1
|
Martins FM, Iglesias BA, Chaves OA, Gutknecht da Silva JL, Leal DBR, Back DF. Vanadium(V) complexes derived from triphenylphosphonium and hydrazides: cytotoxicity evaluation and interaction with biomolecules. Dalton Trans 2024; 53:8315-8327. [PMID: 38666341 DOI: 10.1039/d4dt00464g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.
Collapse
Affiliation(s)
- Francisco Mainardi Martins
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrin Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil
| | - Otávio Augusto Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga s/n, Coimbra, 3004-535, Portugal
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, 21040-361, Brazil
| | | | | | - Davi Fernando Back
- Laboratory of Inorganic Materials, Department of Chemistry, CCNE, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022; 454:214344. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Vanadate as a new substrate for nucleoside phosphorylases. J Biol Inorg Chem 2022; 27:221-227. [DOI: 10.1007/s00775-021-01923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
5
|
ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter. Molecules 2020; 25:molecules25225268. [PMID: 33198135 PMCID: PMC7698047 DOI: 10.3390/molecules25225268] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
Collapse
|
6
|
Treviño S, Diaz A. Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 2020; 208:111094. [PMID: 32438270 DOI: 10.1016/j.jinorgbio.2020.111094] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Since the 1970s, the biological role of vanadium compounds has been discussed as insulin-mimetic or insulin-enhancer agents. The action of vanadium compounds has been investigated to determine how they influence the insulin signaling pathway. Khan and coworkers proposed key proteins for the insulin pathway study, introducing the concept "critical nodes". In this review, we also considered critical kinases and phosphatases that participate in this pathway, which will permit a better comprehension of a critical node, where vanadium can act: a) insulin receptor, insulin receptor substrates, and protein tyrosine phosphatases; b) phosphatidylinositol 3'-kinase, 3-phosphoinositide-dependent protein kinase and mammalian target of rapamycin complex, protein kinase B, and phosphatase and tensin homolog; and c) insulin receptor substrates and mitogen-activated protein kinases, each node having specific negative modulators. Additionally, leptin signaling was considered because together with insulin, it modulates glucose and lipid homeostasis. Even in recent literature, the possibility of vanadium acting against metabolic diseases or cancer is confirmed although the mechanisms of action are not well understood because these critical nodes have not been systematically investigated. Through this review, we establish that vanadium compounds mainly act as phosphatase inhibitors and hypothesize on their capacity to affect kinases, which are critical to other hormones that also act on common parts of the insulin pathway.
Collapse
Affiliation(s)
- Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, 14 South. FCQ1, University City, Puebla, C.P. 72560, Mexico.
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, 22 South, FCQ9, University City, Puebla, C.P. 72560, Mexico.
| |
Collapse
|
7
|
Aihemaiti A, Jiang J, Gao Y, Meng Y, Zou Q, Yang M, Xu Y, Han S, Yan W, Tuerhong T. The effect of vanadium on essential element uptake of Setaria viridis' seedlings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:399-407. [PMID: 30818242 DOI: 10.1016/j.jenvman.2019.02.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
High concentrations of vanadium, a ubiquitous element in the environment, in growing media leads to deformation of root structure and leaf chlorosis and necrosis, consequently affecting the translocations of nutrients and essential elements. However, the effects of vanadium on essential element uptake, and the interactions of essential elements in the presence of vanadium, remain incompletely understood. To elucidate the effects of different concentrations of vanadium on major and trace essential elements and plant growth, a native plant species growing in a vanadium mining area, Setaria viridis (dog tail's grass), was incubated in solutions containing 0-55.8 mg/L vanadium. The shoot accumulation of four major essential elements and five trace essential elements was detected, and the root length and stem height were measured. The results showed that vanadium in soil solution enhanced the accumulation of all major essential elements in shoot. Vanadium concentrations lower than 47.4 mg/L showed an obvious positive (p < 0.05) effect on P accumulation and translocation. In the case of trace essential elements, there were threshold values for solution vanadium stimulation of element uptake. The threshold values for Cu and Zn, Fe, and Mo uptake were 4.3, 16.3, and 40.6 mg/L, respectively. When vanadium levels surpassed these values, accumulation was suppressed and the solution vanadium concentrations attenuated the solution-to-shoot translocation of most of the essential elements. Among the trace essential elements, translocation of Fe was obviously enhanced (p < 0.05) by vanadium. Solution vanadium also enhanced plant growth at lower concentrations and inhibited it at higher levels. The threshold values for stem height and root length were 36.8 and 16.3 mg/L, respectively. Concentrations of 40 and 55.8 mg/L vanadium in soil solution caused a 50% decrease in root length and stem height, respectively, showing that root length of Setaria viridis is more susceptible to vanadium toxicity than stem growth.
