1
|
Liu C, de Haas T, Buda F, Bonnet S. Electron-Withdrawing Effects in Cobalt Porphyrin Catalysts Boost Homogeneous Photocatalytic Hydrogen Evolution in Neutral Aqueous Solutions. ACS Catal 2025; 15:4681-4697. [PMID: 40144672 PMCID: PMC11934257 DOI: 10.1021/acscatal.5c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
Molecular catalysts offer an ideal platform for conducting mechanistic studies of the hydrogen evolution reaction (HER) due to their electronic tunability. This study explores a series of anionic M=Co(III)- and M=Zn(II)-porphyrin complexes with electron-donating ([M(OMeP)] n-, [M(MeP)] n-) and electron-withdrawing ([M(F8P)] n-, [M(F16P)] n-) substituents. The activity of these complexes for the HER was analyzed in homogeneous photocatalytic conditions using [Ru(bpy)3]2+ as a photosensitizer under blue light (450 nm) irradiation. The substituent-induced electronic effects were found to tightly control the activity and mechanism of the photocatalytic HER. As expected, the electron-rich [Co(OMeP)]3- catalyst showed higher activity in acidic media (pH 4.1) with a maximum TOF of 7.2 ± 0.4 h-1 and TON of 175 ± 5 after 39.5 h. DFT calculations were performed to investigate the HER mechanism. H2 formation was found to initiate following proton-coupled reduction of a CoIII-H hydride intermediate in such conditions. More surprisingly, however, the electron-poor [Co(F16P)]3- catalyst was more active at neutral pH (7.0), achieving a maximum TOF of 6.7 ± 0.3 h-1 and TON of 70 ± 3 after 39.5 h. Instead of forming the CoIII-H hydride, an additional ligand-based reduction led to a ligand-protonated intermediate. This work demonstrates that electron-poor HER catalysts can outperform electron-rich catalysts near neutral pH conditions.
Collapse
Affiliation(s)
| | | | - Francesco Buda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2333CC Leiden, The
Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2333CC Leiden, The
Netherlands
| |
Collapse
|
2
|
Raj M, Padhi SK. Decoding the Catalytic Potential of Dinuclear 1 st-Row Transition Metal Complexes for Proton Reduction and Water Oxidation. CHEM REC 2025; 25:e202400170. [PMID: 39659073 DOI: 10.1002/tcr.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
The growing interest in renewable energy sources has led to a significant focus on artificial photosynthesis as a means of converting solar energy into lucrative and energy-dense carbonaceous fuels. First-row transition metals have thus been brought to light in the search for efficient and high-performance homogenous molecule catalysts that can accelerate energy transformation and reduce overpotentials during the catalytic process. Their dinuclear complexes have opportunities to enhance the efficiency and stability of these molecular catalysts, primarily for the hydrogen evolution reaction (HER) and water oxidation reaction (WOR). Recently, our group improved the catalytic activity, efficiencies, and stability of dinuclear molecular catalysts, particularly toward HER. Although one dinuclear complex has been tested for WOR, it demonstrated activity as water oxidation precatalysts. First-row transition metals are a great option for sustainable catalysis because they are readily available, reasonably priced, and have multifaceted coordination chemistry. Examples of these metals are cobalt, copper, and manganese. The structure-catalytic performance relationships of this first-row transition metal-based dinuclear catalysts are noteworthily interpreted in this account, providing avenues for optimizing their performance and advancing the development of sustainable and effective energy conversion technologies.
