1
|
Du J, Li Z, Guo J, Du K, Chen Z, Bai Y. Development of a magnetic separation method for rapid isolation and enrichment of bacteria in raw pork using chitosan functionalized magnetic Fe 3O 4@MIL-100(Fe) composites. J Food Sci 2024; 89:6628-6637. [PMID: 39256318 DOI: 10.1111/1750-3841.17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
In this study, a pretreatment method based on a magnetic capture probe for the rapid isolation and enrichment of bacteria from raw pork was developed. The chitosan immobilized Fe3O4@MIL-100(Fe) was prepared as a capture probe for total bacterial counts through the electrostatic interaction of positively charged chitosan and the negatively charged substances on the surface of bacteria. The interference of matrix in pork samples on this method was studied and removed by differential centrifugation. The results showed the capture probe had a great selectivity binding and magnetic separation properties for the tested six common bacteria in pork. Under the optimal conditions, the capture efficiency of the bacteria (105 CFU mL-1) from pork surface samples was all above 90%. The capture efficiency of the bacteria in a homogenate system was greatly decreased due to the interference of sarcoplasmic protein and myofibrillar protein in pork. The matrix effect was mitigated by a differential centrifugation method, and the capture efficiency of all six bacteria was >80%. The developed magnetic separation method took 40 min and showed good isolation and enrichment properties of bacteria. Thus, the proposed method is expected to provide a simple, convenient, and time-saving pretreatment method for the detection of total bacterial counts in pork.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
| | - Zongshuang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiangli Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kaidong Du
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhijian Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
| |
Collapse
|
2
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
3
|
Lu Y, Xie Q, Chen J, Chu Z, Zhang F, Wang Q. Aptamer-mediated double strand displacement amplification with microchip electrophoresis for ultrasensitive detection of Salmonella typhimurium. Talanta 2024; 273:125875. [PMID: 38452591 DOI: 10.1016/j.talanta.2024.125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Rapid and quantitative detection of foodborne bacteria is of great significance to public health. In this work, an aptamer-mediated double strand displacement amplification (SDA) strategy was first explored to couple with microchip electrophoresis (MCE) for rapid and ultrasensitive detection of Salmonella typhimurium (S. Typhimurium). In double-SDA, a bacteria-identified probe consisting of the aptamer (Apt) and trigger sequence (Tr) was ingeniously designed. The aptamer showed high affinity to the S. Typhimurium, releasing the Tr sequence from the probe. The released Tr hybridized with template C1 chain, initiating the first SDA to produce numerous output strands (OS). The second SDA process was induced with the hybridization of the liberated OS and template C2 sequence, generating a large number of reporter strands (RS), which were separated and quantified through MCE. Cascade signal amplification and rapid separation of nucleic acids could be realized by the proposed double-SDA method with MCE, achieving the limit of detection for S. typhimurium down to 6 CFU/mL under the optimal conditions. Based on the elaborate design of the probes, the double-SDA assisted MCE strategy achieved better amplification performance, showing high separation efficiency and simple operation, which has satisfactory expectation for bacterial disease diagnosis.
Collapse
Affiliation(s)
- Yuqi Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qihui Xie
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Jingyi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
4
|
Dai H, Yin M, Zhang S, Wei J, Jiao T, Chen Q, Chen Q, Chen X, Oyama M, Chen X. A paper-based photoelectrochemical aptsensor using near-infrared light-responsive AgBiS 2 nanoflowers as probes for the detection of Staphylococcus aureus in pork. Talanta 2024; 266:125128. [PMID: 37639873 DOI: 10.1016/j.talanta.2023.125128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Staphylococcus aureus is a gram-positive bacterium that can easily cause outbreaks of food-borne diseases. In this work, a signal-enhanced three-dimensional paper-based photoelectrochemical (PEC) aptsensor for the rapid and sensitive determination of S. aureus was developed. Specifically, gold nanoparticles (AuNPs) were electrodeposited on a paper-based working electrode to provide binding sites for a sulfhydryl-functionalized aptamer. Subsequently, S. aureus was captured with high specificity by a carboxyl-functionalized aptamer modified with amino-functionalized AgBiS2 nanoflowers (NH2-AgBiS2 NFs), which functionalized as PEC probes that generated strong photocurrent under irradiation with 980-nm light. By exploiting the "aptamer-target-aptamer" PEC sensing platform, the rapid and ultrasensitive detection of S. aureus was achieved. The sensor had a wide linear range of 20 to 2 × 107 CFU/mL and low limit of detection of 4 CFU/mL. Further, the applicability of the as-prepared aptsensor was successfully certified for the analysis of pork samples artificially contaminated with S. aureus.
