1
|
Hu H, Hu G, Zhang M, Ren Q, Aziz T, Sarwar A, Alasmari AF, Yang Z, Yang Z. Synthesis of novel lactose-derived oligosaccharides by two-step enzymatic reactions and structural characterization of the oligomers. Food Res Int 2025; 208:116177. [PMID: 40263837 DOI: 10.1016/j.foodres.2025.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/26/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Exploitation of the added value of lactose by enzymatic synthesis of novel lactose-derived oligosaccharides has been a subject of increasing research interests. In this study, a strategy of two-step enzymatic reactions was designed to first synthesize galacto-oligosaccharide (GOS) from lactose by β-galactosidase, and then the novel oligosaccharides were synthesized by inulosucrase (IS) using the obtained GOS and sucrose as the substrates. The recombinant IS was initially expressed by employing the IS gene from Lactobacillus gasseri DSM 20604. The appropriate synthesis conditions by the IS were determined as: reaction time of 12 h, the concentration of IS at 25 U/mL, GOS to sucrose ratio of 1:2, and the total substrate concentration of 500 g/L. Purification of the synthesized oligosaccharides in the reaction mixture was done by fermentation with Kluyveromyces lactis CICC 1773 to remove the carbohydrate by-products, and HPLC on an oligosaccharide column. The purified oligosaccharides, namely, Oligo-1, Oligo-2, and Oligo-3 were determined for their monosaccharide components to be galactose and glucose in the molar ratios of 0.230:0.770, 0.522:0.478 and 0.637:0.363, respectively. These three oligosaccharides had relative molecular masses of 666.18, 990.26, and 1314.43, corresponding to the degree of polymerization (DP) value of 4, DP6, and DP8, respectively. NMR spectroscopic studies of the oligosaccharides revealed a common branched structure consisting of three glucosides, one of which was linked with one (Oligo-1), three (Oligo-2) and five galactosides (Oligo-3), respectively. These lactose-derived oligosaccharides with the structural patterns that were not reported earlier represented novel potential prebiotic agents for use in functional foods.
Collapse
Affiliation(s)
- Hangyu Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China
| | - Gege Hu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, Beijing 100125, China
| | - Qingxia Ren
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 100048, Beijing, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 55005, China.
| |
Collapse
|
2
|
Jiang Y, Sun T, Lin Y, Liu M, Wang X. Is it possible to obtain substitutes for human milk oligosaccharides from bovine milk, goat milk, or other mammal milks? Compr Rev Food Sci Food Saf 2024; 23:e70018. [PMID: 39302160 DOI: 10.1111/1541-4337.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Considering the current level of chemical and biological synthesis technology, it was a sensible selection to obtain milk oligosaccharides (MOs) from other mammals as the potential substitute for human MOs (HMOs) that possessed various structural features in the infant formula. Through a comprehensive analysis of the content, structure, and function of MOs in six distinct varieties of mammal milk, it has been shown that goat milk was the most suitable material for the preparation as a human milk substitute. Goat MOs (GMOs) had a relatively high content and diverse structural features compared to those found in other mammalian milks. The concentration of GMOs in colostrum ranged from 60 to 350 mg/L, whereas in mature milk, it ranged from 200 to 24,00 mg/L. The acidic oligosaccharides in goat milk have attracted considerable attention due to their closeness in acidic content and structural diversity with HMOs. Simultaneously, it was discovered that some structures, like N-glycolylneuraminic acid, were found to have a certain content in GMOs and served essential functional properties. Moreover, studies focused on the extraction of MOs from goat milk indicated that the production of GMOs on an industrial scale was viable. Furthermore, it is imperative to do further study on GMOs to enhance the preparation process, discover of new MOs structures and bioactivity evaluation, which will contribute to the development of both the commercial production of MOs and the goat milk industry.
