1
|
Seddik RG, Rashidi FB, Salah-Eldin DS, Shoukry AA. Synthesis, Characterization, DNA Binding, Biological Significance, and Molecular Docking Approaches of a Palladium(II) Complex with Ciprofloxacin for More Efficient Therapy. Chem Biodivers 2024; 21:e202400415. [PMID: 39034296 DOI: 10.1002/cbdv.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
To evaluate the biotransformation and the mechanism of binding as well as the biological impact of metal-based- drugs involving Pd(II), known to have high potency and low toxicity for use as anticancer therapeutics, in the present study, a newly synthesized palladium (II) complex, [Pd(CPF)(OH2)2]2+ (where CPF is ciprofloxacin), has been synthesized and characterized and thoroughly evaluated for its antimicrobial properties. The interaction of the diaqua complex with CT-DNA and BSA was studied through various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, ethanol precipitation, and molecular docking studies. The results indicate that the complex exhibits a robust binding interaction with CT-DNA, possibly via minor groove binding and (or) electrostatic interactions. Furthermore, the complex displays good binding affinity towards BSA, indicating its potential as a target for DNA and BSA in biological media. The invitro cytotoxicity assay reveals that this complex can be classified as a promising cell growth inhibitor against MCF-7, HT-29, and A549. Thus, this newly synthesized palladium (II) complex is a promising candidate for further exploration as a potential anticancer therapeutic.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Science, Galala University, 43511, Suze, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Seddik RG, Shoukry AA, Rashidi FB, Salah-Eldin DS. Investigation on CT-DNA and Protein Interaction of New Pd(II) Complexes Involving Ceftazidime and 3-Amino-1,2,3-triazole: Synthesis, Characterization, Biological Impact, Anticancer Evaluation, and Molecular Docking Approaches. Chem Biodivers 2023; 20:e202301170. [PMID: 37850505 DOI: 10.1002/cbdv.202301170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Two new palladium (II) complexes, [Pd(CAZ)(OH2 )2 ]2+ (1) and [Pd(3-AT)(OH2 )2 ]2+ (2), (CAZ=ceftazidime, and 3-AT=amitrole) were synthesized and studied for their potential as anticancer drugs with low toxicity and high potency. To fully characterize these complexes, we conducted elemental analysis and FT-IR studies. Furthermore, we irradiated the complexes with Indian 60 Co gamma rays and thoroughly evaluated their antimicrobial properties. Our results demonstrate that the inhibitory activity of complexes was significantly enhanced against (G+) bacteria and fungi. Additionally, we probed the complexes' interaction with CT-DNA and BSA using various techniques, including UV-vis spectroscopy, thermal denaturation, viscometry, gel electrophoresis, and molecular docking studies. Our findings conclusively demonstrate that these complexes possess a strong binding interaction with CT-DNA via minor groove binding and/or electrostatic interactions, as well as excellent binding affinity to BSA. Finally, we conducted a cytotoxicity assay that clearly indicates these complexes hold immense promise as cell growth inhibitors against MCF-7 and HCT-116.
Collapse
Affiliation(s)
- Ramy G Seddik
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
- Faculty of Basic Science, Galala University, 43511, Suze, Egypt
| | - Azza A Shoukry
- Inorganic Chemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Doaa S Salah-Eldin
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
3
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Feizi-Dehnayebi M, Dehghanian E, Mansouri-Torshizi H. Biological activity of bis-(morpholineacetato)palladium(II) complex: Preparation, structural elucidation, cytotoxicity, DNA-/serum albumin-interaction, density functional theory, in-silico prediction and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121543. [PMID: 35797947 DOI: 10.1016/j.saa.2022.121543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In an effort to discover a novel potential bioactive compound, a mono-nuclear Pd(II) complex with an amino acid derivative as ligand was synthesized and characterized through experimental and computational methodologies. A square-planar configuration was suggested for palladium(II) complex utilizing density functional theory. MEP map and Mulliken atomic charge were detected electrophilic and nucleophilic regions of the compound for reactions. The lipophilicity and cytotoxic activity of the complex was more effective than cisplatin. Also, OSIRIS DataWarrior revealed proper oral bioavailability and good drug-likeness for the compound. In-vitro binding behavior of the Pd(II) complex with DNA and serum albumin (BSA) were fully determined via variety of procedures including fluorescence, UV-Vis, CD, viscosity, gel electrophoresis experiments and molecular simulation. The negative signs of ΔH° and ΔS° for Pd(II) complex-CT-DNA/-BSA systems indicated the existence of hydrogen bonding/van der Waals interactions for both binding systems. Additionally, docking simulation illustrated the interaction of Pd(II) complex with the minor groove of DNA and the hydrophobic cavity of the BSA (drug binding site I).