Collapse
Affiliation(s)
- Manaswini Raj
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
- Department of Chemistry, Presidency University, Itgalpura, Yelahanka, Bangalore, Karnataka, 560064, INDIA
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory, Science Block, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand, 826004, INDIA
| |
Collapse
|
3
|
Wu CT, Pan HR, Hsieh CT, Tsai YS, Liao PJ, Chiang SH, Chu CM, Shao WK, Lien YR, Chen YW, Kan TL, Wang VCC, Cheng MJ, Hsu HF. Square-Planar Nickel Bis(phosphinopyridyl) Complexes for Long-Lived Photocatalytic Hydrogen Evolution. JACS AU 2024; 4:3976-3987. [PMID: 39483239 PMCID: PMC11522921 DOI: 10.1021/jacsau.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024]
Abstract
Phosphinopyridyl ligands are used to synthesize a class of Ni(II) bis(chelate) complexes, which have been comprehensively characterized in both solid and solution phases. The structures display a square-planar configuration within the primary coordination sphere, with axially positioned labile binding sites. Their electrochemical data reveal two redox couples during the reduction process, suggesting the possibility of accessing two-electron reduction states. Significantly, these complexes serve as robust catalysts for homogeneous photocatalytic H2 evolution. In a system utilizing an organic photosensitizer and a sacrificial electron donor, an optimal turnover number of 27,100 is achieved in an alcohol-containing aqueous solution. A series of photophysical and electrochemical measurements were conducted to elucidate the reaction mechanism of photocatalytic hydrogen generation. Density function theory calculations propose a catalytic pathway involving two successive one-electron reduction steps, followed by two proton discharges. The sustained photocatalytic activity of these complexes stems from their distinct ligand system, which includes phosphine and pyridine donors that aid in stabilizing the low oxidation states of the Ni center.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hung-Ruei Pan
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Tien Hsieh
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Syuan Tsai
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Pei-Juan Liao
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shuo-Huan Chiang
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Che-Min Chu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Kai Shao
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Rong Lien
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Wei Chen
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Tsung-Lun Kan
- Instrument
Center of National Cheng Kung University, Tainan 701, Taiwan
| | - Vincent C.-C. Wang
- Department
of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Mu-Jeng Cheng
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hua-Fen Hsu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Zhang J, She P, Xu Q, Tian F, Rao H, Qin JS, Bonin J, Robert M. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst. CHEMSUSCHEM 2024; 17:e202301892. [PMID: 38324459 DOI: 10.1002/cssc.202301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fengkun Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| |
Collapse
|
5
|
Ali A, Verma RK, Das A, Paria S. Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction. Dalton Trans 2024; 53:8289-8297. [PMID: 38660950 DOI: 10.1039/d4dt00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid-base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of -1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s-1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s-1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions.
Collapse
Affiliation(s)
- Afsar Ali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Losada IB, Persson P. Photoredox matching of earth-abundant photosensitizers with hydrogen evolving catalysts by first-principles predictions. J Chem Phys 2024; 160:074302. [PMID: 38375904 DOI: 10.1063/5.0174837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Photoredox properties of several earth-abundant light-harvesting transition metal complexes in combination with cobalt-based proton reduction catalysts have been investigated computationally to assess the fundamental viability of different photocatalytic systems of current experimental interest. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations using several GGA (BP86, BLYP), hybrid-GGA (B3LYP, B3LYP*), hybrid meta-GGA (M06, TPSSh), and range-separated hybrid (ωB97X, CAM-B3LYP) functionals were used to calculate relevant ground and excited state reduction potentials for photosensitizers, catalysts, and sacrificial electron donors. Linear energy correction factors for the DFT/TD-DFT results that provide the best agreement with available experimental reference results were determined in order to provide more accurate predictions. Among the selection of functionals, the B3LYP* and TPSSh sets of correction parameters were determined to give the best redox potentials and excited states energies, ΔEexc, with errors of ∼0.2 eV. Linear corrections for both reduction and oxidation processes significantly improve the predictions for all the redox pairs. In particular, for TPSSh and B3LYP*, the calculated errors decrease by more than 0.5 V against experimental values for catalyst reduction potentials, photosensitizer oxidation potentials, and electron donor oxidation potentials. Energy-corrected TPSSh results were finally used to predict the energetics of complete photocatalytic cycles for the light-driven activation of selected proton reduction cobalt catalysts. These predictions demonstrate the broader usefulness of the adopted approach to systematically predict full photocycle behavior for first-row transition metal photosensitizer-catalyst combinations more broadly.