Collapse
Affiliation(s)
- Hanjie Dai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Mingming Yin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Shumin Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
5
|
Song D, Jia A, Qi X, Dong K, Liu S, Man C, Yang X, Jiang Y. Co-culture of Cronobacter sakazakii and Staphylococcus aureus: Explore the influence of mixed biofilm formation and regulation of Cronobacter sakazakii biofilm formation genes. Food Res Int 2023; 173:113457. [PMID: 37803782 DOI: 10.1016/j.foodres.2023.113457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Bacterial biofilm is a protective matrix composed of metabolites secreted by bacteria that envelop bacteria. By forming a biofilm, bacteria can considerably improve their environmental tolerance. In food-related processing environment, different types of microorganisms are often present in biofilms. The main contaminating strain in the powdered infant formula (PIF) processing environment, Cronobacter sakazakii and Staphylococcus aureus continues to pollute the PIF processing environment after biofilm production. This study selected Cronobacter sakazakii with a weak biofilm-forming ability as one of the test organisms. The coexistence of Cronobacter sakazakii and Staphylococcus aureus on the surface of production equipment was simulated to analyze the interaction. Biofilm formation in the co-culture group was significantly higher than the others. In-depth study of the effect of Staphylococcus aureus on the biofilm formation genes of Cronobacter sakazakii. Results show two bacteria can coexist on the surface of a metal device, forming a more compact hybrid biofilm structure. Under co-culture conditions, S. aureus increased bcsA and fliD expression in Cronobacter sakazakii, whereas decreased bcsC expression. Signaling molecules produced by Staphylococcus aureus (Autoinducer 2) significantly promoted the biofilm formation of Cronobacter sakazakii at the concentration of 0-500 ng/mL (0.099-0.177) and up-regulated the expression of bcsA, filD and flhD genes.
Collapse
Affiliation(s)
- Danliangmin Song
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Ai Jia
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Xuehe Qi
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Kai Dong
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Shiyu Liu
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, Harbin 150030, China.
| | - Yujun Jiang
- Department of Food Science, Northeast Agricultural University, Harbin 150038, China.
| |
Collapse
|
6
|
Lamas A, Santos SB, Prado M, Garrido-Maestu A. Phage amplification coupled with loop-mediated isothermal amplification (PA-LAMP) for same-day detection of viable Salmonella Enteritidis in raw poultry meat. Food Microbiol 2023; 115:104341. [PMID: 37567642 DOI: 10.1016/j.fm.2023.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023]
Abstract
Salmonella Enteritidis is the main serotype responsible for human salmonellosis in the European Union. One of the main sources of Salmonella spp. in the food chain are poultry products, such as eggs or chicken meat. In recent years, molecular methods have become an alternative to culture dependent methods for the rapid screening of Salmonella spp. In this work, the strain S. Enteritidis S1400, and previously isolated and characterized bacteriophage PVP-SE2, were used to develop and evaluate a same-day detection method combining Phage Amplification and Loop-mediated isothermal amplification (PA-LAMP) to specifically detect viable S. Enteritidis in chicken breast. This method is based on the detection of the phage DNA rather than bacterial DNA. The virus is added to the sample during pre-enrichment in buffered peptone water, where it replicates in the presence of viable S. Enteritidis. The detection of phage DNA allows, on the one hand to detect viable bacteria, since viruses only replicate in them, and on the other hand to increase the sensitivity of the method since for each infected S. Enteritidis cell, hundreds of new viruses are produced. Two different PA-LAMP detection strategies were evaluated, a real time fluorescence and a naked-eye detection. The present method could down to 0.2 fg/μL of pure phage DNA and a concentration of viral particles of 2.2 log PFU/mL. After a short Salmonella recovery step of 3 h and a co-culture of 4 h of the samples with phage particles, both real-time fluorescence and naked-eye method showed a LoD95 of 6.6 CFU/25 g and a LoD50 of 1.5/25 g in spiked chicken breast samples. The entire detection process, including DNA extraction and LAMP analysis, can be completed in around 8 h. In the current proof-of-concept, the novel PA-LAMP obtained comparable results to those of the reference method ISO 6579, to detect Salmonella Enteritidis in poultry meat.
