1
|
Moreira JM, Vieira SDS, Correia GDD, de Almeida LN, Finoto S, Brandl CA, Msumange AA, Galvão F, Pires de Oliveira KM, Caneppele Paveglio G, da Silva MM, Tirloni B, de Carvalho C, Roman D. Synthesis and Characterization of Novel Hydrazone Complexes: Exploring DNA/BSA Binding and Antimicrobial Potential. ACS OMEGA 2025; 10:7428-7440. [PMID: 40028106 PMCID: PMC11866212 DOI: 10.1021/acsomega.5c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Research involving coordination chemistry with Schiff base hydrazones finds applications in various areas, particularly in bioinorganic chemistry and biomedicine. This work aims to contribute to this field by employing the ligand (E)-2-((2-(benzothiazol-2-yl)hydrazone)methyl)phenol (H2L), synthesized via a condensation reaction with salicylic aldehyde. The ligand was isolated, characterized, and subsequently complexed with nickel(II) chloride and copper(II) nitrate, yielding three new crystalline complexes: [Ni(HL)2] (1), [Ni2(L)2(Py)2(EtOH)]·DMF·0.5H2O (2), and [Cu3(L#)2(DMF)2] (3) (where Py = pyridine). The metal complexes were structurally characterized using IR, UV-vis, TGA-DSC, and SCXRD techniques. These analyses confirmed the coordination of the ligand to the metal center via nitrogen and oxygen donor atoms, establishing the formation of mono-, bi-, and trinuclear complexes, respectively. DNA interaction studies were performed through spectroscopic titration and viscosity measurements, indicating that the complexes interact via an intercalative mode, with the interaction order being 3 > 2> 1. Partition coefficient analysis revealed that complexes 1 and 3 have a greater tendency to partition into the organic phase, suggesting their potential to cross lipid membranes, while complex 2 and the ligand are more hydrophilic. Fluorescence-based BSA binding studies demonstrated interactions between the complexes and the biomolecule, following the same order as observed in the DNA interaction. Biological tests showed that the ligand lacked antimicrobial and antiyeast activity, while the metal complexes are biologically active. Notably, the copper complex displayed the strongest antibacterial effect, likely due to copper's essential biological role.
Collapse
Affiliation(s)
- Jeniffer Meyer Moreira
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Sara dos Santos
Félix Vieira
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Gabriel de Deus Correia
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Leandro Nascimento de Almeida
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Simone Finoto
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Cândida Alíssia Brandl
- Department
of Chemistry, Federal University of Santa
Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Aujenus Albert Msumange
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Fernanda Galvão
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | | | - Guilherme Caneppele Paveglio
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
- Hydraulics
and Environmental Sanitation Laboratory, State University of Mato Grosso do Sul, Dourados, Mato Grosso do Sul 79804-970, Brazil
| | - Monize Martins da Silva
- Federal
University of Grande Dourados, Dourados, Mato Grosso do Sul 79804-970, Brazil
- State
University
of Amapá, Macapa, Amapá 68900-070, Brazil
| | - Bárbara Tirloni
- Department
of Chemistry, Federal University of Santa
Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cláudio
Teodoro de Carvalho
- Quality
Control and Thermal Analysis Laboratory, Federal University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| | - Daiane Roman
- Molecular
Synthesis and Modification Laboratory, Federal
University of Grande Dourados, Dourados, State of Mato Grosso do Sul 79804-970, Brazil
| |
Collapse
|
2
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Ghorbanpour M, Soltani B, Mota A, Jahanbin Sardroodi J, Mehdizadeh Aghdam E, Shayanfar A, Molavi O, Mohammad-Rezaei R, Ebadi-Nahari M, Ziegler CJ. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents. Biometals 2022; 35:1095-1111. [PMID: 36001216 DOI: 10.1007/s10534-022-00426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where (R = Et, Ph), and their Cu (II) complexes were synthesized and characterized by spectroscopic and physicochemical methods. The crystal structure of [Cu(PhNCSPzMe3)2] was determined by X-ray crystallography analysis and the results described a distorted square planar coordination geometry for this complex. Also, the cyclic voltammetry investigations indicated that the synthesized copper complex is an electrochemically active species. Moreover, the cytotoxic activity of all of the twenty synthesized compounds was evaluated using MTT assay against the MCF-7 (human breast carcinoma) cell lines, in vitro. Cu (II) complexes indicate significant cytotoxicity against the MCF-7 cell lines as compared with the free ligands. The docking studies showed that the copper complexes have better interactions with EGFR and CDK2 proteins, compared to the free ligands, and most of the studied compounds have a higher value of binding energy relative to the studied controls. The results of QSAR analysis suggest that dipole moment is in direct correlation with the obtained IC50 values, and it strongly impact the anticancer effects generated by the compounds. Our findings suggest that the developed copper complexes can be good candidates for further evaluations as chemotherapeutic agents in the treatment of cancer.
