple-blinded ALS-CHEPLA trial. Front Neurol 2022; 13:990802. [PMID: 36324375 PMCID: PMC9620479 DOI: 10.3389/fneur.2022.990802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by gradually increasing damage to the upper and lower motor neurons. However, definitive and efficacious treatment for ALS is not available, and oral intake in ALS patients with bulbar involvement is complicated due to swallowing difficulties. Hypothesis/purpose This study investigated whether the external plaster application of the herbal composition Ji-Wu-Li efficiently slows ALS progression because prior studies obtained promising evidence with oral herbal applications. Study design The randomized, triple-blinded study compared the efficacy, safety, and tolerability of the application of Ji-Wu-Li plaster (JWLP) with placebo plaster (PLAP). Methods In total, 120 patients with definite ALS, clinically probable ALS, or clinically probable laboratory-supported ALS were randomized in a 1:1 ratio to receive JWLP or PLAP. Patients were treated and observed for 20 weeks. The primary outcome was the ALSFRS-R score, while the secondary outcomes were the ALS-SSIT score and weight loss. Results The mean±SD decrease in the ALSFRS-R over 20 weeks differed by 0.84 points in a group comparison (JWLP, −4.44 ± 1.15; PLAP, −5.28 ± 1.98; p = 0.005). The mean increase in the ALS-SSIT over 20 weeks differed by 2.7 points in a group comparison (JWLP, 5.361.15; PLAP, 8.06 ± 1.72; p < 0.001). The mean weight loss over 20 weeks differed by 1.65 kg in a group comparison (JWLP, −3.98 ± 2.61; PLAP, −5.63 ± 3.17; p = 0.002). Local allergic dermatitis suspected as causal to the intervention occurred in 10 of 60 participants in the JWLP group and 9 of 60 participants in the PLAP group. Systemic adverse events were mild, temporary, and considered unrelated to the intervention. Conclusion The JWLP showed clinical efficacy in the progression of ALS, as measured by the ALSFRS-R, ALS-SSIT, and weight loss in a randomized, placebo-controlled trial. Because skin reactions occurred in both groups, the covering material needs improvement. All of the Ji Wu Li herbal ingredients regulate multiple mechanisms of neurodegeneration in ALS. Hence, JWLP may offer a promising and safe add-on therapy for ALS, particularly in patients with bulbar involvement, but a confirmative long-term multicentre study is required.
Collapse
Affiliation(s)
- Sven Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mingzhe Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dandan Sima
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Joana Schröder
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuying Zhu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanlu Zheng
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Liu
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Qinghai Hospital of Traditional Chinese Medicine, Xining, Qinghai, China
| | - Tingying Li
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiudong Wang
- Department of Integrative Neurology, Pudong Traditional Chinese Medicine Hospital, Shanghai, China
| | - Thomas Friedemann
- HanseMerkur Center for Traditional Chinese Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Thomas Friedemann
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Te Liu
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Weidong Pan
| |
Collapse
|
13
|
Deep Learning Reconstruction Algorithm-Based MRI Image Evaluation of Edaravone in the Treatment of Lower Limb Ischemia-Reperfusion Injury. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1408156. [PMID: 36105449 PMCID: PMC9452995 DOI: 10.1155/2022/1408156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/24/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
This research aimed to evaluate the therapeutic effect of edaravone on lower limb ischemia-reperfusion injury by MRI images of graph patch-based directional curvelet transform (GPBDCT), compression reconstruction algorithm. 200 patients with lower limb ischemia-reperfusion injury after replantation of severed limb were randomly divided into the observation group (edaravone treatment) and control group (Mailuoning injection treatment), with 100 cases in each group. MRI scanning and image processing using the GPBDCT algorithm were used to evaluate the therapeutic effect of the two groups of patients. The results showed that the signal noise ratio (SNR) (22.01), relative
norm error (RLNE) (0.0792), and matching degree
(0.9997) of the compression and reconstruction algorithm based on GPBDCT were superior to those of the conventional compression and reconstruction algorithm (
). MRI examination showed that the decrease of bleeding signal after treatment in the observation group was superior to that in the control group. The levels of superoxide dismutase (SOD) (15 ± 2.02), malondialdehyde (MDA) (2.27 ± 1.02), B cell lymphoma-2 (Bcl-2) (8.5 ± 1.02), Bcl-2-associated X (Bax) (3.7 ± 0.42), and Caspase-3 protein (35.9 ± 5.42) in the observation group before and after treatment were significantly higher than those in the control group (
). In conclusion, the GPBDCT-based compression reconstruction algorithm has a better effect on MRI image processing, and edaravone can better remove free radicals and alleviate apoptosis.
