1
|
Hutchins DA, Hurley RA. Graduate Student Literature Review: A systematic review of articles influencing United States retail cheese packaging, labeling, and market trends related to cheese in the marketplace and during consumption. J Dairy Sci 2024; 107:10244-10255. [PMID: 38608946 DOI: 10.3168/jds.2023-23977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Innovation around cheese is constant in attempts to meet ever-increasing consumer demands. Retail packaging provides a canvas to communicate to consumers added value from innovations or inherent properties of cheese. Packaging itself may also be the subject of cheese-related innovation. This systematic review of literature organizes research over the past 10 years related to cheese packaging innovation that consumers experience in the marketplace and during consumption of cheese products. The review discusses shipping, displaying cheese at grocery stores, the value of branding, purchasing preferences by demographics, health and nutrition claims, opportunities to highlight protein in cheese, marketing to children, issues of obesity and cheese, diet cheeses, allergens and nondairy or vegan cheese, opening cheese packaging, cutting of cheese, cooking with cheese, eating cheese, the growing trend of snacking and convenience, and flavor preferences. This review provides helpful insights to cheese producers applying findings from research of various styles of cheeses, cheese marketers communicating effectively to consumers, cheese developers designing new products relevant to recent consumer demands, smaller or specialized companies seeking to differentiate their cheese product through available technology and strategy, and cheese lovers or those with hobbies surrounding food wanting to know recent advancements in cheese packaging. This review is a tool for discovering relevant articles related to cheese packaging in a marketplace and consumption setting to guide cheese and cheese packaging and labeling innovation in the United States.
Collapse
Affiliation(s)
- D A Hutchins
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634.
| | - R Andrew Hurley
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
2
|
Kurćubić VS, Lević S, Pavlović V, Mihailović R, Nikolić A, Lukić M, Jovanović J, Danilović B, Milinković M, Oz F, Heinz V, Tomasevic I. Manufacture of Low-Na White Soft Brined Cheese: Effect of NaCl Substitution with a Combination of Na-K Salts on Proximate Composition, Mineral Content, Microstructure, and Sensory Acceptance. Foods 2024; 13:1381. [PMID: 38731752 PMCID: PMC11083042 DOI: 10.3390/foods13091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
All over the world, especially in Western societies, table salt intake that is inordinately higher than the acceptable level has been observed. An excess of Na in the human diet, mostly from processed foods, is becoming the "number one killer", leading to increased blood pressure. Therefore, the food industry is faced with a need to reduce Na in human nutrition in an effort to raise public health protection to a higher level. In this study, a commercially available combination of Na/K salts (COMB) at different concentrations was used as a NaCl substitute in the production of a modified, healthier, Na-reduced cheese. Samples of the modified low-Na white soft-brined cheese (WSBC) were produced by adding four different concentrations of COMB to production lots PL-1 to PL-4, and the control (CON) samples were prepared by salting with the usual, non-reduced concentration of NaCl. The effects of NaCl replacement on the physical-chemical parameters, major- and micro-elements, and microstructural and sensory properties of the WSBC were investigated. The obtained results indicated that there was no significant influence on the ash content, pH, and aw. The Na and K levels differed among treatments (p < 0.001). The lowest Na level in this study was recorded in PL-4 (only COMB was added) and was 334.80 ± 24.60 mg/100 g. According to the Na content, WSBC PL4 can be labeled with the nutrient claim "reduced amount of Na". A significant difference (p < 0.05) was noticed in overall acceptance between the CON and PL-4, with no statistically significant difference found amongst other WSBC production lots. The replacement of NaCl resulted in a slightly greater firmness of the WSBC. The results confirm the possibility of producing low-Na WSBC when optimal amounts of a suitable mineral salt are used as a substitute for NaCl, thus reducing the risk of high Na intake in the human body through the consumption of evaluated cheese.
