1
|
Chen C, Zhou J, Yu H, Pan X, Tian H. Impact of kdcA, pdhD, and codY gene regulation in Lactococcus lactis 408 on 3-methylbutanal formation during cheddar cheese ripening. Food Microbiol 2025; 130:104768. [PMID: 40210397 DOI: 10.1016/j.fm.2025.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
3-Methylbutanal, a key volatile compound contributing to the nutty flavor of cheese, was primarily produced through the microbial catabolism of leucine. This study focused on the metabolic pathway of 3-methylbutanal at the genetic level during the ripening of Cheddar cheese. The influence of key genes (kdcA, pdhD, and codY) in Lactococcus lactis 408, a specifically selected adjunct culture, on the production of 3-methylbutanal was evaluated. Over a 14-day ripening period, a minor difference in leucine production was observed among different samples with adjunct culture, while alterations in the genes kdcA and pdhD, which were overexpressed in the strain, led to a decreased concentration of α-ketoisocaproate. Utilizing headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection, a reduction was observed in 3-methylbutanal levels as ripening progressed. However, cheese fermented with the codY knockout strain displayed the highest level of 3-methylbutanal at both 0.5-day and 28-day ripening milestones. Further analysis using an Ag/AgCl electrode to assess the redox environment revealed that the higher redox potential in the codY knockout strain was instrumental in retaining elevated levels of 3-methylbutanal. These findings underscored the critical role of genetic factors in the flavor development of cheese and offered promising targets for enhancing flavor profiles in dairy products through biotechnological interventions.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Junnan Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Xin Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
2
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
3
|
Chen C, Huang Z, Ge C, Yu H, Yuan H, Tian H. Regulation of the pleiotropic transcriptional regulator CodY on the conversion of branched-chain amino acids into branched-chain aldehydes in Lactococcus lactis. Appl Environ Microbiol 2023; 89:e0149323. [PMID: 37943058 PMCID: PMC10686057 DOI: 10.1128/aem.01493-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Branched-chain aldehydes are the primary compounds that contribute to the nutty flavor in cheddar cheese. Lactococcus lactis, which is often applied as primary starter culture, is a significant contributor to the nutty flavor of cheddar cheese due to its ability of conversion of BCAAs into branched-chain aldehydes. In the present study, we found that the regulatory role of CodY is crucial for the conversion. CodY acts as a pleiotropic transcriptional regulator via binding to various regulatory regions of key genes. The results presented valuable knowledge into the role of CodY on the regulation and biosynthetic pathway of branched-chain amino acids and the related aldehydes. Furthermore, it provided new insight for increasing the nutty flavor produced during the manufacture and ripening of cheese.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zhiyang Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chang Ge
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
4
|
Quality characteristics and volatile compounds of oil extracted from njangsa seed. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Hurtado-Romero A, Del Toro-Barbosa M, Gradilla-Hernández MS, Garcia-Amezquita LE, García-Cayuela T. Probiotic Properties, Prebiotic Fermentability, and GABA-Producing Capacity of Microorganisms Isolated from Mexican Milk Kefir Grains: A Clustering Evaluation for Functional Dairy Food Applications. Foods 2021; 10:foods10102275. [PMID: 34681324 PMCID: PMC8534820 DOI: 10.3390/foods10102275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023] Open
Abstract
Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2-5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.
Collapse
|
6
|
Zhao Q, Wang Z, Yang L, Zhang S, Jia K. YALI0C22088g from Yarrowia lipolytica catalyses the conversion of l-methionine into volatile organic sulfur-containing compounds. Microb Biotechnol 2021; 14:1462-1471. [PMID: 33793081 PMCID: PMC8313282 DOI: 10.1111/1751-7915.13796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
The enzymatic conversion of l-methionine (l-Met) into volatile organic sulfur-containing compounds (VOSCs) plays an important role in developing the characteristic aroma of foods. However, the mechanism for the direct conversion of l-Met into VOSCs is still unclear in yeast cells used to make food products. Here, we show that the transcription profile of YALI0C22088g from Yarrowia lipolytica correlates positively with l-Met addition. YALI0C22088g catalyses the γ-elimination of l-Met, directly converting l-Met into VOSCs. YALI0C22088g also exhibits strong C-S lysis activities towards l-cystathionine and the other sulfur-containing compounds and forms a distinct cystathionine-γ-lyase subgroup. We identified eight key amino acid residues in YALI0C22088g, and we inferred that the size of the tunnel and the charges carried by the entrance amino acid residue are the determinants for the enzymatic conversion of l-Met into VOSCs. These findings reveal the formation mechanism of VOSCs produced directly from l-Met via the demethiolation pathway in Yarrowia lipolytica, which provides a rationale for engineering the enzymatic conversion of l-Met into VOSCs and thus stimulates the enzymatic production of aroma compounds.