Collapse
Affiliation(s)
| | - Effat Dehghanian
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran.
| | | |
Collapse
|
5
|
|
6
|
Protein interaction and in vitro cytotoxicity studies of newly designed palladium (II) nitrate complexes: spectrochemical, theoretical and biological assessments. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Rani JJ, Jayaseeli AMI, Rajagopal S, Seenithurai S, Chai JD, Raja JD, Rajasekaran R. Synthesis, characterization, antimicrobial, BSA binding, DFT calculation, molecular docking and cytotoxicity of Ni(II) complexes with Schiff base ligands. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Saravanan A, Shyamsivappan S, Kalagatur NK, Suresh T, Maroli N, Bhuvanesh N, Kolandaivel P, Mohan PS. Application of real sample analysis and biosensing: Synthesis of new naphthyl derived chemosensor for detection of Al 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118684. [PMID: 32659705 DOI: 10.1016/j.saa.2020.118684] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
A new chemosensor (NANH) based on naphthyl moiety was synthesized with good selectivity and sensitivity towards Al3+ ions via the inhibition by operating through dual mechanisms like photo-induced electron transfer (PET) and excited-state intramolecular proton transfer (ESIPT). The synthesized NANH was validated by various techniques such as 1H, 13C NMR and mass spectrum. While prominent fluorescent enhancement was observed from the NANH upon binding with Al3+ ions, however, other metal ions have not responded in the emission spectrum. Detection limit and association constant of NANH for Al3+ were calculated as 1.2 × 10-7 M and 4.09 × 104 M-1 by using fluorescence titration method. Binding ratio (1:1) of NANH with Al3+ ions were proved by Job's plot and DFT studies. Furthermore, aluminium in variety of water samples was determined, and NANH could be used for biosensing of Al3+ in living cells.
Collapse
Affiliation(s)
- Arjunan Saravanan
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India; School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Selvaraj Shyamsivappan
- School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | - Thangaraj Suresh
- School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Nikhil Maroli
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India
| | - Nanjan Bhuvanesh
- Department of Chemistry, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamil Nadu, India
| | | | - Palathurai Subramaniam Mohan
- DRDO-BU CLS, Bharathiar University campus, Coimbatore 641 046, Tamil Nadu, India; School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
9
|
New Palladium(II) complexes with ONO chelated hydrazone ligand: Synthesis, characterization, DNA/BSA interaction, antioxidant and cytotoxicity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Espino J, Fernández-Delgado E, Estirado S, de la Cruz-Martinez F, Villa-Carballar S, Viñuelas-Zahínos E, Luna-Giles F, Pariente JA. Synthesis and structure of a new thiazoline-based palladium(II) complex that promotes cytotoxicity and apoptosis of human promyelocytic leukemia HL-60 cells. Sci Rep 2020; 10:16745. [PMID: 33028870 PMCID: PMC7542172 DOI: 10.1038/s41598-020-73488-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic agents in the treatment of different tumors but has high toxicity and side effects. Therefore, the synthesis of new chemotherapeutic agents is necessary, so that they are effective in the treatment of cancer while avoiding such toxicity. In this study, we have synthesized and characterized a palladium(II) complex, [PdCl2(µ-PyTT)2]Cl2·4H2O (PdPyTT), with 2-(2-pyridyl)imine-N-(2-thiazolin-2-yl)thiazolidine (PyTT) as a ligand; besides, its cytotoxicity and pro-apoptotic capacity was tested in human promyelocytic leukemia HL-60 cell line. Similar to cisplatin, PdPyTT produced a time- and dose-dependent decrease in cell viability. Additionally, the palladium complex increased both the proportion of cells with apoptotic morphology and the activation of caspase-3 and -9. PdPyTT, like cisplatin, also increased intracellular ROS production and DNA oxidative damage. Therefore, our findings demonstrated the promising application of palladium(II) complexes as novel anti-leukemic agents.
