1
|
Richardson B, Goedert T, Quraishe S, Deinhardt K, Mudher A. How do neurons age? A focused review on the aging of the microtubular cytoskeleton. Neural Regen Res 2024; 19:1899-1907. [PMID: 38227514 DOI: 10.4103/1673-5374.390974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
Aging is the leading risk factor for Alzheimer's disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer's disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer's disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease.
Collapse
Affiliation(s)
- Brad Richardson
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Thomas Goedert
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Shmma Quraishe
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Katrin Deinhardt
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Amritpal Mudher
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
He Y, Liu B, Yang F, Yang Q, Xu B, Liu L, Chen Y. TAF15 downregulation contributes to the benefits of physical training on dendritic spines and working memory in aged mice. Aging Cell 2024; 23:e14244. [PMID: 38874013 PMCID: PMC11488317 DOI: 10.1111/acel.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Moderate physical training has been shown to hinder age-related memory decline. While the benefits of physical training on hippocampal memory function are well-documented, little is known about its impact on working memory, which is linked to the prelimbic cortex (PrL), one major subdivision of the prefrontal cortex. Here, we examined the effects of physical training on spatial working memory in a well-established animal model of physical training, starting at 16 months of age and continuing for 5 months (running wheel 1 h/day and 5 days/week). This training strategy improved spatial working memory in aged mice (22-month-old), which was accompanied by an increased spine density and a lower TAF15 expression in the PrL. Specifically, physical training affected both thin and mushroom-type spines on PrL pyramidal cells, and prevented age-related loss of spines on selective segments of apical dendritic branches. Correlation analysis revealed that increased TAF15-expression was detrimental to the dendritic spines. However, physical training downregulated TAF15 expression in the PrL, preserving the dendritic spines on PrL pyramidal cells and improving working memory in trained aged mice. When TAF15 was overexpressed in the PrL via a viral approach, the benefits of physical training on the dendritic spines and working memory were abolished. These data suggest that physical training at a moderate pace might downregulate TAF15 expression in the PrL, which favors the dendritic spines on PrL pyramidal cells, thereby improving spatial working memory.
Collapse
Affiliation(s)
- Yun He
- Department of Anatomy, School of MedicineYangtze UniversityJingzhouChina
| | - Benju Liu
- Department of Anatomy, School of MedicineYangtze UniversityJingzhouChina
| | - Fu‐Yuan Yang
- Health Science CenterYangtze UniversityJingzhouChina
| | - Qun Yang
- Department of Medical Imaging, School of MedicineYangtze UniversityJingzhouChina
| | - Benke Xu
- Department of Anatomy, School of MedicineYangtze UniversityJingzhouChina
| | - Lian Liu
- Department of Pharmacology, School of MedicineYangtze UniversityJingzhouChina
| | - Yuncai Chen
- Department of Anatomy, School of MedicineYangtze UniversityJingzhouChina
| |
Collapse
|
3
|
Gajdošová L, Katrenčíková B, Borbélyová V, Muchová J. The Effect of Omega-3 Fatty Acid Supplementation and Exercise on Locomotor Activity, Exploratory Activity, and Anxiety-Like Behavior in Adult and Aged Rats. Physiol Res 2024; 73:461-480. [PMID: 39012176 PMCID: PMC11299774 DOI: 10.33549/physiolres.935245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/13/2024] [Indexed: 07/18/2024] Open
Abstract
Aging is an inevitable and complex biological process that is associated with a gradual decline in physiological functions and a higher disease susceptibility. Omega-3 fatty acids, particularly docosahexaenoic acid, play a crucial role in maintaining brain health and their deficiency is linked to age-related cognitive decline. Combining omega-3-rich diets with exercise may enhance cognitive function more effectively, as both share overlapping neurobiological and physiological effects. This study aimed to evaluate the effect of exercise and omega-3 fatty acid (FA) supplementation in two different doses (160 mg/kg and 320 mg/kg) on anxiety-like behavior and cognitive abilities in both adult and aged rats. Male Wistar rats (4-5- and 23-24-month-old) were randomly divided into seven groups: 3-week control supplemented with placebo without exercise, low-dose omega-3 FAs, high-dose omega-3 FAs, 7-week control supplemented with placebo without exercise, exercise-only, low-dose omega-3 FAs with exercise, and high-dose omega-3 FAs with exercise. The administered oil contained omega-3 FAs with DHA:EPA in a ratio of 1.5:1. Our results indicate that aging negatively impacts the locomotor and exploratory activity of rats. In adult rats, a low dose of omega-3 FAs reduces locomotor activity when combined with exercise while high dose of omega-3 FAs reduces anxiety-like behavior and improves recognition memory when combined with exercise. The combination of omega-3 FAs and exercise had varying impacts on behavior, suggesting a need for further research in this area to fully understand their therapeutic efficacy in the context of cognitive changes associated with aging.
