1
|
Chmur K, Brzeski J, Reghukmar S, Tesmar A, Sikorski A, Inkielewicz-Stępniak I, Wyrzykowski D. Structural, Physicochemical, and Biological Insights into Novel (Acetylacetonate)(Oxydiacetato)Oxidovanadium(IV) Complexes with N-Containing Aromatic Compounds. Chemistry 2025; 31:e202404496. [PMID: 39911089 DOI: 10.1002/chem.202404496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
The crystal structures of three novel oxidovanadium(IV) salts containing the [VO(acac)(oda)]- anion (acac=acetylacetonate, oda=oxydiacetate) and quinolinium ([QH]+), isoquinolinium ([(isoQ)H+) and acridinium ([(acr)H+)] counterions, of molecular formulas [QH][VO(acac)(oda)] (1), [(isoQ)H][VO(acac)(oda)](H2O) (2) and [(acr)H][VO(acac)(oda)](H2O)2 (3) are reported. Notably, these complexes represent the first structurally characterized salts comprising the heteroligand [VO(acac)(oda)]- complex anion. A comprehensive physicochemical characterization of the complexes in both solid state and solution is provided, with general discussions on the role of nitrogen-containing heterocyclic compounds on the structure of the resulting ternary oxidovanadium(IV) complexes. The experimental results were complemented by density functional theory (DFT) calculations to evaluate possible ligand conformations in the coordination sphere of V(IV). In addition, the nature of the bonds involved in the chelation of the vanadium(IV) cation is considered and a detailed assessment of the electron spin density is presented. Finally, the cytotoxic activity of the compounds was tested against breast (MDA-MB-231 and MCF-7) cancer cell lines to assess their potential use as chemotherapeutic agents in cancer therapy.
Collapse
Affiliation(s)
- Katarzyna Chmur
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
- QSAR Lab Ltd, Trzy Lipy 3, 80-172, Gdańsk, Poland
| | - Swathy Reghukmar
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Dębinki 7, Building 27, 80-211, Gdańsk, Poland
| | - Aleksandra Tesmar
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Dębinki 7, Building 27, 80-211, Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
2
|
Dinda R, Garribba E, Sanna D, Crans DC, Costa Pessoa J. Hydrolysis, Ligand Exchange, and Redox Properties of Vanadium Compounds: Implications of Solution Transformation on Biological, Therapeutic, and Environmental Applications. Chem Rev 2025; 125:1468-1603. [PMID: 39818783 DOI: 10.1021/acs.chemrev.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers. Vanadium has a versatile chemistry with interconvertible oxidation states, variable coordination number and geometry, and ability to form polyoxidovanadates with various nuclearity and structures. If a VC is added to a water-containing environment it can undergo hydrolysis, ligand-exchange, redox, and other types of changes, determined by the conditions and speciation chemistry of vanadium. Importantly, the solution is likely to differ from the VC introduced into the system and varies with concentration. Here, vanadium redox, hydrolytic and ligand-exchange chemical reactions, the influence of pH, concentration, salt, specific solutes, biomolecules, and VCs on the speciation are described. One of our goals with this work is highlight the need for assessment of the VC speciation, so that beneficial or toxic species might be identified and mechanisms of action be elucidated.
Collapse
Affiliation(s)
- Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100 Sassari, Italy
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Debbie C Crans
- Department Chemistry and Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy. Curr Opin Chem Biol 2021; 61:114-122. [PMID: 33422836 DOI: 10.1016/j.cbpa.2020.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022]
Abstract
Metal ions play an important role in diverse biological processes, and much of the basic knowledge derived from studying native bioinorganic systems are applied in the synthesis of new molecules with the aim of diagnosing and treating diseases. At first glance, metalloproteins and metallodrugs are very different systems, but metal ion coordination, redox chemistry and substrate binding play essential roles in advancing both of these research fields. In this article, we discuss recent metalloprotein and metallodrug studies where electron paramagnetic resonance spectroscopy served as a major tool to gain a better understanding of metal-based structures and their function.