Collapse
|
14
|
Edaravone Attenuated Particulate Matter-Induced Lung Inflammation by Inhibiting ROS-NF-κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6908884. [PMID: 35502210 PMCID: PMC9056219 DOI: 10.1155/2022/6908884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Background Particulate matter (PM) exposure is related to mitochondria dysfunction and airway inflammation. Antioxidant drug edaravone (EDA) is reported to improve the occurrence and development of oxidative stress-related diseases. At present, there is no data on whether EDA can alleviate lung inflammation caused by PM. Methods The anti-inflammatory effects of EDA were investigated in urban PM-induced human bronchial epithelial cells (HBECs) and C57/BL6J mouse models. In vitro, its effects on the production of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and inflammatory cytokines were assessed by DCFH-DA staining, JC-1 assay, and real-time PCR, respectively. In vivo, the oxidant stress in lung tissues was assessed by dihydroethidium (DHE) staining and malondialdehyde (MDA) activity, and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were assessed by ELISA, respectively. Furthermore, the potential signaling pathways were studied by siRNA transfection and western blot. Results PM increased the expression of inflammatory cytokines and protein, including IL-6, IL-1α, IL-1β, and COX-2, while these alternations were significantly alleviated following EDA treatment in a dose-dependent manner. EDA treatment also alleviated the inflammatory responses in lung tissues of PM-exposed mice. We further showed mitochondrial dysfunction in PM-exposed HBECs and mice, which were reversed by EDA treatment. Moreover, the phosphorylation of NF-κB p65 in PM-exposed HBECs and mice was weakened by EDA. Transfection with NF-κB p65 siRNA further inhibited PM-induced inflammation in HBECs. Conclusion We demonstrated that EDA treatment had a protective role in PM-induced lung inflammation through maintaining mitochondrial balance and regulating the ROS-NF-κB p65 signaling pathway. This provided a new therapeutic method for PM-induced lung inflammation in the future.
Collapse
|
15
|
The association of Edaravone with shunt surgery improves behavioral performance, reduces astrocyte reaction and apoptosis, and promotes neuroprotection in young hydrocephalic rats. J Chem Neuroanat 2021; 119:102059. [PMID: 34896559 DOI: 10.1016/j.jchemneu.2021.102059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
The neuroprotective effect of Edaravone in young hydrocephalic rats associated with a CSF derivation system was evaluated. The drug has already been shown to be beneficial in experimental hydrocephalus, but the combination of this drug with shunt surgery has not yet been investigated. Fifty-seven-day-old Wistar rats submitted to hydrocephalus by injection of kaolin in the cisterna magna were used and divided into five groups: control (n = 10), hydrocephalic (n = 10), hydrocephalic treated with Edaravone (20 mg/kg/day) (n = 10), hydrocephalic treated with shunt (n = 10) and hydrocephalic treated with shunt and Edaravone (n = 10). Administration of the Edaravone was started 24 h after hydrocephalus induction (P1) and continued until the experimental endpoint (P21). The CSF shunt surgery was performed seven days after hydrocephalus induction (P7). Open-field tests, histological evaluation by hematoxylin and eosin, immunohistochemistry by Caspase-3 and GFAP, and ELISA biochemistry by GFAP were performed. Edaravone reduced reactive astrogliosis in the corpus callosum and germinal matrix (p < 0.05). When used alone or associated with CSF shunt surgery, the drug decreased the cell death process (p < 0.0001) and improved the morphological aspect of the astroglia (p < 0.05). The results showed that Edaravone associated with CSF bypass surgery promotes neuroprotection in young hydrocephalic rats by reducing reactive astrogliosis and decreasing cell death.
Collapse
|
16
|
Park HR, Yang EJ. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11091546. [PMID: 34573888 PMCID: PMC8465946 DOI: 10.3390/diagnostics11091546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.