Collapse
Affiliation(s)
- Vladimir S Kurćubić
- Faculty of Agronomy, Department of Food Technology, University of Kragujevac, Cara Dušana 34, 32000 Čačak, Serbia
| | - Steva Lević
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Vlada Pavlović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ružica Mihailović
- Veterinary Specialist Institute Kraljevo, Žička 34, 36000 Kraljevo, Serbia
| | - Aleksandra Nikolić
- Department of Sensory and Physical Testing with Parasitology, Institute for Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia
| | - Mirjana Lukić
- Department of Sensory and Physical Testing with Parasitology, Institute for Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia
| | - Jelena Jovanović
- Department of Sensory and Physical Testing with Parasitology, Institute for Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia
| | - Bojana Danilović
- Faculty of Technology, University of Niš, Bulevar Oslobođenja 124, 16000 Leskovac, Serbia
| | - Mira Milinković
- Institute of Land, Teodora Drajzera 7, 11000 Belgrade, Serbia
| | - Fatih Oz
- Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| | - Volker Heinz
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- DIL German Institute of Food Technology, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany
| |
Collapse
|
3
|
Amer DA, Albadri AAM, El-Hamshary HA, Nehela Y, Makhlouf AH, El-Hawary MY, Awad SA. Changes in Sensory Properties, Physico-Chemical Characteristics, and Aromas of Ras Cheese under Different Coating Techniques. Foods 2023; 12:foods12102023. [PMID: 37238841 DOI: 10.3390/foods12102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ras cheese is one of the main hard cheeses in Egypt and is well-known worldwide. Herein, we investigated the potential effects of different coating techniques on the physico-chemical characteristics, sensory properties, and aroma-related volatile organic compounds (VOCs) of Ras cheese over a six-month ripening period. Four coating techniques were tested, including (I) uncoated Ras cheese (the benchmark control), (II) Ras cheese coated with paraffin wax (T1), (III) Ras cheese coated with a plastic film under a vacuum (PFUV; T2), and (IV) Ras cheese coated with a plastic film treated with natamycin (T3). Although none of the treatments significantly affected the salt content, Ras cheese coated with a plastic film treated with natamycin (T3) slightly reduced the moisture content over the ripening period. Moreover, our findings revealed that while T3 had the highest ash content, it showed the same positive correlation profiles of fat content, total nitrogen, and acidity % as the control cheese sample, indicating no significant effect on the physico-chemical characteristics of the coated cheese. Furthermore, there were significant differences in the composition of VOCs among all tested treatments. The control cheese sample had the lowest percentage of other VOCs. T1 cheese, coated with paraffin wax, had the highest percentage of other volatile compounds. T2 and T3 were quite similar in their VOC profiles. According to our GC-MS findings, thirty-five VOCs were identified in Ras cheese treatments after six months of ripening, including twenty-three fatty acids, six esters, three alcohols, and three other compounds identified in most treatments. T2 cheese had the highest fatty acid % and T3 cheese had the highest ester %. The development of volatile compounds was affected by the coating material and the ripening period of the cheeses, which played a major role in the quantity and quality of volatile compounds.