Collapse
Affiliation(s)
- Iria Bolaño Losada
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Petter Persson
- Division of Computational Chemistry, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
8
|
Prakash O, Lindh L, Gupta AK, Hoang Hai YT, Kaul N, Chábera P, Lindgren F, Ericsson T, Häggström L, Strand D, Yartsev A, Lomoth R, Persson P, Wärnmark K. Tailoring the Photophysical Properties of a Homoleptic Iron(II) Tetra N-Heterocyclic Carbene Complex by Attaching an Imidazolium Group to the (C ∧N ∧C) Pincer Ligand─A Comparative Study. Inorg Chem 2024; 63:2909-2918. [PMID: 38301278 PMCID: PMC10865346 DOI: 10.1021/acs.inorgchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
We here report the synthesis of the homoleptic iron(II) N-heterocyclic carbene (NHC) complex [Fe(miHpbmi)2](PF6)4 (miHpbmi = 4-((3-methyl-1H-imidazolium-1-yl)pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) and its electrochemical and photophysical properties. The introduction of the π-electron-withdrawing 3-methyl-1H-imidazol-3-ium-1-yl group into the NHC ligand framework resulted in stabilization of the metal-to-ligand charge transfer (MLCT) state and destabilization of the metal-centered (MC) states. This resulted in an improved excited-state lifetime of 16 ps compared to the 9 ps for the unsubstituted parent compound [Fe(pbmi)2](PF6)2 (pbmi = (pyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)) as well as a stronger MLCT absorption band extending more toward the red spectral region. However, compared to the carboxylic acid derivative [Fe(cpbmi)2](PF6)2 (cpbmi = 1,1'-(4-carboxypyridine-2,6-diyl)bis(3-methylimidazol-2-ylidene)), the excited-state lifetime of [Fe(miHpbmi)2](PF6)4 is the same, but both the extinction and the red shift are more pronounced for the former. Hence, this makes [Fe(miHpbmi)2](PF6)4 a promising pH-insensitive analogue of [Fe(cpbmi)2](PF6)2. Finally, the excited-state dynamics of the title compound [Fe(miHpbmi)2](PF6)4 was investigated in solvents with different viscosities, however, showing very little dependency of the depopulation of the excited states on the properties of the solvent used.
Collapse
Affiliation(s)
- Om Prakash
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Linnea Lindh
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arvind Kumar Gupta
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Yen Tran Hoang Hai
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Nidhi Kaul
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Pavel Chábera
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Fredrik Lindgren
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Tore Ericsson
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Lennart Häggström
- Department of Physics—Ångström
Laboratory, Uppsala University, Box 523, Uppsala SE-751
20, Sweden
| | - Daniel Strand
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Arkady Yartsev
- Chemical
Physics Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Reiner Lomoth
- Department
of Chemistry—Ångström Laboratory, Uppsala University, Box 523, Uppsala SE-751 20, Sweden
| | - Petter Persson
- Theoretical
Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Kenneth Wärnmark
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| |
Collapse
|
9
|
Exploring the Emergent Redox Chemistry of Pd(II) Nodes with Pendant Ferrocenes: From Precursors, through Building Blocks, to Self-Assemblies. INORGANICS 2023. [DOI: 10.3390/inorganics11030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Energy-relevant small molecule activations and related processes are often multi-electron in nature. Ferrocene is iconic for its well-behaved one-electron chemistry, and it is often used to impart redox activity to self-assembled architectures. When multiple ferrocenes are present as pendant groups in a single structure, they often behave as isolated sites with no separation of their redox events. Herein, we study a suite of molecules culminating in a self-assembled palladium(II) truncated tetrahedron (TT) with six pendant ferrocene moieties using the iron(III/II) couple to inform about the electronic structure and, in some cases, subsequent reactivity. Notably, although known ferrocene-containing metallacycles and cages show simple reversible redox chemistry, this TT undergoes a complex multi-step electrochemical mechanism upon oxidation. The electrochemical behavior was observed by voltammetric and spectroelectrochemical techniques and suggests that the initial Fc-centered oxidation is coupled to a subsequent change in species solubility and deposition of a film onto the working electrode, which is followed by a second separable electrochemical oxidation event. The complicated electrochemical behavior of this self-assembly reveals emergent properties resulting from organizing multiple ferrocene subunits into a discrete structure. We anticipate that such structures may provide the basis for multiple charge separation events to drive important processes related to energy capture, storage, and use, especially as the electronic communication between sites is further tuned.