Collapse
Affiliation(s)
- Javier Espino
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, 06006, Badajoz, Spain
| | - Elena Fernández-Delgado
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, 06006, Badajoz, Spain
| | - Samuel Estirado
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, 06006, Badajoz, Spain
| | - Felipe de la Cruz-Martinez
- Departament of Organic and Inorganic Chemistry (Chemistry of Coordination Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Sergio Villa-Carballar
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, 06006, Badajoz, Spain
| | - Emilio Viñuelas-Zahínos
- Departament of Organic and Inorganic Chemistry (Chemistry of Coordination Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Francisco Luna-Giles
- Departament of Organic and Inorganic Chemistry (Chemistry of Coordination Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, 06006, Badajoz, Spain.
| |
Collapse
|
11
|
Satheeshkumar R, Wu J, Chandrasekaran R, Revathi K, Sparkes HA, Wang W. Synthesis of 2‐aminobenzophenone‐based Schiff base Pd(II) complexes: Investigation on crystal structure, biological behavior of DNA/protein‐binding, molecular docking, and
in vitro
anticancer activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajendran Satheeshkumar
- School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 China
- Departamento de Química Orgánica, Facultad de Química y de Farmacia Pontificia Universidad Católica de Chile Santiago de Chile 702843 Chile
| | - Jing Wu
- School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 China
| | | | - Kannan Revathi
- Department of Biotechnology Shri Sakthikailassh Women’s College Salem Tamil Nadu India
| | - Hazel A. Sparkes
- Department of Chemistry University of Bristol Cantock’s Close Bristol BS8 1TS UK
| | - Wen‐Long Wang
- School of Pharmaceutical Sciences Jiangnan University Wuxi 214122 China
| |
Collapse
|
12
|
Lighvan ZM, Khonakdar HA, Heydari A, Rafiee M, Jahromi MD, Derakhshani A, Momtazi‐Borojeni AA. Spectral and molecular docking studies of nucleic acids/protein binding interactions of a novel organometallic palladium (II) complex containing bioactive PTA ligands: Its synthesis, anticancer effects and encapsulation in albumin nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zohreh Mehri Lighvan
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
- Leibniz‐Institut für Polymerforschung Dresdene. V Hohe Straße 6, D‐01069 Dresden Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences Dúbravská cesta 9 Bratislava 845 41 Slovakia
| | - Mina Rafiee
- Department of Chemistry Isfahan University of Technology Isfahan 84156/83111 Iran
| | | | | | | |
Collapse
|
13
|
Zülfikaroğlu A. The synthesis, experimental and theoretical characterization of a Pd(II) complex from diacetyl monoxime isobutyrohydrazone. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
JANA SUBRATA, NASKAR RAHUL, MANNA CHANDANKUMAR, MONDAL TAPANKUMAR. Synthesis, characterization, X-ray structure and DNA binding study of palladium(II) complex with new thioether containing ONS donor ligand. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Li Y, Li Y, Wang N, Lin D, Liu X, Yang Y, Gao Q. Synthesis, DNA/BSA binding studies and in vitro biological assay of nickel(II) complexes incorporating tridentate aroylhydrazone and triphenylphosphine ligands. J Biomol Struct Dyn 2019; 38:4977-4996. [PMID: 31739745 DOI: 10.1080/07391102.2019.1694995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023]
Abstract
Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N'-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙- radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7 μM, which showed potent cytotoxic activity over standard drug cisplatin.