Collapse
Affiliation(s)
- Monireh Ghorbanpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Behzad Soltani
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran.
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Mohammad-Rezaei
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Mostafa Ebadi-Nahari
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | |
Collapse
|
4
|
Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. INORGANICS 2021. [DOI: 10.3390/inorganics9020017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In aqueous media, VIV- and VV-ions and compounds undergo chemical changes such as hydrolysis, ligand exchange and redox reactions that depend on pH and concentration of the vanadium species, and on the nature of the several components present. In particular, the behaviour of vanadium compounds in biological fluids depends on their environment and on concentration of the many potential ligands present. However, when reporting the biological action of a particular complex, often the possibility of chemical changes occurring has been neglected, and the modifications of the complex added are not taken into account. In this work, we highlight that as soon as most vanadium(IV) and vanadium(V) compounds are dissolved in a biological media, they undergo several types of chemical transformations, and these changes are particularly extensive at the low concentrations normally used in biological experiments. We also emphasize that in case of a biochemical interaction or effect, to determine binding constants or the active species and/or propose mechanisms of action, it is essential to evaluate its speciation in the media where it is acting. This is because the vanadium complex no longer exists in its initial form.
Collapse
|
5
|
He ZX, Huo JL, Gong YP, An Q, Zhang X, Qiao H, Yang FF, Zhang XH, Jiao LM, Liu HM, Ma LY, Zhao W. Design, synthesis and biological evaluation of novel thiosemicarbazone-indole derivatives targeting prostate cancer cells. Eur J Med Chem 2021; 210:112970. [PMID: 33153765 DOI: 10.1016/j.ejmech.2020.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/01/2022]
Abstract
To discover novel anticancer agents with potent and low toxicity, we designed and synthesized a range of new thiosemicarbazone-indole analogues based on lead compound 4 we reported previously. Most compounds displayed moderate to high anticancer activities against five tested tumor cells (PC3, EC109, DU-145, MGC803, MCF-7). Specifically, the represented compound 16f possessed strong antiproliferative potency and high selectivity toward PC3 cells with the IC50 value of 0.054 μM, compared with normal WPMY-1 cells with the IC50 value of 19.470 μM. Preliminary mechanism research indicated that compound 16f could significantly suppress prostate cancer cells (PC3, DU-145) growth and colony formation in a dose-dependent manner. Besides, derivative 16f induced G1/S cycle arrest and apoptosis, which may be related to ROS accumulation due to the activation of MAPK signaling pathway. Furthermore, molecule 16f could effectively inhibit tumor growth through a xenograft model bearing PC3 cells and had no evident toxicity in vivo. Overall, based on the biological activity evaluation, analogue 16f can be viewed as a potential lead compound for further development of novel anti-prostate cancer drug.