Collapse
Affiliation(s)
- L Gajdošová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 811 08 Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
4
|
Santana NNM, Silva EHA, Santos SFD, Bezerra LLF, da Silva MMO, Cavalcante JS, Fiuza FP, Morais PLADG, Engelberth RC. Neuronal Stability, Volumetric Changes, and Decrease in GFAP Expression of Marmoset (Callithrix jacchus) Subcortical Visual Nuclei During Aging. J Comp Neurol 2024; 532:e25649. [PMID: 38967410 DOI: 10.1002/cne.25649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.
Collapse
Affiliation(s)
- Nelyane N M Santana
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Eryck H A Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F Dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lyzandro L F Bezerra
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria M O da Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Felipe P Fiuza
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Brazil
| | - Paulo L A de G Morais
- Laboratory of Experimental Neurology, College of the Health Sciences, University of the State of Rio Grande do Norte, Mossoró, Brazil
| | - Rovena Clara Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
5
|
Acuña-Catalán D, Shah S, Wehrfritz C, Nomura M, Acevedo A, Olmos C, Quiroz G, Huerta H, Bons J, Ampuero E, Wyneken U, Sanhueza M, Arancibia F, Contreras D, Cárdenas JC, Morales B, Schilling B, Newman JC, González-Billault C. Ketogenic diet administration later in life improves memory by modifying the synaptic cortical proteome via the PKA signaling pathway in aging mice. Cell Rep Med 2024; 5:101593. [PMID: 38843842 PMCID: PMC11228662 DOI: 10.1016/j.xcrm.2024.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Aging compromises brain function leading to cognitive decline. A cyclic ketogenic diet (KD) improves memory in aged mice after long-term administration; however, short-term effects later in life and the molecular mechanisms that govern such changes remain unclear. Here, we explore the impact of a short-term KD treatment starting at elderly stage on brain function of aged mice. Behavioral testing and long-term potentiation (LTP) recordings reveal that KD improves working memory and hippocampal LTP. Furthermore, the synaptosome proteome of aged mice fed a KD long-term evidence changes predominantly at the presynaptic compartment associated to the protein kinase A (PKA) signaling pathway. These findings were corroborated in vivo by western blot analysis, with high BDNF abundance and PKA substrate phosphorylation. Overall, we show that a KD modifies brain function even when it is administered later in life and recapitulates molecular features of long-term administration, including the PKA signaling pathway, thus promoting synaptic plasticity at advanced age.
Collapse
Affiliation(s)
- Diego Acuña-Catalán
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Samah Shah
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | - Alejandro Acevedo
- Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile
| | - Cristina Olmos
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Gabriel Quiroz
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Hernán Huerta
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Estibaliz Ampuero
- Neurobiology of Behavior Laboratory, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Ursula Wyneken
- IMPACT, Center for Interventional Medicine for Precision and Advanced Cellular Therapy, and Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Arancibia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Julio César Cárdenas
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Department of Chemistry and Biochemistry and Center for Aging and Longevity Studies University of California, Santa Barbara, CA, USA
| | - Bernardo Morales
- Laboratory of Neuroscience, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | | | - John C Newman
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Christian González-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, USA; Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Novotný JS, Srt L, Stokin GB. Emotion regulation shows an age- and sex-specific moderating effect on the relationship between chronic stress and cognitive performance. Sci Rep 2024; 14:3028. [PMID: 38321166 PMCID: PMC10847168 DOI: 10.1038/s41598-024-52756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Despite the extensive knowledge about the effects of chronic stress on cognition, the underlying mechanisms remain unclear. We conducted a cross-sectional moderation analysis on a population-based sample of 596 adults to examine the age- and sex-specific role of emotion regulation (ER) in the relationship between chronic stress and cognitive performance using validated self-report questionnaires. While women showed no direct or moderated relationship between stress and cognition, men displayed a distinct age-related pattern where stress was negatively associated with poorer cognitive performance at older ages, and the onset of this relationship was detected earlier in men with ER problems. These results showed that suppression of emotions and lack of executive control of ER amplify the negative consequences of chronic stress and suggest that there are sex-specific differences in the decline of ability to cope with long-term exposure to stressors.