Collapse
Affiliation(s)
- Yishan Jiang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tianrui Sun
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yihan Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- College of Enology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
- Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Li Z, Tian-Tian L, Aziz T, Min Z, Sarwar A, Zhennai Y, Alharbi M, Alshammari A, Alasmari AF. Purification of Galacto-oligosaccharide (GOS) by fermentation with Kluyveromyces lactis and Interaction between GOS and casein under simulated acidic fermentation conditions. World J Microbiol Biotechnol 2023; 39:342. [PMID: 37828125 DOI: 10.1007/s11274-023-03791-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
In the enzymatic synthesis of galacto-oligosaccharide (GOS), the primary by-products include glucose, galactose and unreacted lactose. This This study was aimed to provide a method to to purify GOS by yeat fermentation and explore the interaction between GOS and CAS with a view for expanding the prospects of GOS application in the food industry. The crude GOS(25.70 g/L) was purified in this study using the fermentation method with Kluyveromyces lactis CICC 1773. Optimal conditions for purification with the yeast were 75 g/L of the yeast inoculation rate and 50 g/L of the initial crude GOS concentration for 12 h of incubation. After removing ethanol produced by yeast by low-temperature distillation, GOS content could reach 90.17%. A study of the interaction between GOS and casein (CAS) in a simulated acidic fermentation system by D-(+)-gluconic acid δ-lactone (GDL) showed that the GOS/CAS complexes with higher GOS concentrations, e.g., 4% and 6% (w/v), was more viscoelastic with higher water-holding capacity, but decreased hardness, elasticity, and cohesiveness at 6% (w/v) of GOS. The addition of GOS to CAS suspension significantly caused (p<0.05) decreased particle sizes of the formed GOS/CAS complexes, and the suspension system became more stable. FT-IR spectra confirmed the existence of different forms of molecular interactions between CAS and GOS, e.g., hydrogen bonding and hydrophobic interaction, and the change of secondary structure after CAS binding to GOS.
Collapse
Affiliation(s)
- Zhihui Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Hai-Dian District, Beijing, 100048, China
| | - Lai Tian-Tian
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Hai-Dian District, Beijing, 100048, China
| | - Tariq Aziz
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Hai-Dian District, Beijing, 100048, China
- Laboratory of Animal Health, Department of Agriculture, Food Hygiene and Quality, University of Ioannina, Arta, 47132, Greece
| | - Zhang Min
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARABeijing, 100125, China
| | - Abid Sarwar
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Hai-Dian District, Beijing, 100048, China
| | - Yang Zhennai
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Hai-Dian District, Beijing, 100048, China.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Souza AFCE, Gabardo S, Coelho RDJS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022; 359:116-129. [DOI: 10.1016/j.jbiotec.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
|
5
|
Iqbal MW, Riaz T, Mahmood S, Liaqat H, Mushtaq A, Khan S, Amin S, Qi X. Recent Advances in the Production, Analysis, and Application of Galacto-Oligosaccharides. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Humna Liaqat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Sonia Khan
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Punjab, Pakistan
| | - Sabahat Amin
- National Institute of Food Science & Technology, University of Agriculture, Faisalabad, Pakistan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Maráz A, Kovács Z, Benjamins E, Pázmándi M. Recent developments in microbial production of high-purity galacto-oligosaccharides. World J Microbiol Biotechnol 2022; 38:95. [PMID: 35441950 PMCID: PMC9021073 DOI: 10.1007/s11274-022-03279-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
Abstract
Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical formulations. Currently, production of GOS involves the enzymatic conversion of lactose by transgalactosylation using β-galactosidase. The purity of the resulting product is low, typically limited to up to 55% GOS on total carbohydrate basis due to the presence of non-reacted lactose, and the formation of by-products glucose and galactose. In industrial practice high-purity GOS is manufactured by removing the unwanted mono- and disaccharides from raw GOS with simulated moving bed (SMB) chromatography. This purification step is associated with high processing cost that increases the price of pure GOS and limits its marketability. The last decades have witnessed a growing interest in developing competitive biotechnological processes that could replace chromatography. This paper presents a comprehensive review on the recent advancements of microbial GOS purification, a process commonly referred to as selective fermentation or selective metabolism. Purification strategies include: (i) removal of glucose alone or together with galactose by lactose negative yeast species, that typically results in purity values below 60% due to remaining lactose; (ii) removal of both mono- and disaccharides by combining the fast monosaccharide metabolizing capacity of some yeast species with efficient lactose consumption by certain lactose positive microbes, reaching GOS purity in the range of 60-95%; and (iii) the application of selected strains of Kluyveromyces species with high lactose metabolizing activity to achieve high-purity GOS that is practically free from lactose and monosaccharides.