Collapse
Affiliation(s)
- Dina A Amer
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abdinn A M Albadri
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanaa A El-Hamshary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Abeer H Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Mohamed Y El-Hawary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Sameh A Awad
- Dairy Microorganisms and Cheese Research Laboratory (DMCR), Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
4
|
Aleksic B, Djekic I, Miocinovic J, Miloradovic Z, Savic – Radovanovic R, Zdravkovic N, Smigic N. The hygienic assessment of dairy products’ selling places at open markets. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Aleksic B, Djekic I, Miocinovic J, Miloradovic Z, Memisi N, Smigic N. The application of Failure Mode Effects Analysis in the long supply chain – A case study of ultra filtrated milk cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Irkin R, Özgür N, Tas N. Usıng optımızatıon method for determınıng lactıc acıd bacterıa counts ın whıte cheese wıth dıfferent salt concentratıons. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Reyhan Irkin
- Izmir Democracy University Health Sciences Faculty, Nutrition and Dietetics Dept Izmir Turkey
| | - Nihal Özgür
- Balikesir University Science and Art Faculty Mathematics Department TR10145 Balikesir Turkey
| | - Nihal Tas
- Balikesir University Science and Art Faculty Mathematics Department TR10145 Balikesir Turkey
| |
Collapse
|
7
|
Sodium Reduction by Partial and Total Replacement of NaCl with KCl in Serbian White Brined Cheese. Foods 2022; 11:foods11030374. [PMID: 35159522 PMCID: PMC8833987 DOI: 10.3390/foods11030374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cheese has been listed as one of four priority food groups intended for salt reduction reformulation. The present study aimed to investigate the possibility of producing Serbian white brined cheese (Homoljski Sir) with half of NaCl, three quarters of NaCl and all NaCl replaced with KCl (Na50, Na25 and Na0, respectively). Basic composition, proteolysis and texture profile parameters were monitored during 60 days of ripening. At the end of ripening, an acceptance test was conducted by untrained consumers (N = 46). According to the cluster analysis based on hedonic scores, three clusters emerged: male consumers (47.8%), agreeable consumers (30.4%) and highly educated female consumers (21.8%). Both partial and a total salt replacement had no effect on the course of proteolytical changes, the texture and basic composition during ripening. Female consumers did not accept any level of salt substitution, while male consumers showed dislike only for the Na0 cheese. Almost 80% of all consumers liked moderately-to-very-much the Na25 cheese variant. It implies that it is worth considering the production of cheese with 50–75% of NaCl replaced with KCl. The addition of natural flavoring and clear labeling of the sodium reduction should accompany the salt replacement strategy.
Collapse
|
8
|
Nájera AI, Nieto S, Barron LJR, Albisu M. A Review of the Preservation of Hard and Semi-Hard Cheeses: Quality and Safety. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189789. [PMID: 34574712 PMCID: PMC8469587 DOI: 10.3390/ijerph18189789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
Cheese is a dairy product with potential health benefits. Cheese consumption has increased due to the significant diversity of varieties, versatility of product presentation, and changes in consumers’ lifestyles. Spoilage of hard and semi-hard cheeses can be promoted by their maturation period and/or by their long shelf-life. Therefore, preservation studies play a fundamental role in maintaining and/or increasing their shelf-life, and are of significant importance for the dairy sector. The aim of this review is to discuss the most effective methods to ensure the safety and sensory quality of ripened cheeses. We review traditional methods, such as freezing, and modern and innovative technologies, such as high hydrostatic pressures, chemical and natural vegetable origin preservatives, vacuum and modified atmosphere packaging, edible coatings and films, and other technologies applied at the end of storage and marketing stages, including light pulses and irradiation. For each technology, the main advantages and limitations for industrial application in the dairy sector are discussed. Each type of cheese requires a specific preservation treatment and optimal application conditions to ensure cheese quality and safety during storage. The environmental impact of the preservation technologies and their contribution to the sustainability of the food chain are discussed.
Collapse
Affiliation(s)
- Ana Isabel Nájera
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| | - Sonia Nieto
- Efficient and Sustainable Processes Department, Bizkaia Technology Park, AZTI, P.O. Box 609, 48160 Derio, Spain;
| | - Luis Javier R. Barron
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
| | - Marta Albisu
- Lactiker Research Group, Faculty of Pharmacy, Universidad del País Vasco/Euskal Herriko Unibertsitatea, 01006 Vitoria-Gasteiz, Spain;
- Correspondence: (A.I.N.); (M.A.); Tel.: +34-945-013-077 (A.I.N.); +34-945-013-072 (M.A.)