Collapse
|
10
|
Ham R, Nielsen CJ, Pullen S, Reek JNH. Supramolecular Coordination Cages for Artificial Photosynthesis and Synthetic Photocatalysis. Chem Rev 2023; 123:5225-5261. [PMID: 36662702 PMCID: PMC10176487 DOI: 10.1021/acs.chemrev.2c00759] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Because sunlight is the most abundant energy source on earth, it has huge potential for practical applications ranging from sustainable energy supply to light driven chemistry. From a chemical perspective, excited states generated by light make thermodynamically uphill reactions possible, which forms the basis for energy storage into fuels. In addition, with light, open-shell species can be generated which open up new reaction pathways in organic synthesis. Crucial are photosensitizers, which absorb light and transfer energy to substrates by various mechanisms, processes that highly depend on the distance between the molecules involved. Supramolecular coordination cages are well studied and synthetically accessible reaction vessels with single cavities for guest binding, ensuring close proximity of different components. Due to high modularity of their size, shape, and the nature of metal centers and ligands, cages are ideal platforms to exploit preorganization in photocatalysis. Herein we focus on the application of supramolecular cages for photocatalysis in artificial photosynthesis and in organic photo(redox) catalysis. Finally, a brief overview of immobilization strategies for supramolecular cages provides tools for implementing cages into devices. This review provides inspiration for future design of photocatalytic supramolecular host-guest systems and their application in producing solar fuels and complex organic molecules.
Collapse
Affiliation(s)
- Rens Ham
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - C Jasslie Nielsen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XHAmsterdam, The Netherlands
| |
Collapse
|
11
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
12
|
Wang XY, He YQ, Wang M, Zhou Y, Li N, Song XR, Zhou ZZ, Tian WF, Xiao Q. Visible-light-driven proton reduction for semi-hydrogenation of alkynes via organophotoredox/manganese dual catalysis. RSC Adv 2022; 12:36138-36141. [PMID: 36545070 PMCID: PMC9761695 DOI: 10.1039/d2ra07920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Described here is a unprecedented organophotoredox/manganese dual catalyzed proton reduction and its application for semi-reduction of alkynes. The catalytic active pre-catalyst [Mn-1] can be feasibly be prepared on gram-scale from Mn(acac)2·2H2O in air. This dual catalytic protocol features noble-metal-free catalysts, simple ligand, and mild conditions. Besides, a unique ortho-halogen and -hydroxyl effect was observed to achieve high Z-stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yi Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Na Li
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal UniversityNanchangP. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| |
Collapse
|
13
|
Dolganov AV, Knyazev AV. Photochemical Production of Molecular Hydrogen in the Presence of Substituted Acridine Salts. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Exploration of Electronic and Non-Linear Optical Properties of Novel 4-Aryl-2-methylpyridine Based Compounds Synthesized via High-Yielding Pd(0) Catalysed Reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Kitamura T, Yamanishi K, Inoue S, Yan Y, Yano N, Kataoka Y, Handa M, Kawamoto T. Clamshell Palladium(II) Complexes: Suitable Precursors for Photocatalytic Hydrogen Production from Water. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takuma Kitamura
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Katsunori Yamanishi
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Satoshi Inoue
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Yin‐Nan Yan
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| | - Natsumi Yano
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Yusuke Kataoka
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Makoto Handa
- Department of Chemistry Graduate School of Natural Science and Technology Shimane University 1060 Nishikawatsu Matsue 690-8504 Japan
| | - Tatsuya Kawamoto
- Department of Chemistry Faculty of Science Kanagawa University 2946 Tsuchiya Hiratsuka 259-1293 Japan
| |
Collapse
|
16
|
Ledbetter K, Larsen CB, Lim H, Zoric MR, Koroidov S, Pemmaraju CD, Gaffney KJ, Cordones AA. Dissociation of Pyridinethiolate Ligands during Hydrogen Evolution Reactions of Ni-Based Catalysts: Evidence from X-ray Absorption Spectroscopy. Inorg Chem 2022; 61:9868-9876. [PMID: 35732599 PMCID: PMC9257748 DOI: 10.1021/acs.inorgchem.2c00167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The protonation of
several Ni-centered pyridine-2-thiolate photocatalysts
for hydrogen evolution is investigated using X-ray absorption spectroscopy
(XAS). While protonation of the pyridinethiolate ligand was previously
thought to result in partial dechelation from the metal at the pyridyl
N site, we instead observe complete dissociation of the protonated
ligand and replacement by solvent molecules. A combination of Ni K-edge
and S K-edge XAS of the catalyst Ni(bpy)(pyS)2 (bpy = 2,2′-bipyridine;
pyS = pyridine-2-thiolate) identifies the structure of the fully protonated
catalyst as a solvated [Ni(bpy)(DMF)4]2+ (DMF
= dimethylformamide) complex and the dissociated ligands as the N-protonated
2-thiopyridone (pyS-H). This surprising result is further supported
by UV–vis absorption spectroscopy and DFT calculations and
is demonstrated for additional catalyst structures and solvent environments
using a combination of XAS and UV–vis spectroscopy. Following
protonation, electrochemical measurements indicate that the solvated
Ni bipyridine complex acts as the primary electron-accepting species
during photocatalysis, resulting in separate protonated ligand and
reduced Ni species. The role of ligand dissociation is considered
in the larger context of the hydrogen evolution reaction (HER) mechanism.