Collapse
|
17
|
Salucci S, Bartoletti Stella A, Battistelli M, Burattini S, Bavelloni A, Cocco LI, Gobbi P, Faenza I. How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders. Biomolecules 2021; 11:1109. [PMID: 34439778 PMCID: PMC8391499 DOI: 10.3390/biom11081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Anna Bartoletti Stella
- Department of Diagnostic Experimental and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Sabrina Burattini
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Lucio Ildebrando Cocco
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| | - Pietro Gobbi
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino, Italy; (M.B.); (S.B.); (P.G.)
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy; (L.I.C.); (I.F.)
| |
Collapse
|
18
|
Bakhtiari M, Ghasemi N, Salehi H, Amirpour N, Kazemi M, Mardani M. Evaluation of Edaravone effects on the differentiation of human adipose derived stem cells into oligodendrocyte cells in multiple sclerosis disease in rats. Life Sci 2021; 282:119812. [PMID: 34265362 DOI: 10.1016/j.lfs.2021.119812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/28/2023]
Abstract
AIMS Among all the treatments for Multiple Sclerosis, stem cell transplantation, such as ADSCs, has attracted a great deal of scientific attention. On the other hand, Edaravone, as an antioxidant component, in combination with stem cells, could increase the survival and differentiation potential of stem cells. MAIN METHODS 42 rats were divided into: Control, Cuprizone (CPZ), Sham, Edaravone (Ed), hADSCs, and Ed/hADSCs groups. Following induction of cuprizone, induced MS model, behavioral tests were designed to evaluate motor function during. Luxal fast blue staining was done to measure the level of demyelination and remyelination. Immunofluorescent staining was used to evaluate the amount of MBP, OLIG2, and MOG proteins. The mRNA levels of human MBP, MOG, and OLIG2 and rat Mbp, Mog, and Olig2 were determined via RT-PCR. KEY FINDINGS Flow cytometry analysis exhibited that the extracted cells were positive for CD73 (93.8 ± 3%) and CD105 (91.6 ± 3%), yet negative for CD45 (2.06 ± 0.5%). Behavioral tests, unveiled a significant improvement in the Ed (P < 0.001), hADSCs (P < 0.001), and Ed/hADSCs (P < 0.001) groups compared to the others. In the Ed/hADSCs group, the myelin density was significantly higher than that in the Ed treated and hADSCs treated groups (P < 0.01). Edaravone and hADSCs increased the expression of Mbp, Mog, and Olig2 genes in the cuprizone rat models. Moreover, significant differences were seen between the Ed treated and hADSCs treated groups and the Ed/hADSCs group (P < 0.05 for Mbp and Olig2 and P < 0.01 for Mog). SIGNIFICANCE Edaravone in combination with hADSCs reduced demyelination and increased oligodendrogenesis in the cuprizone rat models.
Collapse
Affiliation(s)
- Mohammad Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
19
|
Fan SR, Ren TT, Yun MY, Lan R, Qin XY. Edaravone attenuates cadmium-induced toxicity by inhibiting oxidative stress and inflammation in ICR mice. Neurotoxicology 2021; 86:1-9. [PMID: 34174317 DOI: 10.1016/j.neuro.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023]
Abstract
The neurotoxicity caused by cadmium (Cd) is well known in humans and experimental animals. However, there is no effective treatment for its toxicity. In this study, we established Cd toxicity models in cultured cells or mice to investigate the detoxification effect of edaravone (Eda). We found that Eda protected GL261 cells from Cd toxicity and prevented the loss of cell viability. In Cd-exposed mice, liver, kidney and testicular damage, as well as cognitive dysfunction were observed. Oxidative stress and inflammatory responses, such as decreased SOD and CAT, increased LDH and MDA, and abnormal changes in the inflammatory factors TNF-α, IL-1β, IL-6 and IL-10 were detected in serum and brain tissue. Eda protected mice from Cd-induced toxicity and abrogated oxidative stress and inflammatory responses. Also, Eda prevented inflammatory activation of microglia and astrocytes and was accompanied by restoration of the neuronal marker protein MAP2, indicating restoration of neuronal function. In addition, the BDNF-TrkB/Akt and Notch/HES-1 signaling axes were involved in the response of Eda to the elimination of Cd toxicity. In conclusion, Eda does contribute to the clearance of Cd-induced toxicity.