Collapse
Affiliation(s)
- Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory, Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Spain
| | - Sílvio B Santos
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4800-122, Braga, Guimarães, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal.
| |
Collapse
|
7
|
Shahdost-Fard F, Faridfar S, Keihan AH, Aghaei M, Petrenko I, Ahmadi F, Ehrlich H, Rahimi-Nasrabadi M. Applicability of a Green Nanocomposite Consisted of Spongin Decorated Cu 2WO 4(OH) 2 and AgNPs as a High-Performance Aptasensing Platform in Staphylococcus aureus Detection. BIOSENSORS 2023; 13:271. [PMID: 36832038 PMCID: PMC9954421 DOI: 10.3390/bios13020271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
This study reports the synthesis of a nanocomposite consisting of spongin and its applicability in the development of an aptasensing platform with high performance. The spongin was carefully extracted from a marine sponge and decorated with copper tungsten oxide hydroxide. The resulting spongin-copper tungsten oxide hydroxide was functionalized by silver nanoparticles and utilized in electrochemical aptasensor fabrication. The nanocomposite covered on a glassy carbon electrode surface amplified the electron transfer and increased active electrochemical sites. The aptasensor was fabricated by loading of thiolated aptamer on the embedded surface via thiol-AgNPs linkage. The applicability of the aptasensor was tested in detecting the Staphylococcus aureus bacterium as one of the five most common causes of nosocomial infectious diseases. The aptasensor measured S. aureus under a linear concentration range of 10-108 colony-forming units per milliliter and a limit of quantification and detection of 12 and 1 colony-forming unit per milliliter, respectively. The highly selective diagnosis of S. aureus in the presence of some common bacterial strains was satisfactorily evaluated. The acceptable results of the human serum analysis as the real sample may be promising in the bacteria tracking in clinical samples underlying the green chemistry principle.
Collapse
Affiliation(s)
- Faezeh Shahdost-Fard
- Department of Chemistry, Faculty of Basic Sciences, Farhangian University, Tehran 19396-14464, Iran
| | - Shahin Faridfar
- Department of Chemistry, Faculty of Science, University of Imam Hossein, Tehran 15816-18711, Iran
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19516-83759, Iran
| | - Mohammad Aghaei
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 84334-71964, Iran
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Farhad Ahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Mehdi Rahimi-Nasrabadi
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 14179-35840, Iran
| |
Collapse
|
8
|
Cao X, Liu M, Lu J, Lv H, Han J, He S, Ye Y, Chen X, Wei Z, Zheng H. An ultrasensitive biosensor for virulence ompA gene of Cronobacter sakazakii based on boron doped carbon quantum dots-AuNPs nanozyme and exonuclease III-assisted target-recycling strategy. Food Chem 2022; 391:133268. [DOI: 10.1016/j.foodchem.2022.133268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
|
9
|
Zhou C, Huang D, Wang Z, Shen P, Wang P, Xu Z. CRISPR Cas12a‐based “sweet” biosensor coupled with personal glucose meter readout for the point‐of‐care testing of
Salmonella. J Food Sci 2022; 87:4137-4147. [DOI: 10.1111/1750-3841.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ziyi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Pu Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|
10
|
Nanozyme-mediated signal amplification for ultrasensitive photoelectrochemical sensing of Staphylococcus aureus based on Cu–C3N4–TiO2 heterostructure. Biosens Bioelectron 2022; 216:114593. [DOI: 10.1016/j.bios.2022.114593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022]
|
11
|
Zhang Y, Yuan L, Chen C, Mgomi FC, Yang Z, Jiao X. Specific detection of viable
Cronobacter sakazakii
in powdered infant formula by phage amplification combined with
qPCR
(
PAA‐qPCR
) assay. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan‐Song Zhang
- School of Food Science and Technology Yangzhou University Yangzhou Jiangsu 225127 China
| | - Lei Yuan
- School of Food Science and Technology Yangzhou University Yangzhou Jiangsu 225127 China
| | - Cao‐Wei Chen
- School of Food Science and Technology Yangzhou University Yangzhou Jiangsu 225127 China
| | - Fedrick C Mgomi
- School of Food Science and Technology Yangzhou University Yangzhou Jiangsu 225127 China
| | - Zhen‐Quan Yang
- School of Food Science and Technology Yangzhou University Yangzhou Jiangsu 225127 China
- Jiangsu Key Laboratory of Zoonoses Yangzhou Jiangsu 225009 China
| | - Xin‐an Jiao
- Jiangsu Key Laboratory of Zoonoses Yangzhou Jiangsu 225009 China
| |
Collapse
|
12
|