Collapse
Affiliation(s)
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Quan Zou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Meng Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yiwen Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiwei Yan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tuerxun Tuerhong
- College of Grassland and Environmental Science, Xinjiang Agricultural University, Urumqi, Xinjiang, 830052, China; School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Feder D, Gahan LR, McGeary RP, Guddat LW, Schenk G. The Binding Mode of an ADP Analogue to a Metallohydrolase Mimics the Likely Transition State. Chembiochem 2019; 20:1536-1540. [DOI: 10.1002/cbic.201900077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| |
Collapse
|
9
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
10
|
Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS One 2018; 13:e0201908. [PMID: 30092079 PMCID: PMC6085002 DOI: 10.1371/journal.pone.0201908] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/24/2018] [Indexed: 12/03/2022] Open
Abstract
Vanadium (V) can be absorbed by plants and regulate their growth and development, although contrasting effects have been reported among species and handling conditions. The objective of this work was to evaluate the beneficial effect of V on pepper plants (Capsicum annuum L.). The plants were grown in a hydroponic system with the application of four V concentrations (0, 5, 10, and 15 μM NH₄VO₃). Four weeks after the beginning of the treatments, growth, flowering, biomass, chlorophyll concentration, total amino acids, total soluble sugars, and nutrients were determined in leaves, stems, and roots. The application of 5 μM V increased plant growth, induced floral bud development, and accelerated flowering. The chlorophyll concentration varied according to the type of plant part analyzed. The concentrations of amino acids and sugars in leaves and roots were higher with 5 μM. With 10 and 15 μM V, the plants were smaller and showed toxicity symptoms. The K concentration in leaves decreased as the V dose increased (0 to 15 μM). However, 5 μM V increased the concentrations of N, P, K, Ca, Mg, Cu, Mn, and B, exclusively in stems. The application of 15 μM V decreased the concentrations of Mg and Mn in leaves, but increased those of P, Ca, Mg, Cu, and B in roots. We conclude that V has positive effects on pepper growth and development, as well as on the concentrations of amino acids and total sugars. V was antagonistic with K, Mg, and Mn in leaves, while in stems and roots, there was synergism with macro and micronutrients. Vanadium is a beneficial element with the potential to be used in biostimulation approaches of crops like pepper.
Collapse
|
11
|
McLauchlan CC, Murakami HA, Wallace CA, Crans DC. Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes. J Inorg Biochem 2018; 186:267-279. [PMID: 29990751 DOI: 10.1016/j.jinorgbio.2018.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022]
Abstract
Vanadium-dependent haloperoxidases are a class of enzymes that catalyze oxidation reactions with halides to form halogenated organic products and water. These enzymes include chloroperoxidase and bromoperoxidase, which have very different protein sequences and sizes, but regardless the coordination environment of the active sites is surprisingly constant. In this manuscript, the comparison of the coordination chemistry of V-containing-haloperoxidases of the trigonal bipyramidal geometry was done by data mining. The catalytic cycle imposes changes in the coordination geometry of the vanadium to accommodate the peroxidovanadium(V) intermediate in an environment we describe as a distorted square pyramidal geometry. During the catalytic cycle, this intermediate converts to a trigonal bipyramidal intermediate before losing the halogen and forming a tetrahedral vanadium-protein intermediate. Importantly, the catalysis is facilitated by a proton-relay system supplied by the second sphere coordination environment and the changes in the coordination environment of the vanadium(V) making this process unique among protein catalyzed processes. The analysis of the coordination chemistry shows that the active site is very tightly regulated with only minor changes in the coordination geometry. The coordination geometry in the protein structures deviates from that found for both small molecules crystalized in the absence of protein and the reported functional small molecule model compounds. At this time there are no examples reported of a structurally similar small molecule with the geometry observed for the peroxidovanadium(V) in the active site of the vanadium-containing haloperoxidases.