Collapse
Affiliation(s)
- Anna Maráz
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Somlói út 14-16, Budapest, Hungary.
| | - Zoltán Kovács
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Melinda Pázmándi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118, Somlói út 14-16, Budapest, Hungary
- Department of Food Process Engineering, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| |
Collapse
|
7
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
8
|
Fan R, Dresler J, Tissen D, Wen L, Czermak P. In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase. BIORESOURCE TECHNOLOGY 2021; 342:125969. [PMID: 34587583 DOI: 10.1016/j.biortech.2021.125969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Fructo-oligosaccharides (FOS) are prebiotic sugar substitutes that can be produced from sucrose using fructosyltransferases (FTases). However, the economic value of this process is limited by inefficient product purification and enzyme reusability. In this study, enzyme-free FOS preparations were produced by immobilizing the FTase on resin carriers. This also increased the catalytic selectivity of the enzyme. However, the crude FOS preparations still contained high concentrations of monosaccharide byproducts and residual disaccharides that must be removed because they lack prebiotic activity. A hybrid process was developed in which fed-batch fermentation was combined with the probiotic bacterium Bacillus coagulans (which selectively utilizes monosaccharides) and the simultaneous conversion of residual sucrose using the FTase to increase FOS purity. This process depleted the monosaccharides and increased the concentration of FOS to 130-170 g·L-1. The residual sucrose was converted to FOS by the immobilized FTase, increasing the overall purity of FOS to 92.1%.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Josephine Dresler
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Dennis Tissen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Linxuan Wen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
9
|
Rico-Rodríguez F, Noriega M, Lancheros R, Serrato-Bermúdez J. Kinetics of galactooligosaccharide (GOS) production with two β-galactosidases combined: Mathematical model and raw material effects. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Wang Y, Yu J. Membrane separation processes for enrichment of bovine and caprine milk oligosaccharides from dairy byproducts. Compr Rev Food Sci Food Saf 2021; 20:3667-3689. [PMID: 33931948 DOI: 10.1111/1541-4337.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Breast milk is an ideal source of human milk oligosaccharides (HMOs) for isolation and purification. However, breast milk is not for sale and at most is distributed to neonatal intensive care units as donor milk. To overcome this limitation, isolating HMOs analogs including bovine milk oligosaccharides (BMOs) and caprine milk oligosaccharides (CMOs) from other sources is timely and significant. Advances in the development of equipment and analytical methods have revealed that dairy processing byproducts are good sources of BMOs and CMOs. Enrichment of these oligosaccharides from dairy byproducts, such as whey, permeate, and mother liquor, is of increasing academic and economic value. The commonly employed approach for oligosaccharides purification is chromatographic technique, but it is only used at lab scale. In the dairy industry, chromatographic methods (large-scale ion exchange, 10,000 L size) are currently routinely used for the isolation/purification of milk proteins (e.g., lactoferrin). In contrast, membrane technology has been proven to be a suitable approach for the isolation and purification of BMOs and CMOs from dairy byproducts. Therefore, this review simply introduces BMOs and CMOs in dairy processing byproducts. This review also summarizes membrane separation processes for isolating and purifying BMOs and CMOs from different dairy byproducts. Finally, the technological challenges and solutions of each processing strategy are discussed in detail.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
11
|
Pázmándi M, Kovács Z, Maráz A. Potential of Lactobacillus strains for the production of fermented functional beverages enriched in galacto-oligosaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
13
|
Rico-Rodríguez F, Villamiel M, Ruiz-Aceituno L, Serrato JC, Montilla A. Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. ULTRASONICS SONOCHEMISTRY 2020; 67:104945. [PMID: 32278244 DOI: 10.1016/j.ultsonch.2019.104945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 06/11/2023]
Abstract
It is well known that one of the main problems in galactooligosaccharide production (GOS) via tranglycosylation of lactose is the presence of monosaccharides that contribute to increasing the glycaemic index, as is the case of glucose. In this work, as well as studying the effect of ultrasound (US) on glucose oxidase (Gox) activation during gluconic acid (GA) production, we have carried out an investigation into the selective oxidation of glucose to gluconic acid in multienzymatic reactions (β-galactosidase (β-gal) and Gox) assisted by power US using different sources of lactose as substrate (lactose solution, whey permeate, cheese whey). In terms of the influence of matrix on GOS and GA production, lactose solution gave the best results, followed by cheese whey and whey permeate, salt composition being the most influential factor. The highest yields of GOS production with the lowest glucose concentration and highest GA production were obtained with lactose solution in multienzymatic systems in the presence of ultrasound (30% amplitude) when Gox was added after 1 h of treatment with β-gal. This work demonstrates the ability of US to enhance efficiently the obtainment of prebiotic mixtures of low glycaemic index.
