1
|
Patyal M, Kaur K, Bala N, Gupta N, Malik AK. Innovative lanthanide complexes: Shaping the future of cancer/ tumor chemotherapy. J Trace Elem Med Biol 2023; 80:127277. [PMID: 37572546 DOI: 10.1016/j.jtemb.2023.127277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Developing new therapeutic and diagnostic metals and metal complexes is a stunning example of how inorganic chemistry is rapidly becoming an essential part of modern medicine. More study of bio-coordination chemistry is needed to improve the design of compounds with fewer harmful side effects. Metal-containing drugs are widely utilized in the treatment of cancer. Platinum complexes are effective against some cancers, but new coordination compounds are being created with improved pharmacological properties and a broader spectrum of anticancer action. The coordination complexes of the 15 lanthanides or rare earth elements in the periodic table are crucial for diagnosing and treating cancer. Understanding and treating cancer requires the detection of binding lanthanide (III) ions or complexes to DNA and breaking DNA by these complexes. Current advances in lanthanide-based coordination complexes as anticancer treatments over the past five years are discussed in this study.
Collapse
Affiliation(s)
- Meenakshi Patyal
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Neeraj Bala
- Department of Chemistry, Patel Memorial National College, Punjab, India
| | - Nidhi Gupta
- Department of Chemistry, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
2
|
Raeisi Vanani A, Asadpour S, Aramesh-Boroujeni Z, Mobini Dehkordi M. Studying the interaction between the new neodymium (Nd) complex with the ligand of 1,10-phenanthroline with FS-DNA and BSA. Front Chem 2023; 11:1208503. [PMID: 37601904 PMCID: PMC10433770 DOI: 10.3389/fchem.2023.1208503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
To learn more about the chemotherapeutic and pharmacokinetic properties of a neodymium complex containing 1,10-phenanthroline (dafone), In vitro binding was investigated with bovine serum albumin and fish-salmon DNA, using a variety of molecular modeling research and biophysical approaches. A variety of spectroscopic techniques including fluorescence and absorption were used to investigate the interplay between DNA/BSA and the neodymium complex. The findings revealed that the Nd complex had a high affinity for BSA and DNA interplays through van der Waals powers. In addition, the binding of the Nd complex to FS-DNA mainly in the groove binding mode clearly reflects with iodide quenching studies, ethidium bromide (EtBr) exclusion assay, ionic strength effect, and viscosity studies. It was observed that the Nd complex binds to FS-DNA through a minor groove with 3.81 × 105 (M-1). Also, Kb for BSA at 298 K was 5.19×105 (M-1), indicating a relatively high affinity of the Nd complex for DNA and BSA. In addition, a competitive study of a docking investigation revealed that the neodymium complex interacts at BSA site III. The results obtained from the binding calculations are well consistent with the experimental findings. Also, cytotoxicity studies of Nd complex were performed in MCF-7 and A-549 cell lines and the results show that this new complex has a selective inhibitory effect on the growth of various cancer cells.
Collapse
Affiliation(s)
- Ahmad Raeisi Vanani
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | | | | |
Collapse
|
3
|
Heptacoordinated lanthanide(III) complexes based on 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine ligands (bbp, bmbp and bdmbp): Computational calculations, luminescent properties and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
|
5
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of parent and nano-encapsulated terbium(III) complex toward its photoluminescence properties, FS-DNA, BSA binding affinity, and biological applications. J Trace Elem Med Biol 2020; 61:126564. [PMID: 32485498 DOI: 10.1016/j.jtemb.2020.126564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a crucial need for finding and developing new compounds as the anticancer and antimicrobial agents with better activity, specific target, and less toxic side effects. OBJECTIVES Base on the potential anticancer properties of lanthanide complexes, in the paper, the biological applications of terbium (Tb) complex, containing 2,9-dimethyl- 1,10-phenanthroline (Me2Phen) such as anticancer, antimicrobial, DNA cleavage ability, the interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) was examined. METHODS The interaction of Tb-complex with BSA and DNA was studied by emission spectroscopy, absorption titration, viscosity measurement, CD spectroscopy, competitive experiments, and docking calculation. Also, the ability of this complex to cleave DNA was reported by gel electrophoresis. Tb-complex was concurrently screened for its antibacterial activities by different methods. Besides, the nanocarriers of Tb-complex (lipid nanoencapsulation (LNEP) and the starch nanoencapsulation (SNEP)), as active anticancer candidates, were prepared. MTT technique was applied to measure the antitumor properties of these compounds on human cancer cell lines. RESULTS The experimental and docking results suggest significant binding between DNA as well as BSA with terbium-complex. Besides, groove binding plays the main role in the binding of this compound with DNA and BSA. The competitive experiment with hemin demonstrated that the terbium complex was bound at site III of BSA, which was confirmed by the docking study. Also, Tb-complex was concurrently screened for its DNA cleavage, antimicrobial, and anticancer activities. The anticancer properties of LNEP and SNEP are more than the terbium compound. CONCLUSIONS Tb-complex can bond to DNA/BSA with high binding affinity. Base on biological applications of Tb-complex, it can be concluded that this complex and its nanocarriers can suggest as novel anticancer, antimicrobial candidates.