| |
Collapse
|
9
|
Moreira RV, Costa MP, Lima RS, Castro VS, Mutz YS, Rosario AIL, Delgado KF, Mano SB, Conte-Junior CA. Synergistic effect of pequi waste extract, UV-C radiation and vacuum packaging on the quality characteristics of goat Minas Frescal cheese with sodium reduction. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Miloradovic Z, Tomic N, Kljajevic N, Levic S, Pavlovic V, Blazic M, Miocinovic J. High Heat Treatment of Goat Cheese Milk. The Effect on Sensory Profile, Consumer Acceptance and Microstructure of Cheese. Foods 2021; 10:foods10051116. [PMID: 34070165 PMCID: PMC8158492 DOI: 10.3390/foods10051116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Goat cheeses from high heat treated milk (HHTM: 80 °C/5 min (E1) and 90 °C/5 min (E2)), could be regarded as new products, compared to their analogues made from commonly pasteurized milk (65 °C/30 min (C)). Descriptive analysis and consumer tests with a hedonic scale and JAR scale were part of the product development process. The use of scanning electron microscopy enabled deeper insight into the flavor and texture of the cheeses. In all cheese variants, goaty flavor was mildly pronounced. Young HHTM cheeses also had a pronounced whey and cooked/milky flavor. Consumers found such flavor ‘too intensive’. Unlike the control variant, HHTM cheeses were not described as ‘too hard’. Such improvement in texture was found to be a result of fine, highly branched microstructure, sustained over the course of ripening time and highly incorporated milk fat globules inside the cheese mass. Cluster analysis showed that the largest group of consumers (47.5%) preferred E2 cheese. Although consumers found that most of the cheeses were ‘too salty’, this excess did not decrease their overall acceptance. Neither microstructure analysis nor descriptive sensory analysis of goat white brined cheeses produced from high heat treated milk has been done before.
Collapse
Affiliation(s)
- Zorana Miloradovic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (N.K.); (J.M.)
- Correspondence:
| | - Nikola Tomic
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Nemanja Kljajevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (N.K.); (J.M.)
| | - Steva Levic
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Vladimir Pavlovic
- Department for Mathematics and Physics, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
- Institute of Technical Sciences of Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Marijana Blazic
- Department of Food Technology, Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, 47000 Karlovac, Croatia;
- University College Aspira, Mike Tripala 6, 21000 Split, Croatia
| | - Jelena Miocinovic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (N.K.); (J.M.)
| |
Collapse
|
11
|
Seyed-Moslemi SA, Hesari J, Peighambardoust SH, Peighambardoust SJ. Effect of microbial lipase and transglutaminase on the textural, physicochemical, and microbial parameters of fresh quark cheese. J Dairy Sci 2021; 104:7489-7499. [PMID: 33985784 DOI: 10.3168/jds.2020-19781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
In this study, the addition of microbial transglutaminase (MTG) and lipase in quark cheese samples was studied during storage (21 d). Four types of cheese were made using 3 different levels of MTG (T1, 0.1 g/L; T2, 0.2 g/L; T3, 0.3 g/L) and lipase (T1, 0.02 g/L; T2, 0.04 g/L; T3, 0.06 g/L), and one cheese was made without any treatment as a control sample. The physicochemical, textural, microbial, and sensory properties of cheese samples were monitored at 1, 7, 14, and 21 d of storage period. The results showed that the treated samples had higher proteolysis and lipolysis activities during storage than the control sample. The textural analysis indicated an insignificant increase in the hardness value of the enzyme-treated sample. Also, the sensory analysis exhibited that the treated samples had higher texture acceptability. The higher concentration of enzymes resulted in lower color, odor, taste, and overall acceptability, and higher microbial population. Finally, the addition of microbial MTG and lipase in preparation of quark cheese samples could be recommended for a short storage time.