Wang Z, Liu J, Chen G, Feng X, Deng M, Mu D, Xu Q, Xu H. An integrated system using phenylboronic acid functionalized magnetic beads and colorimetric detection for Staphylococcus aureus. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Qian J, Huang D, Ni D, Zhao J, Shi Z, Fang M, Xu Z. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Boukharouba A, González A, García-Ferrús M, Ferrús MA, Botella S. Simultaneous Detection of Four Main Foodborne Pathogens in Ready-to-Eat Food by Using a Simple and Rapid Multiplex PCR (mPCR) Assay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031031. [PMID: 35162055 PMCID: PMC8834630 DOI: 10.3390/ijerph19031031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/25/2022]
Abstract
The increasing consumption of organic or ready-to-eat food may cause serious foodborne disease outbreaks. Developing microbiological culture for detection of food-borne pathogens is time-consuming, expensive, and laborious. Thus, alternative methods such as polymerase chain reaction (PCR) are usually employed for outbreaks investigation. In this work, we aimed to develop a rapid and simple protocol for the simultaneous detection of Escherichia coli (E coli), Listeria monocytogenes (L. monocytogenes), Staphylococcus aureus (S. aureus) and Salmonella enterica (S. enterica), by the combination of an enrichment step in a single culture broth and a multiplex PCR (mPCR) assay. The effectiveness of several enrichment media was assessed by culture and PCR. Buffered peptone water (BPW) was selected as the optimum one. Then, mPCR conditions were optimized and applied both to pure co-cultures and artificially inoculated food samples (organic lettuce and minced meat). In the culture medium inoculated at 100 CFU/mL, mPCR was able to detect the four microorganisms. When performed on artificially food samples, the mPCR assy was able to detect E. coli, S. enterica, and L. monocytogenes. In conclusion, BPW broth can effectively support the simultaneous growth of E. coli, S. aureus, L. monocytogenes, and S. enterica and could be, thus, used prior to a mPCR detection assay in ready-to-eat food, thereby considerably reducing the time, efforts and costs of analyzes.
Collapse
Affiliation(s)
| | | | | | | | - Salut Botella
- Correspondence: (M.A.F.); (S.B.); Tel.: +34-963877423 (M.A.F.)
| |
Collapse
|
15
|
Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A Novel Photoelectrochemical Aptamer Sensor Based on CdTe Quantum Dots Enhancement and Exonuclease I-Assisted Signal Amplification for Listeria monocytogenes Detection. Foods 2021; 10:2896. [PMID: 34945447 PMCID: PMC8701101 DOI: 10.3390/foods10122896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To achieve the rapid detection of Listeria monocytogenes, this study used aptamers for the original identification and built a photoelectrochemical aptamer sensor using exonuclease-assisted amplification. Tungsten trioxide (WO3) was used as a photosensitive material, was modified with gold nanoparticles to immobilize complementary DNA, and amplified the signal by means of the sensitization effect of CdTe quantum dots and the shearing effect of Exonuclease I (Exo I) to achieve high-sensitivity detection. This strategy had a detection limit of 45 CFU/mL in the concentration range of 1.3 × 101-1.3 × 107 CFU/mL. The construction strategy provides a new way to detect Listeria monocytogenes.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Chao Ding
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hanwei Gan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Shuting Jiang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| |
Collapse
|
16
|
Liu J, Xie G, Xiong Q, Mu D, Xu H. A simple and sensitive aptasensor with rolling circle amplification for viable Cronobacter sakazakii detection in powdered infant formula. J Dairy Sci 2021; 104:12365-12374. [PMID: 34531051 DOI: 10.3168/jds.2021-20898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Cronobacter sakazakii is a foodborne, emerging opportunistic pathogen that causes severe bacteremia, necrotizing enterocolitis, and sepsis with a mortality rate of up to 80%. In this study, we developed a simple and sensitive fluorescent turn-off aptasensor with rolling circle amplification assay for viable C. sakazakii detection in powdered infant formula. The results showed that the proposed aptasensor has good performance and specificity for detecting viable C. sakazakii in pure culture and powdered infant formula samples within 3 h. Under the optimal reaction conditions, there is a linear relationship between fluorescent intensity at 490 nm and logarithmic concentration of C. sakazakii in the range of 2.7 × 105 to 2.7 × 102 cfu/mL, with a limit of detection of 2.7 × 102 cfu/mL in pure culture. The proposed aptasensor achieved a recovery of 104 to 111% in pure culture, and 96 to 107% in spiked powdered infant formula samples. The proposed aptasensor does not require complicated DNA extraction steps or antibodies, and can be performed at 37°C, making it a convenient and sensitive strategy for C. sakazakii detection.