As neither the pyS-H ligand nor the Ni bipyridine complex acts as
an efficient HER catalyst alone, the critical role of ligand coordination
is highlighted. This suggests that shifting the equilibrium toward
bound species by addition of excess protonated ligand (2-thiopyridone)
may improve the performance of pyridinethiolate-containing catalysts. Protonation of hydrogen-evolving Ni pyridinethiolate
catalysts
is investigated using X-ray absorption spectroscopy supported by UV−vis
absorption spectroscopy and density functional theory. While pyridinethiolate
ligand protonation was previously assumed to result in a partially
coordinated species with a dissociated Ni−N bond, it is instead
observed here to fully dissociate from the metal. The results are
considered in the context of the electro- and photocatalytic hydrogen
evolution reaction mechanisms of Ni pyridinethiolate complexes.
Collapse
Affiliation(s)
- Kathryn Ledbetter
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hyeongtaek Lim
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Marija R Zoric
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Sergey Koroidov
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - C Das Pemmaraju
- Theory Institute for Materials and Energy Spectroscopies, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
Natali M, Sartorel A, Ruggi A. Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics. Front Chem 2022; 10:907510. [PMID: 35692692 PMCID: PMC9175021 DOI: 10.3389/fchem.2022.907510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
The political and environmental problems related to the massive use of fossil fuels prompted researchers to develop alternative strategies to obtain green and renewable fuels such as hydrogen. The light-driven water splitting process (i.e., the photochemical decomposition of water into hydrogen and oxygen) is one of the most investigated strategies to achieve this goal. However, the water oxidation reaction still constitutes a formidable challenge because of its kinetic and thermodynamic requirements. Recent research efforts have been focused on the exploration of alternative and more favorable oxidation processes, such as the oxidation of organic substrates, to obtain value-added products in addition to solar fuels. In this mini-review, some of the most intriguing and recent results are presented. In particular, attention is directed on hybrid photoanodes comprising molecular light-absorbing moieties (sensitizers) and catalysts grafted onto either mesoporous semiconductors or conductors. Such systems have been exploited so far for the photoelectrochemical oxidation of alcohols to aldehydes in the presence of suitable co-catalysts. Challenges and future perspectives are also briefly discussed, with special focus on the application of such hybrid molecular-based systems to more challenging reactions, such as the activation of C–H bonds.
Collapse
Affiliation(s)
- Mirco Natali
- Department of Chemical Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, Ferrara, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Andrea Sartorel
- Dipartimento di Scienze Chimiche, Università di Padova, Padova, Italy
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg, Fribourg, Switzerland
- *Correspondence: Mirco Natali, ; Andrea Sartorel, ; Albert Ruggi,
| |
Collapse
|
18
|
Costentin C, Camara F, Fortage J, Collomb MN. Photoinduced Catalysis of Redox Reactions. Turnover Numbers, Turnover Frequency, and Limiting Processes: Kinetic Analysis and Application to Light-Driven Hydrogen Production. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrille Costentin
- Univ Grenoble Alpes, DCM, CNRS, 38000 Grenoble, France
- Université Paris Cité, 75013 Paris, France
| | | | | | | |
Collapse
|
19
|
Buday P, Kasahara C, Hofmeister E, Kowalczyk D, Farh MK, Riediger S, Schulz M, Wächtler M, Furukawa S, Saito M, Ziegenbalg D, Gräfe S, Bäuerle P, Kupfer S, Dietzek‐Ivanšić B, Weigand W. Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light**. Angew Chem Int Ed Engl 2022; 61:e202202079. [PMID: 35178850 PMCID: PMC9313588 DOI: 10.1002/anie.202202079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Inspired by the active center of the natural [FeFe] hydrogenases, we designed a compact and precious metal‐free photosensitizer‐catalyst dyad (PS‐CAT) for photocatalytic hydrogen evolution under visible light irradiation. PS‐CAT represents a prototype dyad comprising π‐conjugated oligothiophenes as light absorbers. PS‐CAT and its interaction with the sacrificial donor 1,3‐dimethyl‐2‐phenylbenzimidazoline were studied by steady‐state and time‐resolved spectroscopy coupled with electrochemical techniques and visible light‐driven photocatalytic investigations. Operando EPR spectroscopy revealed the formation of an active [FeIFe0] species—in accordance with theoretical calculations—presumably driving photocatalysis effectively (TON≈210).