Collapse
Affiliation(s)
- Seyed Amir Seyed-Moslemi
- Department of Food Science, College of Agriculture, University of Tabriz, 5166616471 Tabriz, I.R. Iran
| | - Javad Hesari
- Department of Food Science, College of Agriculture, University of Tabriz, 5166616471 Tabriz, I.R. Iran.
| | | | | |
Collapse
|
12
|
Al-Nabulsi AA, Osaili TM, Oqdeh SB, Olaimat AN, Jaradat ZW, Ayyash M, Holley RA. Antagonistic effects of Lactobacillus reuteri against Escherichia coli O157:H7 in white-brined cheese under different storage conditions. J Dairy Sci 2021; 104:2719-2734. [PMID: 33455758 DOI: 10.3168/jds.2020-19308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 01/23/2023]
Abstract
This study aimed to investigate the survival of the foodborne pathogen Escherichia coli O157:H7 in white-brined cheeses as influenced by the presence of Lactobacillus reuteri. The white cheeses were made from pasteurized bovine milk inoculated with E. coli O157:H7 (cocktail of 3 strains) to achieve ∼5 log10 cfu/g with absence or presence of Lb. reuteri (∼6 log10 cfu/g). Cheese samples were brined in 10% or 15% NaCl solution and stored at 10°C and 25°C for 28 d. The white-brined cheeses were assessed for salt content, pH, water activity (Aw), and numbers of E. coli O157:H7, Lb. reuteri, nonstarter lactic acid bacteria (NSLAB), yeasts, and molds. Results showed that E. coli O157:H7 survived in cheese stored in both brine solutions at 10°C and 25°C regardless of the presence of Lb. reuteri. A substantial reduction was observed in cheese stored in 10% NaCl brine at 25°C, followed by cheese stored in 15% NaCl brine at 10°C by 2.64 and 2.16 log10 cfu/g, respectively, in the presence of Lb. reuteri and by 1.02 and 1.87 log10 cfu/g, respectively, in the absence of Lb. reuteri under the same conditions. The pathogen in brine solutions survived but at a lower rate. Furthermore, the growth of Lb. reuteri and NSLAB were enhanced or slightly decreased in cheese and brine by 28 d, respectively. The salt concentrations of cheese ranged from 4 to 6% and 5 to 7% (wt/wt), during 28-d ripening in 10 and 15% brine, respectively. Values of pH and Aw slightly increased at d 1 after exposure to brine and reached 4.69 to 6.08 and 0.91 to 0.95, respectively, in all treatments. Therefore, the addition of Lb. reuteri can be used as a biopreservation method to inhibit the survival of E. coli O157:H7 in white-brined cheese when combined with the appropriate temperature, NaCl level, and storage time.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan; Department of Clinical Nutrition and Dietetics, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Saba B Oqdeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mutamed Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
13
|
Lin J, Huang Y, Wang S. The Hofmeister effect on protein hydrogels with stranded and particulate microstructures. Colloids Surf B Biointerfaces 2020; 196:111332. [DOI: 10.1016/j.colsurfb.2020.111332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
|
14
|
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front Microbiol 2020; 11:582778. [PMID: 33178163 PMCID: PMC7593773 DOI: 10.3389/fmicb.2020.582778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Yeasts are generally recognized as contaminants in the production of white-brined cheeses, such as Feta and Feta-type cheeses. The most predominant yeasts species are Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodotorula mucilaginosa, and Trichosporon spp. Although their spoilage potential varies at both species and strain levels, yeasts will, in case of excessive growth, present a microbiological hazard, effecting cheese quality. To evaluate the hazard and trace routes of contamination, the exact taxonomic classification of yeasts is required. Today, identification of dairy yeasts is mainly based on DNA sequencing, various genotyping techniques, and, to some extent, advanced phenotypic identification technologies. Even though these technologies are state of the art at the scientific level, they are only hardly implemented at the industrial level. Quality defects, caused by yeasts in white-brined cheese, are mainly linked to enzymatic activities and metabolism of fermentable carbohydrates, leading to production of metabolites (CO2, fatty acids, volatile compounds, amino acids, sulfur compounds, etc.) and resulting in off-flavors, texture softening, discoloration, and swelling of cheese packages. The proliferation of spoilage yeast depends on maturation and storage conditions at each specific dairy, product characteristics, nutrients availability, and interactions with the co-existing microorganisms. To prevent and control yeast contamination, different strategies based on the principles of HACCP and Good Manufacturing Practice (GMP) have been introduced in white-brined cheese production. These strategies include milk pasteurization, refrigeration, hygienic sanitation, air filtration, as well as aseptic and modified atmosphere packaging. Though a lot of research has been dedicated to yeasts in dairy products, the role of yeast contaminants, specifically in white-brined cheeses, is still insufficiently understood. This review aims to summarize the current knowledge on the identification of contaminant yeasts in white-brined cheeses, their occurrence and spoilage potential related to different varieties of white-brined cheeses, their interactions with other microorganisms, as well as guidelines used by dairies to prevent cheese contamination.