Collapse
Affiliation(s)
- Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
17
|
Shang Y, Ye Q, Wu Q, Pang R, Zhou B, Wang C, Xiang X, Li F, Wang J, Zhang Y, Wang J, Sun X, Zhang J. PCR and multiplex PCR assays for the detection of Cronobacter species using specific targets obtained by a bioinformatics approach. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Xie X, Liu Z. Simultaneous enumeration of Cronobacter sakazakii and Staphylococcus aureus in powdered infant foods through duplex TaqMan real-time PCR. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Shi X, Yu L, Lin C, Li K, Chen J, Qin H. Biotin exposure-based immunomagnetic separation coupled with sodium dodecyl sulfate, propidium monoazide, and multiplex real-time PCR for rapid detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk. J Dairy Sci 2021; 104:6588-6597. [PMID: 33715855 DOI: 10.3168/jds.2020-19887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
In this study, we established a rapid and sensitive method for the detection of viable Salmonella Typhimurium, Staphylococcus aureus, and Listeria monocytogenes in milk using biotin-exposure-based immunomagnetic separation (IMS) combined with sodium dodecyl sulfate (SDS), propidium monoazide (PMA), and multiplex real-time PCR (mRT-PCR). We used IMS to lessen the assay time for isolation of target bacteria. We then optimized the coupling conditions and immunomagnetic capture process. The immunoreaction and incubation times for 5 μg of mAb coupled with 500 μg of streptavidin-functionalized magnetic beads using a streptavidin-biotin system were 90 and 30 min, respectively. Treatment with SDS-PMA before mRT-PCR amplification eliminated false-positive outcomes from dead bacteria and identified viable target bacteria with good sensitivity and specificity. The limit of detection of IMS combined with the SDS-PMA-mRT-PCR assay for the detection of viable Salmonella Typhimurium, Staph. aureus, and L. monocytogenes in spiked milk matrix samples was 10 cfu/mL and remained significant even in the appearance of 106 cfu/mL of nontarget bacteria. The entire detection process was able to identify viable bacteria within 9 h. The combination of biotin-exposure-mediated IMS and SDS-PMA-mRT-PCR has potential value for the rapid and sensitive detection of foodborne pathogens.
Collapse
Affiliation(s)
- Xiuquan Shi
- Xiangya School of Public Health, Central South University, Changsha 410078, P. R. China
| | - Liang Yu
- Research and Development Office, Hunan First Normal University, Changsha 410205, P. R. China
| | - Cui Lin
- Xiangya School of Public Health, Central South University, Changsha 410078, P. R. China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410078, P. R. China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha 410078, P. R. China.
| |
Collapse
|
20
|
Xie G, Zhou D, Zhao G, Feng X, Aguilar ZP, Xu H. Recombinase aided amplification with photoreactive DNA-binding dye for rapid detection of viable Staphylococcus aureus. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110249] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Zhu A, Ali S, Xu Y, Ouyang Q, Chen Q. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens Bioelectron 2020; 172:112806. [PMID: 33190016 DOI: 10.1016/j.bios.2020.112806] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/19/2023]
Abstract
In this study, a sensitive biosensor was developed based on aptamer functionalized polydimethylsiloxane (PDMS) film for the detection of Staphylococcus aureus (S. aureus) using surface-enhanced Raman scattering (SERS) technology. Initially, the surface of PDMS film was chemically modified by piranha solution and 3-Aminopropyltriethoxysilane (APTES), and then AuNPs-PDMS film was prepared by coating gold nanoparticles (AuNPs) through electrostatic interaction. Next, the aptamers were immobilized on the AuNPs-PDMS membrane via gold-sulfur bond to form the capture substrate. Meanwhile, gold-silver core-shell nanoflowers (Au@Ag NFs) modified with mercaptobenzoic acid (4-MBA) and aptamers were applied as a signal probe. In the presence of the target, the signal molecular probe and the capturing substrate specifically combined with the target and resulted in a sandwich structure "capture substrate-target-signal molecular probe". Under the optimized experimental condition, the signal of 4-MBA at 1085 cm-1 was linearly related to the S. aureus concentration in the range of 4.3 × 10 cfu mL-1-4.3 × 107 cfu mL-1 (y = 326.91x-117.62, R2 = 0.9932) with a detection limit of 13 cfu mL-1. The method was successfully applied to spiked actual samples and a 92.5-110% recovery rate was achieved.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|