Collapse
Affiliation(s)
- Craig C McLauchlan
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA.
| | - Heide A Murakami
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig A Wallace
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328:70-83. [PMID: 27890939 PMCID: PMC5115158 DOI: 10.1016/j.ccr.2016.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing ("anti-diabetic") effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Collapse
Affiliation(s)
- Elisa Bellomo
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Kshetrimayum Birla Singh
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
13
|
Yamaguchi N, Yoshinaga M, Kamino K, Ueki T. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata. Zoolog Sci 2016; 33:266-71. [PMID: 27268980 DOI: 10.2108/zs150188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.
Collapse
Affiliation(s)
- Nobuo Yamaguchi
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan
| | - Masafumi Yoshinaga
- 2 Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Japan
| | - Kei Kamino
- 3 National Institute of Technology and Evaluation, Kazusa-Kamatari 2-5-8, Kisarazu city, Chiba 292-0818, Japan
| | - Tatsuya Ueki
- 1 Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Mukaishima-cho 2445, Onomichi city, Hiroshima 722-0073, Japan.,4 Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
Crans DC. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J Org Chem 2015; 80:11899-915. [PMID: 26544762 DOI: 10.1021/acs.joc.5b02229] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies of antidiabetic vanadium compounds, specifically the organic vanadate esters, are reviewed with regard to their chemistry and biological properties. The compounds are described from the perspective of how the fundamental chemistry and properties of organic vanadate esters impact their effects as inhibitors for phosphatases based on the structural information obtained from vanadium-phosphatase complexes. Vanadium compounds have been reported to have antidiabetic properties for more than a century. The structures and properties of organic vanadate complexes are reviewed, and the potency of such vanadium coordination complexes as antidiabetic agents is described. Because such compounds form spontaneously in aqueous environments, the reactions with most components in any assay or cellular environment has potential to be important and should be considered. Generally, the active form of vanadium remains elusive, although studies have been reported of a number of promising vanadium compounds. The description of the antidiabetic properties of vanadium compounds is described here in the context of recent characterization of vanadate-phosphatase protein structures by data mining. Organic vanadate ester compounds are generally four coordinate or five coordinate with the former being substrate analogues and the latter being transition-state analogue inhibitors. These studies demonstrated a framework for characterization of five-coordinate trigonal bipyramidal vanadium inhibitors by comparison with the reported vanadium-protein phosphatase complexes. The binding of the vanadium to the phosphatases is either as a five-coordinate exploded transition-state analogue or as a high energy intermediate, respectively. Even if potency as an inhibitor requires trigonal bipyramidal geometry of the vanadium when bound to the protein, such geometry can be achieved upon binding from compounds with other geometries. Desirable properties of ligands are identified and analyzed. Ligand interactions, as reported in one peptidic substrate, are favorable so that complementarity between phosphatase and coordinating ligand to the vanadium can be established resulting in a dramatic enhancement of the inhibitory potency. These considerations point to a frameshift in ligand design for vanadium complexes as phosphatase inhibitors and are consistent with other small molecule having much lower affinities. Combined, these studies do suggest that if effective delivery of potentially active antidiabetic compound such a the organic vanadate peptidic substrate was possible the toxicity problems currently reported for the salts and some of the complexes may be alleviated and dramatic enhancement of antidiabetic vanadium compounds may result.