Collapse
Affiliation(s)
- Jan S Novotný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic
| | - Luka Srt
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Gorazd B Stokin
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 1333/5, 779 00, Olomouc, Czech Republic.
- Department of Neurology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK.
- Translational Neuroscience and Aging Program, Center for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
7
|
Mohammadpanah M, Farrokhi S, Sani M, Moghaddam MH, Bayat AH, Boroujeni ME, Abdollahifar MA, Fathi M, Vakili K, Nikpour F, Omran HS, Ahmadirad H, Ghorbani Z, Peyvandi AA, Aliaghaei A. Exposure to Δ9-tetrahydrocannabinol leads to a rise in caspase-3, morphological changes in microglial, and astrocyte reactivity in the cerebellum of rats. Toxicol Res (Camb) 2023; 12:1077-1094. [PMID: 38145099 PMCID: PMC10734605 DOI: 10.1093/toxres/tfad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023] Open
Abstract
The present study aimed to elucidate the effect of 10 mg/kg Δ9-tetrahydrocannabinol (THC) on cerebellar neuronal and glial morphology, apoptosis and inflammatory gene expression using a series of histological assays including stereology, Sholl analysis, immunofluorescence and real-time qPCR in male Wistar rats. A decrease in the number of Purkinje neurons and the thickness of the granular layer in the cerebellum was reported in THC-treated rats. Increased expression of Iba-1 and arborization of microglial processes were evidence of microgliosis and morphological changes in microglia. In addition, astrogliosis and changes in astrocyte morphology were other findings associated with THC administration. THC also led to an increase in caspase-3 positive cells and a decrease in autophagy and inflammatory gene expression such as mTOR, BECN1 and LAMP2. However, there were no significant changes in the volume of molecular layers and white matter, the spatial arrangement of granular layers and white matter, or the spatial arrangement of granular layers and white matter in the cerebellum. Taken together, our data showed both neuroprotective and neurodegenerative properties of THC in the cerebellum, which require further study in the future.
Collapse
Affiliation(s)
- Mojtaba Mohammadpanah
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheida Farrokhi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Department of Educational Neuroscience, Aras International Campus, University of Tabriz, Tabriz, Iran
| | - Meysam Hassani Moghaddam
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Eskandarian Boroujeni
- Laboratory of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi Omran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahmadirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Ghorbani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Firoozi A, Alizadeh A, Zarifkar A, Esmaeilpour T, Namavar MR, Alavi O, Dehghani F. Comparison of the efficacy of human umbilical cord mesenchymal stem cells conditioned medium and platelet-rich plasma on the hippocampus of STZ-induced rat model of Alzheimer's disease: A behavioral and stereological study. IBRO Neurosci Rep 2023; 15:209-217. [PMID: 37780033 PMCID: PMC10539893 DOI: 10.1016/j.ibneur.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is accompanied by progressive cognitive disorders and memory loss. This study aims to determine the combined effects of conditioned medium of human umbilical cord mesenchymal stem cells (CM) and platelet-rich plasma (PRP) on AD model rats. Methods Forty-eight male Sprague Dawley rats were classified into 6 groups: Control, Sham, AD, and three treatment groups. AD was induced by streptozotocin(STZ; 3 mg/kg, intracerebroventricular (ICV)) and the treatment groups received injections of CM [(200 µl, intraperitoneally (i.p.), and/or PRP (100 µl, intravenously(i.v)] for 8 days. Behavioral tests (Morris water maze and novel objective recognition) were used to assess learning ability and memory. At the end of the behavioral tests, the rats were sacrificed and their brain was entirely removed, sectioned, and stained with cresyl violet. The hippocampus volume and number of neurons were evaluated by stereological techniques. Results In the AD group, the discrimination ratio, time spent in the target zone, volume of Cornu Ammonis1 (CA1) and Dentate Gyrus (DG), and the number of pyramidal and granular cells decreased significantly compared to the Sham group. The mentioned parameters increased in the CM and CM+PRP groups compared to the AD group (p < 0.01). PRP did not have any noticeable effect on the examined parameters. Conclusions CM may be beneficial in the treatment of AD as it led to better improvement in STZ-induced learning and memory impairments as well as the structure of the hippocampus.