Collapse
Affiliation(s)
- Athina Geronikou
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thanyaporn Srimahaeak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | | | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
15
|
Sepe L, Argüello A. Recent advances in dairy goat products. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1306-1320. [PMID: 31357271 PMCID: PMC6668858 DOI: 10.5713/ajas.19.0487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/20/2019] [Accepted: 07/04/2019] [Indexed: 12/05/2022]
Abstract
Goat population world-wide is increasing, and the dairy goat sector is developing accordingly. Although the new technology applied to the goat industry is being introduced slowly because the weight of traditional subsector in the dairy sector, considerable advances have been made in the last decade. Present review focuses on the emerging topics in the dairy goat sector. Research and development of traditional and new dairy goat products are reviewed, including the new research in the use of goat milk in infant formula. The research in alternatives to brine, production of skimmed goat cheeses and the use of different modified atmosphere packaging are also addressed. Special attention is given to antibiotic residues and their determination in goat milk. Functional foods for human benefits are a trending topic. Health properties recently discovered in dairy goat products are included in the paper, with special attention to the antioxidant activity. The dual-purpose use of goats by humankind is affecting the way of how new technology is being incorporated in the dairy goat sector and will certainly affect the future development of dairy goat products.
Collapse
Affiliation(s)
- Lucia Sepe
- CREA Research Centre for Animal Production and Aquaculture, Bella
Muro 85051, Italy
| | - Anastasio Argüello
- Animal Production and Biotechnology Group, Institute of Animal
Health and Food Safety, Universidad de Las Palmas de Gran Canaria, Arucas, Las
Palmas 35413, Spain
| |
Collapse
|
16
|
Application of A Novel Potential Probiotic Lactobacillus paracasei Strain Isolated from Kefir Grains in the Production of Feta-Type Cheese. Microorganisms 2018; 6:microorganisms6040121. [PMID: 30501107 PMCID: PMC6313735 DOI: 10.3390/microorganisms6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 02/04/2023] Open
Abstract
In the present study 38 lactic acid bacteria strains were isolated from kefir grains and were monitored regarding probiotic properties in a series of established in vitro tests, including resistance to low pH, resistance to pepsin and pancreatin, and tolerance to bile salts, as well as susceptibility against common antibiotics. Among them, the strain SP3 displayed potential probiotic properties. Multiplex PCR analysis indicated that the novel strain belongs to the paracasei species. Likewise, the novel strain (Lactobacillus paracasei SP3) was applied as a starter culture for Feta-type cheese production. Feta-type cheese production resulted in significantly higher acidity; lower pH; reduced counts of coliforms, yeasts and fungi; and improved quality characteristics compared with cheese samples produced with no starter culture. Finally, it is highlighted that the application of the novel strain led to Feta-type cheese production with improved overall quality and sensory characteristics.
Collapse
|