Collapse
Affiliation(s)
- Quan‐Lu Zhao
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Key Laboratory of Industrial MicrobiologyHubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhan430068China
| | - Zhu‐Lin Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Key Laboratory of Industrial MicrobiologyHubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhan430068China
| | - Lan Yang
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Key Laboratory of Industrial MicrobiologyHubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhan430068China
| | - Sai Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Key Laboratory of Industrial MicrobiologyHubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhan430068China
| | - Kai‐Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education)Hubei Key Laboratory of Industrial MicrobiologyHubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of TechnologyWuhan430068China
| |
Collapse
|
7
|
Growth, dormancy and lysis: the complex relation of starter culture physiology and cheese flavour formation. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules 2021; 26:molecules26071858. [PMID: 33806095 PMCID: PMC8037685 DOI: 10.3390/molecules26071858] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past several decades, we have observed a very rapid development in the biotechnological use of lactic acid bacteria (LAB) in various branches of the food industry. All such areas of activity of these bacteria are very important and promise enormous economic and industrial successes. LAB are a numerous group of microorganisms that have the ability to ferment sugars into lactic acid and to produce proteolytic enzymes. LAB proteolytic enzymes play an important role in supplying cells with the nitrogen compounds necessary for their growth. Their nutritional requirements in this regard are very high. Lactic acid bacteria require many free amino acids to grow. The available amount of such compounds in the natural environment is usually small, hence the main function of these enzymes is the hydrolysis of proteins to components absorbed by bacterial cells. Enzymes are synthesized inside bacterial cells and are mostly secreted outside the cell. This type of proteinase remains linked to the cell wall structure by covalent bonds. Thanks to advances in enzymology, it is possible to obtain and design new enzymes and their preparations that can be widely used in various biotechnological processes. This article characterizes the proteolytic activity, describes LAB nitrogen metabolism and details the characteristics of the peptide transport system. Potential applications of proteolytic enzymes in many industries are also presented, including the food industry.
Collapse
|
9
|
Solid/gas biocatalysis for aroma production: An alternative process of white biotechnology. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Hu Y, Zhang L, Liu Q, Wang Y, Chen Q, Kong B. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. Food Microbiol 2020; 91:103505. [PMID: 32539975 DOI: 10.1016/j.fm.2020.103505] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
The objective of this study was to explore the correlation between bacterial communities and volatile compounds in traditional dry sausages from different regions in Northeast China. The bacterial community structure of dry sausages from five different regions as determined by high-throughput sequencing technology demonstrated that Firmicutes and Proteobacteria were the predominant phyla; Lactobacillus, Staphylococcus, Leuconostoc, Lactococcus and Weissella were the predominant genera; and Staphylococcus xylosus, Lactobacillus sakei, Weissella hellenica, Leuconostoc citreum, Lactococcus raffinolactis and Lactobacillus plantarum were the predominant species. Meanwhile, a total of 120 volatile compounds were detected in sausages from five different regions and mainly included alcohols, acids, aldehydes, ketones, esters and terpenes. Furthermore, the potential correlations between the core bacteria and major volatile compounds (64) were explored based on Spearman's correlation analysis. Positive correlations were found between W. hellenica, Lb. sakei, Lactococcus lactis, Lactobacillus alimentarius, Lb. plantarum and carboxylic acids and alcohols. Lc. lactis, Lb. alimentarius and Lb. plantarum were associated with the production of most esters, aldehydes and ketones. This study provides a deep insight into the relationship between the bacterial community and the volatile flavour profile of dry sausages, which may be helpful for the production of fermented dry sausages.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yan Wang
- Shimadzu (China) Co., LTD., Shenyang, Liaoning, 110000, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|