Collapse
Affiliation(s)
- Philipp Buday
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Chizuru Kasahara
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Elisabeth Hofmeister
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
| | - Daniel Kowalczyk
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Micheal K. Farh
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Saskia Riediger
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Martin Schulz
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Maria Wächtler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
| | - Shunsuke Furukawa
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Masaichi Saito
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Dirk Ziegenbalg
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 8 07743 Jena Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Benjamin Dietzek‐Ivanšić
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 8 07743 Jena Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
20
|
Tritton DN, Tang FK, Bodedla GB, Lee FW, Kwan CS, Leung KCF, Zhu X, Wong WY. Development and advancement of iridium(III)-based complexes for photocatalytic hydrogen evolution. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Edwards EH, Le JM, Salamatian AA, Peluso NL, Leone L, Lombardi A, Bren KL. A cobalt mimochrome for photochemical hydrogen evolution from neutral water. J Inorg Biochem 2022; 230:111753. [PMID: 35182844 PMCID: PMC9586700 DOI: 10.1016/j.jinorgbio.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/21/2022]
Abstract
A system for visible light-driven hydrogen production from water is reported. This system makes use of a synthetic mini-enzyme known as a mimochrome (CoMC6*a) consisting of a cobalt deuteroporphyrin and two attached peptides as a catalyst, [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) as a photosensitizer, and ascorbic acid as a sacrificial electron donor. The system achieves turnover numbers (TONs) up to 10,000 with respect to catalyst and optimal activity at pH 7. Comparison with related systems shows that CoMC6*a maintains the advantages of biomolecular catalysts, while exceeding other cobalt porphyrins in terms of total TON and longevity of catalysis. Herein, we lay groundwork for future study, where the synthetic nature of CoMC6*a will provide a unique opportunity to tailor proton reduction chemistry and expand to new reactivity.
Collapse
Affiliation(s)
- Emily H Edwards
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Jennifer M Le
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Noelle L Peluso
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| | - Linda Leone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 45, 80126 Naples, Italy.
| | - Kara L Bren
- Department of Chemistry, University of Rochester, 120 Trustee Rd., Rochester, NY 14627-0216, USA.
| |
Collapse
|
22
|
Lyu S, Younis MA, Liu Z, Zeng L, Peng X, Yang B, Li Z, Lei L, Hou Y. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Heiland M, De R, Rau S, Dietzek-Ivansic B, Streb C. Not that innocent - ammonium ions boost homogeneous light-driven hydrogen evolution. Chem Commun (Camb) 2022; 58:4603-4606. [PMID: 35311842 DOI: 10.1039/d2cc00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that the homogeneous light-driven hydrogen evolution reaction (HER) can be significantly enhanced by the presence of seemingly innocent ammonium (NH4+) cations. Experimental studies with different catalysts, photosensitizers and electron donors show this to be a general effect. Preliminary photophysical and mechanistic studies provide initial suggestions regarding the role of ammonium in the HER enhancement.