Collapse
Affiliation(s)
- Yun Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yueqin Li
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Nana Wang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Dong Lin
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Xiaohui Liu
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Yong Yang
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
| | - Qinwei Gao
- College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Salah BA, Kandil AT, Abd El-Nasser MG. Synthesis, molecular docking and computational studies of novel hydrazone complexes. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1683273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bahaa A. Salah
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - A. T. Kandil
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - M. G. Abd El-Nasser
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
17
|
Özbek N, Özdemir ÜÖ, Altun AF, Şahin E. Sulfonamide-derived hydrazone compounds and their Pd (II) complexes: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro antibacterial activity and computational studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Salah BA, Kandil AT, Abd El-Nasser MG. Synthesis, characterization, computational and biological activity of novel hydrazone complexes. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1080/16878507.2019.1678100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bahaa A. Salah
- Department of Chemistry, Helwan University, Cairo, Egypt
| | - A. T. Kandil
- Department of Chemistry, Helwan University, Cairo, Egypt
| | | |
Collapse
|
19
|
Teles CM, Lammoglia LC, Juliano MA, Ruiz ALTG, Candido TZ, de Carvalho JE, Lima CSP, Abbehausen C. Novel anticancer Pd II complexes: The effect of the conjugation of transferrin binding peptide and the nature of halogen coordinated on antitumor activity. J Inorg Biochem 2019; 199:110754. [PMID: 31401348 DOI: 10.1016/j.jinorgbio.2019.110754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 01/06/2023]
Abstract
A series of PdII complexes with bis-(2-pyridylmethyl)glycine as a ligand of formula [PdX(bis-(2-pyridylmethyl)glycine)] where X = Cl, Br, I were prepared and the effect of the halogen nature in the antitumor activity of eight tumorigenic and one non-tumorigenic cell line was evaluated. The chloride derivative was further functionalized with a transferrin receptor binding peptide, generating the first PdII based metallopeptide. Its antitumor activity was also evaluated. However, among all the complexes, the chloride and iodine parent compounds showed the lowest GI50 values in the panel evaluated, and lowest GI50 than cisplatin in several cell lines. In contrast, the bromine derivative showed higher values of GI50 than chloride and iodine (around 30 - 50 μM). The same trend was observed for the bovine serum albumin binding constant with higher values for iodine, chlorine, and bromine in this order. In aqueous solution, the chloride is exchanged by water while the bromine and iodine are not. DNA was evaluated as a target and showed no significative interaction for all the compounds. The results suggest sulfur-rich proteins and not DNA as a target. This report represents the first PdII metallopeptide reported, its evaluation in solution and antitumor activity. This work opens the possibilities for further functionalization of PdII complexes and the importance of the halogen coordination in the design of novel metallodrugs.
Collapse
Affiliation(s)
- C M Teles
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil
| | - L C Lammoglia
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - M A Juliano
- Universidade Federal de São Paulo, Escola Paulista de Medicina, UNIFESP, 04063-062 São Paulo, SP, Brazil
| | - A L T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - T Z Candido
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - J E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, UNICAMP, 13083-871 Campinas, SP, Brazil
| | - C S P Lima
- Faculty of Medical Sciences, University of Campinas, UNICAMP, 13083-970 Campinas, SP, Brazil
| | - C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
20
|
Thirunavukkarasu T, Sparkes HA, Natarajan K, Gnanasoundari V. ONO pincer-type palladium(II) complexes of heterocyclic hydrazone: Synthesis, characterization and biological evaluation. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Hazel A. Sparkes
- Department of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS UK
| | | | | |
Collapse
|
21
|
Thirunavukkarasu T, Sparkes HA, Natarajan K, Gnanasoundari V. Synthesis, characterization and biological studies of a novel Cu(II) Schiff base complex. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Thirunavukkarasu T, Sparkes HA, Balachandran C, Awale S, Natarajan K, Gnanasoundari VG. Bis(μ-chloro) bridged 1D Cu I and Cu II coordination polymer complex and mononuclear Cu II complex: Synthesis, crystal structure and biological properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 181:59-69. [PMID: 29510357 DOI: 10.1016/j.jphotobiol.2018.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/11/2018] [Indexed: 12/23/2022]