Collapse
|
4
|
Crans DC, Koehn JT, Petry SM, Glover CM, Wijetunga A, Kaur R, Levina A, Lay PA. Hydrophobicity may enhance membrane affinity and anti-cancer effects of Schiff base vanadium(v) catecholate complexes. Dalton Trans 2019; 48:6383-6395. [PMID: 30941380 DOI: 10.1039/c9dt00601j] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anti-cancer activities of vanadium compounds have generated recent interest because of a combination of desirable properties for chemotherapy, i.e., strong cytotoxicities, anti-metastatic activities and relatively low systemic toxicities. Certain hydrophobic vanadium(v) Schiff base/catecholate compounds, which as shown herein, have increased stability in aqueous media and affinity for membrane interfaces. Depending on their hydrophobicity, they may be able to enter cells intact. In this manuscript, two hydrophobic V(v) catecholate substituted analogues, [VO(Hshed)(cat)] and [VO(Hshed)(dtb)], (Hshed = N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine, cat = pyrocatechol, and dtb = 3,5-di(tert-butyl)catechol and the vanadium(v) precursor [V(O)2(Hshed)]) were synthesized for their ability to interact with membranes and their anti-cancer effects. Using 51V and 1H NMR spectroscopy, the presence and location of the free ligand, H2shed, and the three V(v) complexes were examined in a model membrane microemulsion system. The stability of the three complexes was measured in aqueous solution, cell media and an inhomogeneous microemulsion system. Our results demonstrated that free ligand H2shed and the intact V(v) complexes associated with the interface but that the V-complexes hydrolyzed to some extent because oxovanadates were observed by 51V NMR spectroscopy and decreasing complex by absorption spectroscopy in cell media. When determining the effects of V(v) catecholate complexes on bone cancer cells, the strongest effects were observed with the more stable hydrophobic complex [VO(Hshed)(dtb)] that was able to best associate and penetrate the model membrane system intact. These studies are consistent with the membrane permeability studies being a good predictor for in vitro cytotoxicity assays because [VO(Hshed)(dtb)] can pass through the cellular membrane intact, which may enhance its anti-cancer activities.
Collapse
Affiliation(s)
- Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Xu J, Gong G, Huang X, Du W. Schiff base oxovanadium complexes resist the assembly behavior of human islet amyloid polypeptide. J Inorg Biochem 2018; 186:60-69. [PMID: 29857172 DOI: 10.1016/j.jinorgbio.2018.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
The misfolding and fibrillation of human islet amyloid polypeptide (hIAPP) is related to the pathologic process of type II diabetes mellitus (T2DM). The inhibitors of hIAPP aggregation include aromatic organic molecules, short peptides, and metal complexes. Vanadium complexes have been applied for the treatment of diabetes since the 19th century. However, the antidiabetes mechanism remains unclear. In this work, we used four Schiff base oxidovanadium(IV) complexes, namely VO(bhbb)·H2O (1, and ligand 1 H2bhbb, 2-(5-bromo-2-hydroxylbenzylideneamino) benzoic acid), VO(nhbb)·H2O (2, and lignad 2 H2nhbb, 2-(5-nitro-2-hydroxylbenzylideneamino) benzoic acid), VO(cpmp)2 (3, and ligand 3 Hcpmp, 4-chloro-2-(phenylimino) methyl) phenol), and VO(bpmp)2 (4, and ligand 4 Hbpmp, 4-bromo- 2-(phenylmino) methyl) phenol) to inhibit the fibril formation of hIAPP and reduce peptide-induced cytotoxicity. Results indicated that the four Schiff base oxidovanadium complexes effectively impeded hIAPP aggregation and disaggregated mature fibrils into monomers or oligomers. These V complexes also decreased hIAPP-induced cytotoxicity. Among the four V complexes, 1 is a promising candidate metallodrug considering its inhibitory effect, disaggregation ability, regulation of peptide-induced cytotoxicity, and binding affinity to the peptide. Our research provides a new outlook for the design of oxidovanadium complexes as effective inhibitors of hIAPP against T2DM.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
6
|
Malik BA, Mir JM. Synthesis, characterization and DFT aspects of some oxovanadium(IV) and manganese(II) complexes involving dehydroacetic acid and β-diketones. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1429600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bashir Ahmad Malik
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, India
| | - Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry & Pharmacy, R. D. University, Jabalpur, India
| |
Collapse
|