Collapse
Affiliation(s)
- Amin Firoozi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry & Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aliakbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Neuroscience Research Center and Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Esmaeilpour
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry & Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Alavi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Dehghani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry & Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Hosgorler F, Akkaya EC, Ilgin R, Koc B, Kizildag S, Gumus H, Uysal N. The ameliorative effect of midazolam on empathy-like behavior in old rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3183-3193. [PMID: 37209151 DOI: 10.1007/s00210-023-02526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Although studies suggest that cognitive functions in the elderly are impaired, elderly people tend to be more successful and wiser in solving emotional problems. In empathy-like behavior models, the observer rat rescues the distressed cage mate by displaying emotional and cognitive ability. The aim of the study was to investigate the changes in empathy-like behavior in older rats in comparison to adult rats. In addition, we wanted to determine the effects of alterations in neurochemicals (such as corticosterone, oxytocin, vasopressin, and their receptor levels) and emotional situations on this behavior. In our study, we initially completed empathy-like behavior tests and emotional tests (open field, elevated plus maze) and performed neurochemical examinations in the serum and brain tissues. In the second step of research, we applied a midazolam (benzodiazepine) treatment to examine the effect of anxiety on empathy-like behavior. In the old rats, we observed that empathy-like behavior deteriorated, and anxiety signs were more pronounced. We detected a positive correlation between the latency in empathy-like behavior and corticosterone levels and v1b receptor levels. The midazolam effect on empathy-like behavior was attenuated by flumazenil (a benzodiazepine receptor antagonist). The recordings of ultrasonic vocalization showed frequencies around 50 kHz emitted by the observer and this was associated with the expectation of social contact. Our results state that compared to adult rats, old rats were more concerned and failed during empathy-like behavior. Midazolam may improve this behavior by anxiolysis.
Collapse
Affiliation(s)
- Ferda Hosgorler
- Department of Physiology, School of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey.
| | - Erhan Caner Akkaya
- Department of Physiology, School of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey
| | - Rabia Ilgin
- Department of Physiology, School of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey
| | - Basar Koc
- Department of Physiology, School of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey
| | - Servet Kizildag
- College of Vocational School of Health Services, Dokuz Eylül University, Izmir, Turkey
| | - Hikmet Gumus
- School of Sport Sciences and Technology, Dokuz Eylül University, Izmir, Turkey
| | - Nazan Uysal
- Department of Physiology, School of Medicine, Dokuz Eylül University, Balçova, Izmir, Turkey
| |
Collapse
|
10
|
Graf A, Murray SH, Eltahir A, Patel S, Hansson AC, Spanagel R, McCormick CM. Acute and long-term sex-dependent effects of social instability stress on anxiety-like and social behaviours in Wistar rats. Behav Brain Res 2023; 438:114180. [PMID: 36349601 DOI: 10.1016/j.bbr.2022.114180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/02/2022]
Abstract
Adolescence is a critical time of social learning in which both the quantity and quality of social interactions shape adult behavior and social function. During adolescence, social instability such as disrupting or limiting social interactions can lead to negative life-long effects on mental health and well-being in humans. Animal models on social instability are critically important in understanding those underlying neurobiological mechanisms. However, studies in rats using these models have produced partly inconsistent results and can be difficult to generalize. Here we assessed in a sex and age consistent manner the long-term behavioural consequences of social instability stress (SIS - 1-hr daily isolation and change in cage mate between postnatal day (PD30-45)) in Wistar rats. Female and male rats underwent a battery of tests for anxiety-like, exploratory, and social behaviour over five days beginning either in adolescence (PD46) or in adulthood (PD70). Social instability led to reduced anxiety-like behaviour in the elevated plus maze in both sexes in adolescence and in adulthood. Social interactions were also reduced in rats that underwent SIS - an effect that was independent of sex and age when tested. SIS improved social recognition memory in both sexes whereas a sex-dependent effect was seen in the social novelty preference test where male rats that underwent SIS spent more time in social approach toward a novel peer than toward their cage mate. In comparison, control male and female groups did not differ in this test, in time spent with novel versus the cage mate. Thus, overall, social instability stress in Wistar rats altered the behavioural repertoire, with enduring alterations in social behaviour, enhanced exploratory behaviour, and reduced anxiety-like behaviour. In conclusion, the social instability stress paradigm may better be interpreted as a form of enrichment in Wistar rats than as a stressor.