Collapse
Affiliation(s)
- Magdalena Heiland
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Ratnadip De
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany. .,Leibniz Institute of Photonic Technologies (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Benjamin Dietzek-Ivansic
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany. .,Leibniz Institute of Photonic Technologies (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Buday P, Kasahara C, Hofmeister E, Kowalczyk D, Farh MK, Riediger S, Schulz M, Wächtler M, Furukawa S, Saito M, Ziegenbalg D, Gräfe S, Bäuerle P, Kupfer S, Dietzek‐Ivanšić B, Weigand W. Aktivierung eines biomimetischen [FeFe]‐Hydrogenase‐Komplexes für die H
2
‐Produktion mit sichtbarem Licht**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Buday
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| | - Chizuru Kasahara
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
- Institut für Chemie Graduiertenschule für Naturwissenschaften und Ingenieurwissenschaften Universität Saitama Shimo-okubo, Sakura-ku, Saitama-Stadt, Saitama 338-8570 Japan
| | - Elisabeth Hofmeister
- Abteilung Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Daniel Kowalczyk
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Micheal K. Farh
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| | - Saskia Riediger
- Institut für Organische Chemie II und Neue Materialien Universität Ulm Albert-Einstein-Allee 11 89081 BayreuthUlm Deutschland
| | - Martin Schulz
- Abteilung Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
| | - Maria Wächtler
- Abteilung Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Abbe Center of Photonics (ACP) Friedrich-Schiller-Universität Jena Albert-Einstein-Straße 6 07745 Jena Deutschland
| | - Shunsuke Furukawa
- Institut für Chemie Graduiertenschule für Naturwissenschaften und Ingenieurwissenschaften Universität Saitama Shimo-okubo, Sakura-ku, Saitama-Stadt, Saitama 338-8570 Japan
| | - Masaichi Saito
- Institut für Chemie Graduiertenschule für Naturwissenschaften und Ingenieurwissenschaften Universität Saitama Shimo-okubo, Sakura-ku, Saitama-Stadt, Saitama 338-8570 Japan
| | - Dirk Ziegenbalg
- Institut für Chemieingenieurwesen Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Stefanie Gräfe
- Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Abbe Center of Photonics (ACP) Friedrich-Schiller-Universität Jena Albert-Einstein-Straße 6 07745 Jena Deutschland
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Philosophenweg 8 07743 Jena Deutschland
- Fraunhofer-Institut für Angewandte Optik und Feinmechanik Albert-Einstein-Straße 7 07745 Jena Deutschland
| | - Peter Bäuerle
- Institut für Organische Chemie II und Neue Materialien Universität Ulm Albert-Einstein-Allee 11 89081 BayreuthUlm Deutschland
| | - Stephan Kupfer
- Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
| | - Benjamin Dietzek‐Ivanšić
- Abteilung Funktionale Grenzflächen Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie Friedrich-Schiller-Universität Jena Helmholtzweg 4 07743 Jena Deutschland
- Abbe Center of Photonics (ACP) Friedrich-Schiller-Universität Jena Albert-Einstein-Straße 6 07745 Jena Deutschland
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich-Schiller-Universität Jena Philosophenweg 8 07743 Jena Deutschland
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| |
Collapse
|
25
|
Ibrahim MM, Mersal GAM, Fallatah AM, Althubeiti K, El-Sheshtawy HS, Abou Taleb MF, Das MR, Boukherroub R, Attia MS, Amin MA. Electrocatalytic hydrogen generation using tripod containing pyrazolylborate-based copper(ii), nickel(ii), and iron(iii) complexes loaded on a glassy carbon electrode. RSC Adv 2022; 12:8030-8042. [PMID: 35424777 PMCID: PMC8982464 DOI: 10.1039/d1ra08530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Three transition metal complexes (MC) namely, [TpMeMeCuCl(H2O)] (CuC), [TpMeMeNiCl] (NiC), and [TpMeMeFeCl2(H2O)] (FeC) {TpMeMe = tris(3,5-dimethylpyrazolyl)borate} were synthesized and structurally characterized. The three complexes CuC, NiC, and FeC-modified glassy carbon (GC) were examined as molecular electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution (0.1 M KOH). Various GC-MC electrodes were prepared by loading different amounts (ca. 0.2-0.8 mg cm-2) of each metal complex on GC electrodes. These electrodes were used as cathodes in aqueous alkaline solutions (0.1 M KOH) to efficiently generate H2 employing various electrochemical techniques. The three metal complexes' HER catalytic activity was assessed using cathodic polarization studies. The charge-transfer kinetics of the HER at the (GC-MC)/OH- interface at a given overpotential were also studied using the electrochemical impedance spectroscopy (EIS) technique. The electrocatalyst's stability and long-term durability tests were performed employing cyclic voltammetry (repetitive cycling up to 5000 cycles) and 48 h of chronoamperometry