Collapse
Affiliation(s)
- Fabián Rico-Rodríguez
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería. Universidad Nacional de Colombia - Sede Bogotá, Carrera 30 N° 45-03 Bogotá, Colombia
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Laura Ruiz-Aceituno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Serrato
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería. Universidad Nacional de Colombia - Sede Bogotá, Carrera 30 N° 45-03 Bogotá, Colombia
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Pázmándi M, Kovács Z, Balga E, Kovács M, Maráz A. Production of high-purity galacto-oligosaccharides by depleting glucose and lactose from galacto-oligosaccharide syrup with yeasts. Yeast 2020; 37:515-530. [PMID: 32602234 DOI: 10.1002/yea.3507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 11/06/2022] Open
Abstract
Galacto-oligosaccharides (GOS) are prebiotic compounds, widely used as ingredients in various food, nutraceutical and pharmaceutical products. Enzymatic synthesis of GOS results in low-purity products that contain high amounts of glucose and lactose beside the valuable GOS. In this study, a systematic approach was used to develop yeast-based fermentation strategies to purify crude GOS. Potentially applicable yeast strains were identified based on an extensive search in literature databases followed by a series of laboratory-scale fermentation tests. Single- and two-step fermentation processes were designed for the removal of glucose alone or together with lactose from crude GOS syrup. Single-step fermentation trials with two strains of previously unreported species, Cyberlindnera jadinii NCAIM Y.00499 and Kluyveromyces nonfermentans NCAIM Y.01443, resulted in purified products free of both glucose and ethanol from a crude GOS syrup diluted to 15 and 10 w/v%, respectively. Simultaneous removal of glucose and lactose was achieved by Kluyveromyces marxianus DMB Km-RK in a single-step fermentation process with a yield of 97.5% and final purity of 100%. A two-step fermentation approach was designed to allow conversion of a glucose-free product into a high-purity GOS by removing glucose with C. jadinii Y.00499 in the first step, and lactose by Kluyveromyces lactis DMB Kl-RK in the second step, resulting in a final product with a yield of 100% and a final purity of 92.1%. These results indicate that the selected nonconventional yeasts are promising candidates for the removal of non-GOS components from commercial crude GOS products by selective fermentation.
Collapse
Affiliation(s)
- Melinda Pázmándi
- Department of Microbiology and Biotechnology, Szent István University, Budapest, Hungary.,Department of Food Process Engineering, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - Zoltán Kovács
- Department of Food Process Engineering, Faculty of Food Science, Szent István University, Budapest, Hungary
| | - Edina Balga
- Department of Microbiology and Biotechnology, Szent István University, Budapest, Hungary
| | - Mónika Kovács
- Department of Microbiology and Biotechnology, Szent István University, Budapest, Hungary
| | - Anna Maráz
- Department of Microbiology and Biotechnology, Szent István University, Budapest, Hungary
| |
Collapse
|
15
|
Mena-García A, Ruiz-Matute A, Soria A, Sanz M. Green techniques for extraction of bioactive carbohydrates. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr 2019; 6:78. [PMID: 31214595 PMCID: PMC6554340 DOI: 10.3389/fnut.2019.00078] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fructo- and galacto-oligosaccharides (FOS and GOS) are non-digestible oligosaccharides with prebiotic properties that can be incorporated into a wide number of products. This review details the general outlines for the production of FOS and GOS, both by enzymatic synthesis using disaccharides or other substrates, and by hydrolysis of polysaccharides. Special emphasis is laid on technological aspects, raw materials, properties, and applications.