Collapse
Affiliation(s)
- Akseli Graf
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shealin H Murray
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Akif Eltahir
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Smit Patel
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Cheryl M McCormick
- Centre for Neuroscience and Department of Psychology, Brock University, St. Catharines, Canada.
| |
Collapse
|
11
|
Kim JO, Jung DY, Min BI. Avocado peel extract: The effect of radiation-induced on neuroanatomical and behavioral changes in rats. J Chem Neuroanat 2023; 129:102240. [PMID: 36738850 DOI: 10.1016/j.jchemneu.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Avocado (Persea americana) contains a variety of physiological active substances such as polyphenol, which has excellent antioxidant properties. This study investigated the radioprotective effect of avocado peel extract on congenital malformations and on the behavior of Sprague-Dawley (SD) rats. Experimental animals were randomly classified into four groups: NC Group, normal control; PA Group, oral administration with avocado peel extract (200 mg/kg/day); IR Group, irradiation; and PA+IR Group, irradiation after orally administered with avocado peel extract. For irradiation, 2 Gy of 6 MV X-ray was used once for the whole body. After that, congenital malformations, histopathological evaluation of the brain, and behavioral evaluation were performed in the obtained offspring. Although the body weight of the offspring was decreased by radiation exposure, it was confirmed that the decrease in weight was smaller when treated with PA. As the congenital malformations, hydrocephalus, loss of eyes, and abnormal rat tail occurred, and the result for the PA+IR Group was significantly lower than that of IR Group. Histopathologically, the length of the cerebral cortex of the PA+IR Group was similar to that of the non-radiation group. It was confirmed that emotional and behavioral disorders such as anxiety and depression were improved in the open field test (OFT) and elevated plus maze (EPM) test. And proved that working memory and cognitive ability were enhanced in the novel object recognition (NOR) test and spontaneous alternation Y-maze (SAY) test. Therefore, it was concluded that avocado peel extract can reduce the incidence of congenital malformations and improve growth disorders, memory and cognitive abilities. In the future, based on these results, we will conduct research on the hippocampus and amygdala, which are major regions of the brain, and additional research on cell biology.
Collapse
Affiliation(s)
- Jang Oh Kim
- Department of Emergency and Disaster Management, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea
| | - Do Young Jung
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, 40, Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea
| | - Byung In Min
- Department of Emergency and Disaster Management, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea; Department of Nuclear Applied Engineering, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea.
| |
Collapse
|
12
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Akinbo OI, McNeal N, Hylin M, Hite N, Dagner A, Grippo AJ. The Influence of Environmental Enrichment on Affective and Neural Consequences of Social Isolation Across Development. AFFECTIVE SCIENCE 2022; 3:713-733. [PMID: 36519141 PMCID: PMC9743881 DOI: 10.1007/s42761-022-00131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/10/2022] [Indexed: 05/15/2023]
Abstract
Social stress is associated with depression and anxiety, physiological disruptions, and altered brain morphology in central stress circuitry across development. Environmental enrichment strategies may improve responses to social stress. Socially monogamous prairie voles exhibit analogous social and emotion-related behaviors to humans, with potential translational insight into interactions of social stress, age, and environmental enrichment. This study explored the effects of social isolation and environmental enrichment on behaviors related to depression and anxiety, physiological indicators of stress, and dendritic structural changes in amygdala and hippocampal subregions in young adult and aging prairie voles. Forty-nine male prairie voles were assigned to one of six groups divided by age (young adult vs. aging), social structure (paired vs. isolated), and housing environment (enriched vs. non-enriched). Following 4 weeks of these conditions, behaviors related to depression and anxiety were investigated in the forced swim test and elevated plus maze, body and adrenal weights were evaluated, and dendritic morphology analyses were conducted in hippocampus and amygdala subregions. Environmental enrichment decreased immobility duration in the forced swim test, increased open arm exploration in the elevated plus maze, and reduced adrenal/body weight ratio in aging and young adult prairie voles. Age and social isolation influenced dendritic morphology in the basolateral amygdala. Age, but not social isolation, influenced dendritic morphology in the hippocampal dentate gyrus. Environmental enrichment did not influence dendritic morphology in either brain region. These data may inform interventions to reduce the effects of social stressors and age-related central changes associated with affective behavioral consequences in humans.