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Isfahan University of Medical Sciences, Isfahan, Iran; Department of Chemistry, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
6
|
Novel lanthanide(III) complex [LaL2(NO3) (H2O)2]·5H2O with 2-pyridine carboxaldehyde isonicotinoyl hydrazine exhibiting a 3D supramolecular topology 3,6T49. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Tăbăcaru A, Botezatu Dediu AV, Mihaela Dinică R, Cârâc G, Basliu V, Paula Cabral Campello M, Silva F, Pinto CI, Guerreiro JF, Martins M, Mendes F, Marques F. Biological properties of a new mixed lanthanide(III) complex incorporating a dypiridinium ylide. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Asadpour S, Aramesh-Boroujeni Z, Jahani S. In vitro anticancer activity of parent and nano-encapsulated samarium(iii) complex towards antimicrobial activity studies and FS-DNA/BSA binding affinity. RSC Adv 2020; 10:31979-31990. [PMID: 35518188 PMCID: PMC9056537 DOI: 10.1039/d0ra05280a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
Based on the potential anticancer properties of lanthanide complexes, the anticancer activity of the Sm(iii) complex containing a 2,2′-bipyridine ligand (bpy) and its interaction with FS-DNA (Fish-Salmon DNA) and BSA (Bovine Serum Albumin) were examined experimentally and by molecular docking in this paper. Absorption and fluorescence spectroscopic methods were used to define the thermodynamic parameters, binding constant (Kb), and the probable binding mechanism. It was concluded that the Sm complex interacts with FS-DNA through a minor groove with a Kb of 105 M−1. Also, the Kb for the BSA binding at 298 K was found to be 5.89 × 105 M−1, showing relatively a high tendency of the Sm complex to DNA and BSA. Besides, the Sm complex was docked to BSA and DNA by the autodock program. The results of the docking calculations were in good agreement with the experimental examinations. Additionally, the antifungal and antibacterial properties of this complex were investigated. The anticancer tests on the effect of the Sm complex, starch nano-encapsulation, and lipid nano-encapsulation in MCF-7 and A-549 cell lines were performed by the MTT method. It can be observed that the Sm complex and its nanocarriers presented a selective inhibitory effect on various cancer cell growths. The biological properties of the Sm-complex, such as its interaction with FS-DNA and BSA, anticancer, and antimicrobial activities were studied.![]()
Collapse
Affiliation(s)
- Saeid Asadpour
- Department of Chemistry
- Faculty of Sciences
- Shahrekord University
- Shahrekord 115
- Iran
| | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory
- AlZahra Hospital
- Isfahan University of Medical Sciences
- Iran
- Young Researchers and Elite Club
| | - Shohreh Jahani
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| |
Collapse
|
9
|
Meng T, Liu T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Mitochondria-localizing dicarbohydrazide Ln complexes and their mechanism of in vitro anticancer activity. Dalton Trans 2020; 49:4404-4415. [DOI: 10.1039/d0dt00210k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dicarbohydrazide Ln complexes trigger SK-OV-3/DDP cell apoptosis via a mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Tong Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| |
Collapse
|
10
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Aramesh N, Asadpour S, Noroozifar M. Experimental and theoretical investigations of Dy(III) complex with 2,2'-bipyridine ligand: DNA and BSA interactions and antimicrobial activity study. J Biomol Struct Dyn 2019; 38:4746-4763. [PMID: 31684852 DOI: 10.1080/07391102.2019.1689170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the interactions of a novel metal complex [Dy(bpy)2Cl3.OH2] (bpy is 2,2'-bipyridine) with fish salmon DNA (FS-DNA) and bovine serum albumin (BSA) were investigated by experimental and theoretical methods. All results suggested significant binding between the Dy(III) complex with FS-DNA and BSA. The binding constants (Kb), Stern-Volmer quenching constants (KSV) of Dy(III)-complex with FS-DNA and BSA at various temperatures as well as thermodynamic parameters using Van't Hoff equation were obtained. The experimental results from absorption, ionic strength, iodide ion quenching, ethidium bromide (EtBr) quenching studies and positive ΔH˚ and ΔS˚ suggested that hydrophobic groove-binding mode played a predominant role in the binding of Dy(III)-complex with FS-DNA. Indeed, the molecular docking results for DNA-binding were in agreement with experimental data. Besides, the results found from experimental and molecular modeling indicated that the Dy(III)-complex bound to BSA via Van der Waals interactions. Moreover, the results of competitive tests by phenylbutazone, ibuprofen, and hemin (as a site-I, site-II and site-III markers, respectively) considered that the site-III of BSA is the most possible binding site for Dy(III)-complex. In addition, Dy(III) complex was concurrently screened for its antimicrobial activities. The presented data provide a promising platform for the development of novel metal complexes that target nucleic acids and proteins with antimicrobial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Nahal Aramesh
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, Iran
| | - Saeid Asadpour
- Department of Chemistry, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Aramesh-Boroujeni Z, Jahani S, Khorasani-Motlagh M, Kerman K, Noroozifar M. Evaluation of DNA, BSA binding, DNA cleavage and antimicrobial activity of ytterbium(III) complex containing 2,2'-bipyridine ligand. J Biomol Struct Dyn 2019; 38:1711-1725. [DOI: 10.1080/07391102.2019.1617788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Shohreh Jahani
- Nano Bioeletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Meissam Noroozifar
- Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Zou HH, Meng T, Chen Q, Zhang YQ, Wang HL, Li B, Wang K, Chen ZL, Liang F. Bifunctional Mononuclear Dysprosium Complexes: Single-Ion Magnet Behaviors and Antitumor Activities. Inorg Chem 2019; 58:2286-2298. [DOI: 10.1021/acs.inorgchem.8b02250] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Qi Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People’s Republic of China
| | - Hai-Ling Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Wolong Road 1638, Nanyang 473061, People’s Republic of China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| | - Zi-Lu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Yucai Road 15, Guilin 541004, People’s Republic of China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Jiangan Road 12, Guilin 541004, People’s Republic of China
| |
Collapse
|