Collapse
Affiliation(s)
- Gonçalo N. Martins
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | - E. Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Paula C. Castilho
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
17
|
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Aburto C, Guerrero C, Vera C, Wilson L, Illanes A. Co-immobilized β-galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides. Enzyme Microb Technol 2018; 118:102-108. [DOI: 10.1016/j.enzmictec.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
|
19
|
Guerrero C, Vera C, Illanes A. Selective bioconversion with yeast for the purification of raw lactulose and transgalactosylated oligosaccharides. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Rico-Rodríguez F, Serrato JC, Montilla A, Villamiel M. Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system. ULTRASONICS SONOCHEMISTRY 2018; 44:177-183. [PMID: 29680601 DOI: 10.1016/j.ultsonch.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Galactooligosaccharides (GOS), recognised prebiotic, can be industrially produced from lactose and commercial β-galactosidase (β-gal) from Kluyveromyces lactis. Residual lactose and glucose limit GOS applications. To handle this problem, a multienzymatic system, with β-gal and glucose oxidase (Gox), was proposed to reduce glucose content in reaction media through its oxidation to gluconic acid (GA). Besides, ultrasound (US) probe effect over the multienzymatic system to produce GOS and GA has been evaluated. A production around 40% of GOS was found in all treatments after the first hour of reaction. However, glucose consumption and GA production was significantly higher (P < 0.05) for sequential reaction assisted by US, obtaining the best production of GOS (49%) and GA (28%) after 2 h of reaction. The conformational and residual activity changes of enzymes under US conditions were also evaluated, Gox being positively affected whereas in β-gal hardly any change was found.
Collapse
Affiliation(s)
- Fabián Rico-Rodríguez
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Juan Carlos Serrato
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 2018; 111:667-679. [DOI: 10.1016/j.ijbiomac.2018.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
22
|
Simultaneous determination of galactose, glucose, lactose and galactooligosaccharides in galactooligosaccharides raw materials by high-performance anion-exchange chromatography with pulsed amperometric detection. Food Chem 2018; 263:29-36. [PMID: 29784319 DOI: 10.1016/j.foodchem.2018.04.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022]
Abstract
This study describes a method for the simultaneous determination of galactose, glucose, lactose and galactooligosaccharides (GOS) in GOS raw materials (GOS syrups and powdered GOS) by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The GOS raw materials were extracted with phosphate buffer. The extract was then treated with β-galactosidase to hydrolyze GOS and lactose. The total amounts of galactose and glucose released from GOS and lactose were determined in the treated solution. Free galactose, glucose and lactose were determined in the initial solution. The glucose in a β-galactosidase solution was also determined. The content of GOS in GOS raw materials was calculated by the increment of galactose and glucose after GOS were hydrolyzed, and the glucose and galactose also released from lactose were taken into consideration. The validated method has been successfully applied to determine the content of galactose, glucose, lactose and GOS in GOS syrups and powdered GOS.