measurements. The catalytic evolution of hydrogen on the three studied MC surfaces was further assessed using density functional theory (DFT) simulations. The GC-CuC catalysts revealed the highest HER electrocatalytic activity, which increased with the catalyst loading density. With a low HER onset potential (E HER) of -25 mV vs. RHE and a high exchange current density of 0.7 mA cm-2, the best performing electrocatalyst, GC-CuC (0.8 mg cm-2), showed significant HER catalytic performance. Furthermore, the best performing electrocatalyst required an overpotential value of 120 mV to generate a current density of 10 mA cm-2 and featured a Tafel slope value of -112 mV dec-1. These HER electrochemical kinetic parameters were comparable to those measured here for the commercial Pt/C under the same operating conditions (-10 mV vs. RHE, 0.88 mA cm-2, 108 mV dec-1, and 110 mV to yield a current density of 10 mA cm-2), as well as the most active molecular electrocatalysts for H2 generation from aqueous alkaline electrolytes. Density functional theory (DFT) simulations were used to investigate the nature of metal complex activities in relation to hydrogen adsorption. The molecular electrostatic surface potential (MESP) of the metal complexes was determined to assess the putative binding sites of the H atoms to the metal complex.
Collapse
Affiliation(s)
- Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - G A M Mersal
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ahmed M Fallatah
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Hamdy S El-Sheshtawy
- Chemistry Department, Faculty of Science, Kafrelsheikh University Kafr El Sheikh 33516 Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj Saudi Arabia
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo Egypt
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN F59000 Lille France
| | - Mohamed S Attia
- Chemistry Department, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| |
Collapse
|
26
|
Gallego CM, Mazzeo A, Gaviglio C, Pellegrino J, Doctorovich F. Structure and Reactivity of NO/NO
+
/NO
−
Pincer and Porphyrin Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Carina Gaviglio
- Departamento de Física de la Materia Condensada Comisión Nacional de Energía Atómica, CAC-GIyANN Avenida General Paz 1499, San Martín Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| |
Collapse
|
27
|
Lucarini F, Bongni D, Schiel P, Bevini G, Benazzi E, Solari E, Fadaei-Tirani F, Scopelliti R, Marazzi M, Natali M, Pastore M, Ruggi A. Rationalizing Photo-Triggered Hydrogen Evolution Using Polypyridine Cobalt Complexes: Substituent Effects on Hexadentate Chelating Ligands. CHEMSUSCHEM 2021; 14:1874-1885. [PMID: 33650260 DOI: 10.1002/cssc.202100161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Four novel polypyridine cobalt(II) complexes were developed based on a hexadentate ligand scaffold bearing either electron-withdrawing (-CF3 ) or electron-donating (-OCH3 ) groups in different positions of the ligand. Experiments and theoretical calculations were combined to perform a systematic investigation of the effect of the ligand modification on the hydrogen evolution reaction. The results indicated that the position, rather than the type of substituent, was the dominating factor in promoting catalysis. The best performances were observed upon introduction of substituents on the pyridine moiety of the hexadentate ligand, which promoted the formation of the Co(II)H intermediate via intramolecular proton transfer reactions with low activation energy. Quantum yields of 11.3 and 10.1 %, maximum turnover frequencies of 86.1 and 76.6 min-1 , and maximum turnover numbers of 5520 and 4043 were obtained, respectively, with a -OCH3 and a -CF3 substituent.
Collapse
Affiliation(s)
- Fiorella Lucarini
- Université de Fribourg Département de Chimie, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - David Bongni
- Université de Fribourg Département de Chimie, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Philippe Schiel
- Université de Fribourg Département de Chimie, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Gabriele Bevini
- Università degli studi di Ferrara Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Elisabetta Benazzi
- Università degli studi di Ferrara Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marco Marazzi
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, E-28805 Alcalá de Henares, Madrid), Spain
- Chemical Research Institute "Andrés M. del Río" (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Madrid), Spain
| | - Mirco Natali
- Università degli studi di Ferrara Dipartimento di Scienze Chimiche, Farmaceutiche ed Agrarie, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Mariachiara Pastore
- Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), 54000, Nancy, France
| | - Albert Ruggi
- Université de Fribourg Département de Chimie, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|