Collapse
Affiliation(s)
- Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, Colorado State University , 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| |
Collapse
|
15
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Leblanc C, Vilter H, Fournier JB, Delage L, Potin P, Rebuffet E, Michel G, Solari P, Feiters M, Czjzek M. Vanadium haloperoxidases: From the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Levina A, McLeod AI, Gasparini SJ, Nguyen A, De Silva WGM, Aitken JB, Harris HH, Glover C, Johannessen B, Lay PA. Reactivity and Speciation of Anti-Diabetic Vanadium Complexes in Whole Blood and Its Components: The Important Role of Red Blood Cells. Inorg Chem 2015; 54:7753-66. [PMID: 26230577 DOI: 10.1021/acs.inorgchem.5b00665] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactions with blood components are crucial for controlling the antidiabetic, anticancer, and other biological activities of V(V) and V(IV) complexes. Despite extensive studies of V(V) and V(IV) reactions with the major blood proteins (albumin and transferrin), reactions with whole blood and red blood cells (RBC) have been studied rarely. A detailed speciation study of Na3[V(V)O4] (A), K4[V(IV)2O2(citr)2]·6H2O (B; citr = citrato(4-)); [V(IV)O(ma)2] (C; ma = maltolato(-)), and (NH4)[V(V)(O)2(dipic)] (D; dipic = pyridine-2,6-dicarboxylato(2-)) in whole rat blood, freshly isolated rat plasma, and commercial bovine serum using X-ray absorption near-edge structure (XANES) spectroscopy is reported. The latter two compounds are potential oral antidiabetic drugs, and the former two are likely to represent their typical decomposition products in gastrointestinal media. XANES spectral speciation was performed by principal component analysis and multiple linear regression techniques, and the distribution of V between RBC and plasma fractions was measured by electrothermal atomic absorption spectroscopy. Reactions of A, C, or D with whole blood (1.0 mM V, 1-6 h at 310 K) led to accumulation of ∼50% of total V in the RBC fraction (∼10% in the case of B), which indicated that RBC act as V carriers to peripheral organs. The spectra of V products in RBC were independent of the initial V complex, and were best fitted by a combination of V(IV)-carbohydrate (2-hydroxyacid moieties) and/or citrate (65-85%) and V(V)-protein (15-35%) models. The presence of RBC created a more reducing environment in the plasma fraction of whole blood compared with those in isolated plasma or serum, as shown by the differences in distribution of V(IV) and V(V) species in the reaction products of A-D in these media. At physiologically relevant V concentrations (<50 μM), this role of RBC may promote the formation of V(III)-transferrin as a major V carrier in the blood plasma. The results reported herein have broad implications for the roles of RBC in the transport and speciation of metal pro-drugs that have broad applications across medicine.
Collapse
Affiliation(s)
- Aviva Levina
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Andrew I McLeod
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Sylvia J Gasparini
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Annie Nguyen
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | - Jade B Aitken
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia.,‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Hugh H Harris
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Chris Glover
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Bernt Johannessen
- ‡Australian Synchrotron, 800 Blackburn Rd., Clayton VIC 3168, Australia
| | - Peter A Lay
- †School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
19
|
|
20
|
Nica S, Rudolph M, Lippold I, Buchholz A, Görls H, Plass W. Vanadium(V) complex with Schiff-base ligand containing a flexible amino side chain: Synthesis, structure and reactivity. J Inorg Biochem 2015; 147:193-203. [DOI: 10.1016/j.jinorgbio.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
|
21
|
Sánchez-Lombardo I, Alvarez S, McLauchlan CC, Crans DC. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. J Inorg Biochem 2015; 147:153-64. [PMID: 25953100 DOI: 10.1016/j.jinorgbio.2015.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Shape analysis of coordination complexes is well-suited to evaluate the subtle distortions in the trigonal bipyramidal (TBPY-5) geometry of vanadium coordinated in the active site of phosphatases and characterized by X-ray crystallography. Recent studies using the tau (τ) analysis support the assertion that vanadium is best described as a trigonal bipyramid, because this geometry is the ideal transition state geometry of the phosphate ester substrate hydrolysis (C.C. McLauchlan, B.J. Peters, G.R. Willsky, D.C. Crans, Coord. Chem. Rev. http://dx.doi.org/10.1016/j.ccr.2014.12.012 ; D.C. Crans, M.L. Tarlton, C.C. McLauchlan, Eur. J. Inorg. Chem. 2014, 4450-4468). Here we use continuous shape measures (CShM) analysis to investigate the structural space of the five-coordinate vanadium-phosphatase complexes associated with mechanistic transformations between the tetrahedral geometry and the five-coordinate high energy TBPY-5 geometry was discussed focusing on the protein tyrosine phosphatase 1B (PTP1B) enzyme. No evidence for square pyramidal geometries was observed in any vanadium-protein complexes. The shape analysis positioned the metal ion and the ligands in the active site reflecting the mechanism of the cleavage of the organic phosphate in a phosphatase. We identified the umbrella distortions to be directly on the reaction path between tetrahedral phosphate and the TBPY-5-types of high-energy species. The umbrella distortions of the trigonal bipyramid are therefore identified as being the most relevant types of transition state structures for the phosphoryl group transfer reactions for phosphatases and this may be related to the possibility that vanadium is an inhibitor for enzymes that support both exploded and five-coordinate transition states.
Collapse
Affiliation(s)
| | - Santiago Alvarez
- Departament de Química Inorganica, Institut de Química Teorica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franques, 1-11, 08028 Barcelona, Spain.
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790, USA
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|