Collapse
|
23
|
Santibáñez L, Guerrero C, Illanes A. Raw galacto-oligosaccharide purification by consecutive lactose hydrolysis and selective bioconversion. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Aquino LFMC, de Moura Bell JMLN, Cohen JL, Liu Y, Lee H, de Melo Silva VL, Domizio P, Conte CA, Barile D. Purification of caprine oligosaccharides at pilot-scale. J FOOD ENG 2017; 214:226-235. [PMID: 30853741 DOI: 10.1016/j.jfoodeng.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purification of caprine milk oligosaccharides (COS) by membrane filtration has been hampered by the low concentration of target COS and high concentration of lactose. In addition, their molecular weight proximity hinders the recovery of a COS fraction with high degree of purity and recovery yield. In this work, the recovery of a high purity COS concentrate was obtained by the optimization of an integrated approach including complete lactose hydrolysis, fermentation of the resulting monosaccharides and nanofiltration. All carbohydrates were quantified using High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC PAD). Defatted goat whey was ultrafiltered with discontinuous diafiltrations to increase the recovery of COS in the whey permeate which was then subsequently concentrated by nanofiltration. COS recovery yields of 75% with negligible amounts of monosaccharides (0.3% of the initial amount of lactose in the whey permeate) were achieved. A final retentate containing 67.6 and 34.4% of acidic and neutral oligosaccharides respectively was obtained from caprine milk.
Collapse
Affiliation(s)
- Leticia F M C Aquino
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Juliana M L N de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Joshua L Cohen
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Yan Liu
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Hyeyoung Lee
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Vitor L de Melo Silva
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Paola Domizio
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Carlos Adam Conte
- Department of Food Science and Technology, University Federal Fluminense, Niteroi, Rio de Janeiro, 24230340, Brazil
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
25
|
Saravanan R, Shubethar S, Narayanan S, Jain M, Lade S, Jadhav D, Maheswaran P, Avalakki UK, Dubey AK. A novel process for the production of high-purity galactooligosaccharides (GOS) using consortium of microbes. Prep Biochem Biotechnol 2017; 47:245-253. [PMID: 27715472 DOI: 10.1080/10826068.2016.1207082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Galactooligosaccharides (GOS) are nondigestible dietary fibers which have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut. In addition, other health benefits have been reported from oligosaccharides consumption such as stimulation of intestinal mobility, colon cancer prevention, mineral absorption as well as protection against certain pathogenic bacterial infections. The goal of this research was to develop an efficient biotransformation system using a consortium of microbes for the production of ≥85% pure GOS and reusing the cell biomass in repeated cycles of biotransformation. Production of GOS by lactose transgalactosylation using whole cells of Sporobolomyces singularis MTCC 5491 as a source of β-galactosidase and monosaccharides utilization by yeast isolate (NUTIDY007) were studied. For increasing the purity of GOS, growth and bioconversion parameters on the transgalactosylation by the whole cells were investigated. Further, continuous production of GOS was studied in a reactor with microfiltration membrane system. A maximum GOS purity of 42% was achieved using single culture of S. singularis. Under optimized conditions, single culture of S. singularis produced a maximum of 56% pure GOS. Addition of second culture to the reaction mixture for utilization of glucose significantly increased the GOS purity from 56% to ≥85%. The product consisted of tri- to penta-galactooligosaccharides. Trisaccharides were the main component of the reaction mixture. A maximum productivity of 10.9 g/L/hr was obtained under the optimum conditions.