Collapse
Affiliation(s)
- Oreoluwa I. Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Michael Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL 62901 USA
| | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| |
Collapse
|
14
|
Schreiber WB, Robinson-Drummer PA. Opportunities to Discuss Diversity-Related Topics in Neuroscience Courses. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2022; 20:A361-A375. [PMID: 39036724 PMCID: PMC11256382 DOI: 10.59390/aoin4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 07/23/2024]
Abstract
Diversity is a foundational topic in psychology, and APA recommends that diversity is covered across the psychology curriculum. Neuroscience courses face challenges with incorporating diversity-related topics owing to the historical lack of neuroscience research that focuses on diversity and the restricted range of diversity-related topics that neuroscience is typically associated with (i.e., health and disability status). This may limit students' learning of neuroscience's contributions towards understanding diversity. We review some specific examples of diversity-related topics that can be incorporated into neuroscience courses. These examples have been selected to include topics across the three major content domains of neuroscience (cellular/molecular, neuroanatomy/systems, and cognitive/behavioral), as well as across multiple diversity-related topics. Neuroscience instructors can use these examples to incorporate greater coverage of diversity-related topics within their courses and/or as points of inspiration for their own curricular additions. Providing systematic coverage of diversity-related topics in neuroscience courses highlights the ways neuroscience advances our understanding of human diversity and contributes to the educational objectives of psychology and neuroscience programs.
Collapse
|
15
|
Sotoudeh N, Namavar MR. Optimisation of ketamine‐xylazine anaesthetic dose and its association with changes in the dendritic spine of CA1 hippocampus in the young and old male and female Wistar rats. Vet Med Sci 2022; 8:2545-2552. [DOI: 10.1002/vms3.936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Narges Sotoudeh
- Department of Anatomical Sciences School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
- Histomorphometry and Stereology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Reza Namavar
- Department of Anatomical Sciences School of Medicine, Shiraz University of Medical Sciences Shiraz Iran
- Clinical Neurology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
16
|
Jiang J, Sheng C, Chen G, Liu C, Jin S, Li L, Jiang X, Han Y. Glucose metabolism patterns: A potential index to characterize brain ageing and predict high conversion risk into cognitive impairment. GeroScience 2022; 44:2319-2336. [PMID: 35581512 PMCID: PMC9616982 DOI: 10.1007/s11357-022-00588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/07/2022] [Indexed: 12/28/2022] Open
Abstract
Exploring individual hallmarks of brain ageing is important. Here, we propose the age-related glucose metabolism pattern (ARGMP) as a potential index to characterize brain ageing in cognitively normal (CN) elderly people. We collected 18F-fluorodeoxyglucose (18F-FDG) PET brain images from two independent cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI, N = 127) and the Xuanwu Hospital of Capital Medical University, Beijing, China (N = 84). During follow-up (mean 80.60 months), 23 participants in the ADNI cohort converted to cognitive impairment. ARGMPs were identified using the scaled subprofile model/principal component analysis method, and cross-validations were conducted in both independent cohorts. A survival analysis was further conducted to calculate the predictive effect of conversion risk by using ARGMPs. The results showed that ARGMPs were characterized by hypometabolism with increasing age primarily in the bilateral medial superior frontal gyrus, anterior cingulate and paracingulate gyri, caudate nucleus, and left supplementary motor area and hypermetabolism in part of the left inferior cerebellum. The expression network scores of ARGMPs were significantly associated with chronological age (R = 0.808, p < 0.001), which was validated in both the ADNI and Xuanwu cohorts. Individuals with higher network scores exhibited a better predictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068). These findings indicate that ARGMPs derived from CN participants may represent a novel index for characterizing brain ageing and predicting high conversion risk into cognitive impairment.