Collapse
Affiliation(s)
- Zhang-Xu He
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jin-Ling Huo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yun-Peng Gong
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi An
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hui Qiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xin-Hui Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Le-Min Jiao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
6
|
Banerjee A, Dash SP, Mohanty M, Sahu G, Sciortino G, Garribba E, Carvalho MFNN, Marques F, Costa Pessoa J, Kaminsky W, Brzezinski K, Dinda R. New V IV, V IVO, V VO, and V VO 2 Systems: Exploring their Interconversion in Solution, Protein Interactions, and Cytotoxicity. Inorg Chem 2020; 59:14042-14057. [PMID: 32914971 DOI: 10.1021/acs.inorgchem.0c01837] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synthesis and characterization of one oxidoethoxidovanadium(V) [VVO(L1)(OEt)] (1) and two nonoxidovanadium(IV) complexes, [VIV(L2-3)2] (2 and 3), with aroylhydrazone ligands incorporating naphthalene moieties, are reported. The synthesized oxido and nonoxido vanadium complexes are characterized by various physicochemical techniques, and their molecular structures are solved by single crystal X-ray diffraction (SC-XRD). This revealed that in 1 the geometry around the vanadium atom corresponds to a distorted square pyramid, with a O4N coordination sphere, whereas that of the two nonoxido VIV complexes 2 and 3 corresponds to a distorted trigonal prismatic arrangement with a O4N2 coordination sphere around each "bare" vanadium center. In aqueous solution, the VVO moiety of 1 undergoes a change to VVO2 species, yielding [VVO2(L1)]- (1'), while the nonoxido VIV-compounds 2 and 3 are partly converted into their corresponding VIVO complexes, [VIVO(L2-3)(H2O)] (2' and 3'). Interaction of these VVO2, VIVO, and VIV systems with two model proteins, ubiquitin (Ub) and lysozyme (Lyz), is investigated through docking approaches, which suggest the potential binding sites: the interaction is covalent for species 2' and 3', with the binding to Glu16, Glu18, and Asp21 for Ub, and His15 for Lyz, and it is noncovalent for species 1', 2, and 3, with the surface residues of the proteins. The ligand precursors and complexes are also evaluated for their in vitro antiproliferative activity against ovarian (A2780) and prostate (PC3) human cancer cells and in normal fibroblasts (V79) to check the selectivity of the compounds for cancer cells.
Collapse
Affiliation(s)
- Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Subhashree P Dash
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Krzysztof Brzezinski
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
7
|
High Throughput Approaches to Unravel the Mechanism of Action of a New Vanadium-Based Compound against Trypanosoma cruzi. Bioinorg Chem Appl 2020; 2020:1634270. [PMID: 32351549 PMCID: PMC7171612 DOI: 10.1155/2020/1634270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Treatment for Chagas disease, a parasitosis caused by Trypanosoma cruzi, has always been based on two drugs, nifurtimox and benznidazole, despite the toxic side effects described after prolonged prescription. In this work, we study a new prospective antitrypanosomal drug based on vanadium, here named VIVO(5Brsal)(aminophen). We found a good IC50 value, (3.76 ± 0.08) μM, on CL Brener epimastigotes. The analysis of cell death mechanism allowed us to rule out the implication of a mechanism based on early apoptosis or necrosis. Recovery assays revealed a trypanostatic effect, accompanied by cell shape and motility alterations. An uptake mostly associated with the insoluble fraction of the parasites was deduced through vanadium determinations. Concordantly, no drastic changes of the parasite transcriptome were detected after 6 h of treatment. Instead, proteomic analysis uncovered the modulation of proteins involved in different processes such as energy and redox metabolism, transport systems, detoxifying pathways, ribosomal protein synthesis, and proteasome protein degradation. Overall, the results here presented lead us to propose that VIVO(5Brsal)(aminophen) exerts a trypanostatic effect on T. cruzi affecting parasite insoluble proteins.