Collapse
Affiliation(s)
- Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Teng-Teng Ren
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Miao-Ying Yun
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
20
|
Wu HT, Yu Y, Li XX, Lang XY, Gu RZ, Fan SR, Fang X, Bai JP, Lan R, Qin XY. Edaravone attenuates H 2O 2 or glutamate-induced toxicity in hippocampal neurons and improves AlCl 3/D-galactose induced cognitive impairment in mice. Neurotoxicology 2021; 85:68-78. [PMID: 34004234 DOI: 10.1016/j.neuro.2021.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
Edaravone (Eda) is a free radical scavenger used in clinical trials for the treatment of ischemic stroke and amyotrophic lateral sclerosis. However, how Eda exerts its neuroprotective effects remains to be elucidated. We investigated the neuroprotective effects of Eda in cultured hippocampal neurons and in a mouse model of AlCl3/D-galactose-induced cognitive impairment. Eda protected hippocampal neurons by eliminating H2O2 or glutamate-induced toxicity, leading to decreased cell viability and neurite shortening. Consistently, Eda restored impaired levels of BDNF, FGF2 and their associated signaling axes (including TrkB, p-Akt and Bcl-2) to attenuate neuronal death. In a mouse model of chemically-induced cognitive impairment, Eda restored the levels of BDNF, FGF2 and TrkB/Akt signaling axis to attenuate neuronal apoptosis, thereby ameliorating cognitive impairment. Meanwhile, the pro-inflammation was eliminated due to the restoration of pro-inflammatory factors such as TNF-α, IL-6, IL-1β, and NOS2. In summary, Eda is an effective drug for protecting neurons from neurotoxic injury. BDNF, FGF2, and their regulated pathways may be potential therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
- Huan-Tong Wu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yun Yu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xi-Xi Li
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xiu-Yuan Lang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Run-Ze Gu
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Sheng-Rui Fan
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xin Fang
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jin-Peng Bai
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Xiao-Yan Qin
- Key Laboratory of Ecology and Environment in Minority Areas National Ethnic Affairs Commission, Center for Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
21
|
Yang Y, Yi J, Pan M, Hu B, Duan H. Edaravone Alleviated Propofol-Induced Neurotoxicity in Developing Hippocampus by mBDNF/TrkB/PI3K Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1409-1422. [PMID: 33833500 PMCID: PMC8020057 DOI: 10.2147/dddt.s294557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Background To investigate the neuroprotective effect of edaravone on excessive-dose propofol-induced neurotoxicity in the hippocampus of newborn rats and HT22 cells. Methods Cell proliferation was investigated by assessing ki67 expression in the neural stem of the hippocampus of newborn rats and by cell counting kit-8 (CCK8) assay in HT22 cells. Cell apoptosis was assessed in vivo by caspase 3 detection in Western blots and measurement of apoptosis in neurons and glial cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Apoptosis was analyzed by flow cytometry in HT22 cells. The Morris water maze was used to evaluate the long-term learning and memory ability of rats. Inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). The expression of mBDNF/TrkB/PI3K pathway-related proteins was detected by Western blot and quantitative reverse transcription-polymerase chain reaction (q-RT PCR). Results In neonatal rat hippocampus and HT22 cells, edaravone increased cell proliferation and decreased cell apoptosis after excessive propofol-induced neurotoxicity. In addition, the levels of proinflammatory factors interleukin (IL)-6 and tumor necrosis factor (TNF)-α were reduced by edaravone pretreatment. The use of the tropomyosin receptor kinase B (TrkB) antagonist ANA-12 and TrkB agonist 7,8DHF with propofol groups showed that edaravone mitigated excessive propofol-induced neurotoxicity through the mature brain-derived neurotrophic factor (mBDNF)/TrkB/phosphoinositide 3-kinase (PI3K) pathway. However, the current dose of propofol did not significantly affect long-term learning and memory in rats. Conclusion Edaravone pretreatment ameliorated propofol-induced proliferation inhibition, neuroapoptosis, and neural inflammation by activating the mBDNF/TrkB/PI3K pathway.
Collapse
Affiliation(s)
- Yangliang Yang
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Jing Yi
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Mengzhi Pan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| | - Hongwei Duan
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, People's Republic of China
| |
Collapse
|