Abstract
A novel one-dimensional coordination polymer containing Cu(I)Cu(II) core with chloro bridge on Cu(I) and ligand bridge on Cu(II) ions (1) and a mononuclear Cu(II) complex (2) have been synthesized from the reactions of 3- and 4-methoxy-3-quinolin-3-ylimino-methyl-2-phenol with [CuCl2(PPh3)2]. The ligands and the complexes have been characterized by spectral and analytical methods. In addition, the structures of both the ligands and the copper complexes were confirmed by single crystal X-ray diffraction studies. In both complexes, the phenolic oxygen and azomethine nitrogen atom of the ligand coordinate to the copper ions in a monobasic bidentate manner resulting in an approximately square planar geometry around the copper ion. In the polymeric complex, the N atom of the quinoline ring is coordinated to Cu(I) in addition to the phenolic oxygen and azomethine nitrogen atom coordinating to Cu(II) ion, thus bridging Cu(I) and Cu(II) ions in the complex. The interactions of the compounds with calf thymus DNA (CT-DNA) have been followed by absorption and emission titration methods, which revealed that the compounds interact with CT-DNA through intercalation. Further, the interactions of the compounds with bovine serum albumin (BSA) were also investigated using UV-visible, fluorescence spectroscopic methods. The results indicated that complex 1 exhibited a stronger binding to CT-DNA and BSA than the free ligands and complex 2. In addition, the in vitro cytotoxicity experiment showed that complexes 1 and 2 exhibit potent cytotoxic properties against PANC-1and Hela cells. Moreover, while complex 1 showed prominent cytotoxic activity against both PANC-1 and Hela cells with IC50 of 17.91 and 11.67 μM, complex 2 showed moderate cytotoxic activities with IC50 of 25.13 and 16.41 μM in PANC-1 and Hela cells. Further, apoptosis was confirmed by fluorescence image using EB/AO reagent.
Collapse
Affiliation(s)
| | - Hazel A Sparkes
- Department of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - C Balachandran
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - S Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | |
Collapse
|
23
|
El-Saied FA, Shakdofa MM, Tabl ASE, Abd-Elzaher MM, Morsy N. Coordination versatility of N 2 O 4 polydentate hydrazonic ligand in Zn(II), Cu(II), Ni(II), Co(II), Mn(II) and Pd(II) complexes and antimicrobial evaluation. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2017. [DOI: 10.1016/j.bjbas.2017.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142:8-31. [PMID: 28442170 DOI: 10.1016/j.ejmech.2017.04.007] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted.
Collapse
Affiliation(s)
- Tatjana Lazarević
- University of Kragujevac, Faculty of Medicine, S. Marković 69, 34000, Kragujevac, Serbia
| | - Ana Rilak
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| | - Živadin D Bugarčić
- University of Kragujevac, Faculty of Science, R. Domanovića 12, P. O. Box 60, 34000 Kragujevac, Serbia.
| |
Collapse
|
25
|
|
26
|
Li Y, Yang Z, Zhou M, Li Y, He J, Wang X, Lin Z. Ni(ii) and Co(ii) complexes of an asymmetrical aroylhydrazone: synthesis, molecular structures, DNA binding, protein interaction, radical scavenging and cytotoxic activity. RSC Adv 2017. [DOI: 10.1039/c7ra05504h] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The DNA/BSA binding, antioxidant and cytotoxic activity of Ni(ii) and Co(ii) complexes bearing aroylhydrazone were investigated to induce apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yueqin Li
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Zhiwei Yang
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Minya Zhou
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Yun Li
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Jing He
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Xuehong Wang
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Zhengfeng Lin
- Inspection and Quarantine Technology Centre
- Hainan Entry-exit Inspection and Quarantine Bureau
- Haikou 570311
- P. R. China
| |
Collapse
|
27
|
Li Y, Yang Z, Zhou M, Li Y. Synthesis and crystal structure of new monometallic Ni(ii) and Co(ii) complexes with an asymmetrical aroylhydrazone: effects of the complexes on DNA/protein binding property, molecular docking, and in vitro anticancer activity. RSC Adv 2017. [DOI: 10.1039/c7ra10283f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic nickel and cobalt complexes containing asymmetrical aroylhydrazone were synthesized and their interactions with HS–DNA and BSA protein were investigated, which was supported by molecular docking studies.
Collapse
Affiliation(s)
- Yueqin Li
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass
| | - Zhiwei Yang
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Minya Zhou
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Yun Li
- School of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| |
Collapse
|