Collapse
|
8
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
Affiliation(s)
- Edgar Del Carpio
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Unidad de Química Medicinal, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Lino Hernández
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Venezuela
| | - Carlos Ciangherotti
- Laboratorio de Neuropéptidos, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
- Laboratorio de Bioquímica, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Valentina Villalobos Coa
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Lissette Jiménez
- Facultad de ingeniería Química, Universidad de Carabobo, Venezuela
| | - Vito Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| |
Collapse
|
9
|
New heteroleptic oxidovanadium(V) complexes: synthesis, characterization and biological evaluation as potential agents against Trypanosoma cruzi. J Biol Inorg Chem 2018; 23:1265-1281. [DOI: 10.1007/s00775-018-1613-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
10
|
Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo. J Inorg Biochem 2018; 183:66-76. [PMID: 29558683 DOI: 10.1016/j.jinorgbio.2018.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 12/16/2022]
Abstract
Numerous studies have demonstrated that vanadium compounds are able to improve lipemia and triglyceridemia in both humans and animals. However, the molecular mechanism remains elusive. The present study was conducted to investigate the anti-hyperlipidemic effect of vanadium(IV) complex with 4-chlorodipicolinic acid (VOdipic-Cl)-induced autophagy on hepatic lipid accumulation. To explore the possible underlying mechanisms, primary rat hepatocytes, human hepatoma cell line HepG2, and liver tissue from C57BL/6 mice fed a high-fat diet (HFD) were used. In vitro, cultured primary rat hepatocytes were treated with palmitate (0.25, 0.5 and 0.75 mM) prior to VOdipic-Cl (50, 100, and 200 μM) for 24 h, respectively. In vivo, C57BL/6 mice were fed with high-fat diet for 16 weeks. VOdipic-Cl (10 mg V/kg body weight) was given by daily gavage for 4 weeks. In vitro results showed that VOdipic-Cl significantly inhibited lipid droplet formation by increasing the level of conversion and punctuation of microtubule-associated proteins light chain 3 (LC3) in a dose-dependent manner, and activated liver kinase B-1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. Confocal microscopy images also showed that VOdipic-Cl induced sequestration of lipid droplets (LDs) by autophagy. In vivo, VOdipic-Cl attenuated the increase in serum and liver triglyceride levels in the mice fed with high-fat diet, while significantly increased autophagy induction and activated LKB1 and AMPK phosphorylation in the liver. Taken together, these results suggest that VOdipic-Cl reduces hepatic lipid accumulation by inducing autophagy via the activation of LKB1/AMPK-dependent signaling pathway.
Collapse
|
11
|
Synthesis, characterization and biological activity of gallium(III) complexes with non-symmetrical NO-donor Schiff bases. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Rehder D. Implications of vanadium in technical applications and pharmaceutical issues. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Pape VF, Tóth S, Füredi A, Szebényi K, Lovrics A, Szabó P, Wiese M, Szakács G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur J Med Chem 2016; 117:335-54. [DOI: 10.1016/j.ejmech.2016.03.078] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
|
14
|
Utthra PP, Pravin N, Raman N. Scrutinizing the DNA damaging and antimicrobial abilities of triazole appended metal complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 158:136-44. [DOI: 10.1016/j.jphotobiol.2016.02.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
15
|
Abstract
Vanadium is omnipresent in trace amounts in the environment, in food and also in the human body, where it might serve as a regulator for phosphate-dependent proteins. Potential vanadium-based formulations--inorganic and coordination compounds with organic ligands--commonly underlie speciation in the body, that is, they are converted to vanadate(V), oxidovanadium(IV) and to complexes with the body's own ligand systems. Vanadium compounds have been shown to be potentially effective against diabetes Type 2, malign tumors including cancer, endemic tropical diseases (such as trypanosomiasis, leishmaniasis and amoebiasis), bacterial infections (tuberculosis and pneumonia) and HIV infections. Furthermore, vanadium drugs can be operative in cardio- and neuro-protection. So far, vanadium compounds have not yet been approved as pharmaceuticals for clinical use.
Collapse
|
16
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
17
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Trudu F, Amato F, Vaňhara P, Pivetta T, Peña-Méndez E, Havel J. Coordination compounds in cancer: Past, present and perspectives. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
19
|
Crystal structures of o , o ′-( N , N ′-dipicolinyldene)diazadiphenyl disulfide and its copper (II) complex: Antioxidant, antibacterial and DNA-binding properties. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Synthesis and characterization of redox non-innocent cobalt(III) complexes of a O,N,O donor ligand: Radical generation, semi-conductivity, antibacterial and anticancer activities. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|