Collapse
Affiliation(s)
- Jiehui Jiang
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China.
| | - Can Sheng
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Guanqun Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunhua Liu
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Shichen Jin
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Lanlan Li
- Institute of Biomedical Engineering, School of Information and Communication Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueyan Jiang
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- German Centre for Neurodegenerative Disease, Clinical Research Group, Venusberg Campus 1, 53121, Bonn, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Clinical Research Centre for Geriatric Disorders, Beijing, 100053, China.
| |
Collapse
|
17
|
Sotoudeh N, Namavar MR, Bagheri F, Zarifkar A. The medial prefrontal cortex to the medial amygdala connections may affect the anxiety level in aged rats. Brain Behav 2022; 12:e2616. [PMID: 35605044 PMCID: PMC9304845 DOI: 10.1002/brb3.2616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 04/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aging changes brain function and behavior differently in male and female individuals. Changes in the medial prefrontal cortex (mPFC)-medial amygdala (MeA) connectivity affect anxiety-like behavior. OBJECTIVES Therefore, this study aimed to investigate the effect of aging and sex on the mPFC-MeA connection and its association with the level of anxiety-like behavior. METHODS We divided the Wistar rats into the male and female young rats (2-3-month-old) and male and female old rats (18-20 months old). First, the open field test (OFT) was performed, and then 80 nl of Fluoro-Gold (FG) was injected by stereotaxic surgery in the right or left MeA. After 10 days, the animals were perfused, their brain removed, coronal sections cut, and the number of FG-labeled cells in the right and left mPFC of each sample was estimated. RESULTS Based on our results, old animals revealed less anxiety-like behavior than young ones, and young females were less anxious than young males, too. Interestingly, MeA of old male rats received more fibers from the bilateral mPFC than young ones. Also, this connection was stronger in the young females than young males. Altogether, the present study indicated that old individuals had less anxiety-like behavior and stronger mPFC-MeA connection, and young female rats were less anxious and had a stronger connection of mPFC-amygdala than males of the same age. CONCLUSION Thus, it seems that there is a negative relationship between anxiety levels based on the rat's performance in the OFT apparatus and the mPFC-MeA connection.
Collapse
Affiliation(s)
- Narges Sotoudeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshid Bagheri
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Kuo TB, Yang CC, Hung CT, Chen CH, Lan TH, Li JY. Behavioural consistency and hippocampal theta rhythm can reflect age-related anxiety during the behaviour test. Exp Gerontol 2022; 163:111808. [DOI: 10.1016/j.exger.2022.111808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
|
19
|
Effect of dimethyl fumarate on the changes in the medial prefrontal cortex structure and behavior in the poly(I:C)-induced maternal immune activation model of schizophrenia in the male mice. Behav Brain Res 2022; 417:113581. [PMID: 34530042 DOI: 10.1016/j.bbr.2021.113581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The link between maternal immune activation (MIA) and the risk of developing schizophrenia (SCZ) later in life has been of major focus in recent years. This link could be bridged by activated inflammatory pathways and excessive cytokine release resulting in adverse effects on behavior, histology, and cytoarchitecture. The down-regulatory effects of immunomodulatory agents on the activated glial cells and their therapeutic effects on schizophrenic patients are consistent with this hypothesis. OBJECTIVE We investigated whether treatment with the anti-inflammatory drug dimethyl fumarate (DMF) could rescue impacts of prenatal exposure to polyinosinic:polycytidylic acid [poly (I:C)]. METHODS Pregnant dams were administered poly(I:C) at gestational day 9.5. Offspring born from these mothers were treated with DMF for fourteen consecutive days from postnatal day 80 and were assessed behaviorally before and after treatment. The brains were then stained with Cresyl Violet or Golgi-Cox. In addition to the estimation of stereological parameters, cytoarchitectural changes were also evaluated in the medial prefrontal cortex. RESULTS MIA caused some abnormalities in behavior, as well as changes in the number of neurons and non-neurons. These alterations were also extended to pyramidal layer III neurons with a significant decrease in dendritic complexity and spine density which DMF treatment could prevent these changes. Furthermore, DMF treatment was also effective against abnormal exploratory and depression-related behavior, but not the changes in the number of cells. CONCLUSION These findings support the idea of using anti-inflammatory agents as adjunctive therapy in patients with SCZ.