Collapse
Affiliation(s)
- R Saravanan
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Shajahan Shubethar
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - S Narayanan
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Manish Jain
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Shankar Lade
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Deepak Jadhav
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - P Maheswaran
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Uday K Avalakki
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| | - Ashok Kumar Dubey
- a Department of Food Science and Technology , Innovation Centre, Tata Chemicals Ltd , Pune , India
| |
Collapse
|
26
|
Córdova A, Astudillo C, Santibañez L, Cassano A, Ruby-Figueroa R, Illanes A. Purification of galacto-oligosaccharides (GOS) by three-stage serial nanofiltration units under critical transmembrane pressure conditions. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Vera C, Córdova A, Aburto C, Guerrero C, Suárez S, Illanes A. Synthesis and purification of galacto-oligosaccharides: state of the art. World J Microbiol Biotechnol 2016; 32:197. [PMID: 27757792 DOI: 10.1007/s11274-016-2159-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Lactose-derived non-digestible oligosaccharides are prominent components of functional foods. Among them, galacto-oligosaccharides (GOS) outstand for being prebiotics whose health-promoting effects are supported on strong scientific evidences, having unique properties as substitutes of human milk oligosaccharides in formulas for newborns and infants. GOS are currently produced enzymatically in a kinetically-controlled reaction of lactose transgalactosylation catalyzed by β-galactosidases from different microbial strains. The enzymatic synthesis of GOS, although being an established technology, still offers many technological challenges and opportunities for further development that has to be considered within the framework of functional foods which is the most rapidly expanding market within the food sector. This paper presents the current technological status of GOS production, its main achievements and challenges. Most of the problems yet to be solved refer to the rather low GOS yields attainable that rarely exceed 40 %, corresponding to lactose conversions around 60 %. This means that the product or reaction (raw GOS) contains significant amounts of residual lactose and monosaccharides (glucose and galactose). Efforts to increase such yields have been for the most part unsuccessful, even though improvements by genetic and protein engineering strategies are to be expected in the near future. Low yields impose a burden on downstream processing to obtain a GOS product of the required purity. Different strategies for raw GOS purification are reviewed and their technological significance is appraised.
Collapse
Affiliation(s)
- Carlos Vera
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso, Chile.
| | - Carla Aburto
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Sebastián Suárez
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| |
Collapse
|
28
|
Simultaneous synthesis and purification (SSP) of galacto-oligosaccharides in batch operation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Sun H, You S, Wang M, Qi W, Su R, He Z. Recyclable Strategy for the Production of High-Purity Galacto-oligosaccharides by Kluyveromyces lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5679-5685. [PMID: 27366924 DOI: 10.1021/acs.jafc.6b01531] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A recyclable strategy for the production of high-purity (>95%) galacto-oligosaccharides (GOS) was developed using Kluyveromyces lactis in both the synthesis and purification steps. For the synthesis of GOS, ethanol-permeabilized cells (p-cells) of K. lactis were used because the enhanced permeability facilitated the mass transfer of the substrate and the release of oligosaccharide products. For the purification of GOS, non-permeabilized K. lactis cells (np-cells) were preferred as a result of their intrinsic cell membrane barrier toward GOS, which led to the selective consumption of carbohydrate. In this way, undesired glucose, galactose, and lactose in the raw GOS solution can be completely removed. This strategy is recyclable not only because of the high stability and reusability of p-cells and np-cells but also because the ethanol, which is simultaneously generated during the purification, can be reused for the preparation of p-cells. The strategy proposed in this study is a promising candidate for the efficient production of high-purity GOS.
Collapse
Affiliation(s)
- Huaisheng Sun
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Shengping You
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Mengfan Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|
30
|
Galacto-oligosaccharide synthesis using chemically modified β-galactosidase from Aspergillus oryzae immobilised onto macroporous amino resin. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Pruksasri S, Nguyen TH, Haltrich D, Novalin S. Fractionation of a galacto-oligosaccharides solution at low and high temperature using nanofiltration. Sep Purif Technol 2015; 151:124-130. [PMID: 26681914 DOI: 10.1016/j.seppur.2015.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Like in many applications, solutions of high sugar content can cause serious problems due to microorganism contaminations. Hence, the main aim of this work was to study a nanofiltration process for GOS purification at 5 °C and 60 °C that may circumvent or reduce potential microbial growth. Process performances and rejection behaviors of monosaccharide as well as individual GOS components were compared. Operating at 5 °C is more advantageous especially with respect to the oligosaccharide (OS) recovery yield. Using a NF membrane (NP030) at 45 bar, a product purity of 85% (based on monosaccharide content) and an OS recovery yield of 82% could be achieved. However, a low average permeate flux of 3 L/m2 h had to be accepted. A diafiltration step improved product purity to 90% with 30% losses of OS. A qualitative theoretical discussion shows that a possible change of the pore radius distribution depending on temperature could play a role in solute rejection as well as selectivity.
Collapse
Affiliation(s)
- Suwattana Pruksasri
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thu-Ha Nguyen
- Institute of Food Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Institute of Food Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Senad Novalin
- Institute of Food Technology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|