Collapse
|
20
|
Age-Related Individual Behavioural Characteristics of Adult Wistar Rats. Animals (Basel) 2021; 11:ani11082282. [PMID: 34438740 PMCID: PMC8388463 DOI: 10.3390/ani11082282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rats are considered adults from 2 to 5 months. During this period, they are used for experimentation in physiology and pharmacology. Adult rats, depending on their age, can be in a different physiological state, which can influence the results of experiments carried out on them. Despite this, age-related changes in adult rats have not yet been examined. Our results showed that as male and female rats progressed from 2 to 5 months of age there was a decrease in the level of motor and exploratory activities, and an increase in the level of anxiety-like behaviour. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes from 2 to 5 months of age. The results of this work should be taken into account when choosing the age of rats for conducting behavioural experiments. Abstract The aim of this work was to study age-related changes in the behaviour of adult Wistar rats using the open field (OF) and elevated plus maze (EPM) tests. Behavioural changes related to motor activity and anxiety were of particular interest. Results showed that as male and female rats progressed from 2 to 5 months of age, there was a decrease in the level of motor and exploratory activities and an increase in their level of anxiety. Age-related changes were dependent upon initial individual characteristics of behaviour. For example, animals that demonstrated high motor activity at 2 months become significantly less active by 5 months, and animals that showed a low level of anxiety at 2 months become more anxious by 5 months. Low-activity and high-anxiety rats did not show any significant age-related changes in OF and EPM tests from 2 to 5 months of age, except for a decrease in the number of rearings in the EPM. Thus, the behaviour of the same adult rat at 2 and 5 months of age is significantly different, which may lead to differences in the experimental results of physiological and pharmacological studies using adult animals of different ages.
Collapse
|
21
|
Wang YC, Liu P, Yue LY, Huang F, Xu YX, Zhu CQ. NRSF deficiency leads to abnormal postnatal development of dentate gyrus and impairment of progenitors in subgranular zone of hippocampus. Hippocampus 2021; 31:935-956. [PMID: 33960056 DOI: 10.1002/hipo.23336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Neuron-restrictive silencing factor (NRSF) is a zinc-finger transcription factor that regulates expression of a diverse set of genes. However, NRSF function in brain development still remains elusive. In the present study, we generated NRSF-conditional knockout (NRSF-cKO) mice by hGFAP-Cre/loxp system to study the effect of NRSF deficiency on brain development. Results showed that NRSF conditional knockout caused a smaller hippocampus and a thinner granule cell layer (GCL) in mice. Moreover, the reduction and disarrangement of GFAP+ cells in subgranular zone (SGZ) of NRSF-cKO mice was accompanied with the decreased number of premature neurons, neural stem cells (NSCs) and neural progenitor cells (NPCs), as well as compromising the majority of mitotically active cells. The analysis of postnatal development of hippocampus indicated the existence of an abnormality at postnatal day (P) 8, rather than at P1, in NRSF-cKO mice, although the densities of Ki67+ cells with mitotic ability in dentate gyrus were relatively unaffected at P1 and P8. Meanwhile, NRSF deficiency led to abnormal organization of SGZ at P8 during postnatal development. RNA-Seq analysis revealed 79 deregulated genes in hippocampus of NRSF-cKO mice at P8, which were involved in p53 signal transduction, neuron migration and negative regulation of cell proliferation, etc. The deregulation of p53 pathway in NRSF-cKO mice at P1 and P8 was evidenced, of which p21/Cdkn1a was accumulated in a portion of NSCs and NPCs in hippocampus during postnatal development. Together, these results, for the first time, revealed that NRSF could significantly influence the postnatal development of hippocampus, especially the formation of SGZ.
Collapse
Affiliation(s)
- Yan-Cong Wang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pu Liu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling-Yun Yue
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Xia Xu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cui-Qing Zhu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|