1
|
Chen X, Wang J, Chan P, Zhu Q, Zhu Z, Zheng M, Chen X, Wu H, Cui M, Zhang Y. Metabolic Reprogramming in Spinal Cord Injury and Analysis of Potential Therapeutic Targets. J Mol Neurosci 2025; 75:50. [PMID: 40237957 DOI: 10.1007/s12031-025-02343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) is a critical neurological disorder that frequently leads to permanent disability, profoundly affecting the quality of life of individuals with SCI. In this research, we examined the varied expression of genes associated with metabolic reprogramming-related genes in SCI. By employing the Gene Expression Omnibus datasets GSE5296 and GSE47681, 1001 differentially expressed genes (DEGs) were identified through the limma R package. Among these, 871 and 130 genes were upregulated and downregulated, respectively. A subset of 10 metabolic reprogramming-related differentially expressed genes (MRRDEGs) was recognized as key players in metabolic reprogramming. Analyses of enrichment performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes indicated that the identified MRRDEGs predominantly participated in processes related to pyruvate metabolism and carbohydrate degradation. Nine hub genes were discerned using a protein-protein interaction network. Subsequently, an SCI mouse model was established using the LISA SCI modeling device, and preliminary validation was conducted through quantitative real-time PCR experiments at various time points after SCI, specifically on days 1, 3, and 7, suggesting their central role in SCI. Receiver operating characteristic curve analysis indicated that these MRRDEGs could be used to diagnose SCI. The CIBERSORT algorithm analysis of immune infiltration identified an inverse relationship between M0 and M2 macrophages. Furthermore, a positive relationship was observed between Ucp2 and M0 macrophages, underscoring their essential function in the immune response following SCI. These results highlight MRRDEGs' importance in SCI and propose their potential roles as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xiangjun Chen
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Juan Wang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Peiran Chan
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Qian Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Ziyan Zhu
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Mingming Zheng
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Xinyi Chen
- The First Medical School of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Haozhen Wu
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China
| | - Min Cui
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, P.R. China.
| |
Collapse
|
2
|
Zheng T, Lu F, Wu P, Chen Y, Zhang R, Li X. Ferroptosis and cuproptosis in periodontitis: recent biological insights and therapeutic advances. Front Immunol 2025; 16:1526961. [PMID: 40066457 PMCID: PMC11891063 DOI: 10.3389/fimmu.2025.1526961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis. Further, we propose that a homeostatic imbalance of copper and iron, driven by periodontal pathogens, may contribute to elevated periodontal oxidative stress, representing a potential unifying link between ferroptosis and cuproptosis involved in periodontitis. This article presents a comprehensive overview of the molecular mechanisms underlying ferroptosis and cuproptosis in periodontitis, offering novel theoretical insights into its pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Tengyi Zheng
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peihang Wu
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yangan Chen
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China
| |
Collapse
|
3
|
Wang L, Wang C, He H. The Potential Regulatory Role of Ferroptosis in Orthodontically Induced Inflammatory Root Resorption. Int J Mol Sci 2024; 25:13617. [PMID: 39769377 PMCID: PMC11728003 DOI: 10.3390/ijms252413617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
People, in increasing numbers, are seeking orthodontic treatment to correct malocclusion, while some of them are suffering from orthodontically induced inflammatory root resorption (OIIRR). Recent evidence suggests that the immune-inflammatory response occurring during bone remodeling may be responsible for OIIRR. Ferroptosis, a new type of programmed cell death (PCD), has been found to have a close interrelation with inflammation during disease progression. While ferroptosis has been extensively studied in bone-related diseases, its role in OIIRR is poorly understood. Considering that the tooth root shares a lot of similar characteristics with bone, it is reasonable to hypothesize that ferroptosis contributes to the development of OIIRR. Nevertheless, direct evidence supporting this theory is currently lacking. In this review, we introduced ferroptosis and elucidated the mechanisms underlying orthodontic tooth movement (OTM) and OIIRR, with a special focus on the pivotal role inflammation plays in these processes. Additionally, we covered recent research exploring the connections between inflammation and ferroptosis. Lastly, we emphasized the important regulatory function of ferroptosis in bone homeostasis. Further investigations are required to clarify the modulation mechanisms of ferroptosis in OIIRR and to develop novel and potential therapeutic strategies for the management of OIIRR.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
4
|
Aol L, Zhou X, Hao H, Nie J, Zhang W, Yao D, Su L, Xue W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024; 10:e39895. [PMID: 39524731 PMCID: PMC11550122 DOI: 10.1016/j.heliyon.2024.e39895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Tooth development is an intricate process that encompasses cellular activities, molecular signaling pathways, and gene expression patterns. Disruptions in any of the processes can lead to structural anomalies, impairments in function, and increased vulnerability to oral disorders. Alveolar resorption, which refers to the pathological loss of alveolar bone around teeth, poses a substantial clinical problem in periodontal disorders such as periodontitis. Long non-coding RNAs (LncRNAs) have been implicated in the regulation of these physiological and pathological processes, and they exert their impact on gene expression through both transcriptional and post-transcriptional mechanisms. However, they also interact with certain microRNAs (mi-RNAs), thereby modulating the expression of downstream genes that are involved in tooth development. An exemplar is lncRNA ZFAS1, which has been demonstrated to regulate gene expression and impact these physiological and pathological processes. As a result, lncRNAs contribute to these processes by interacting with chromatin regulators, RNA enhancers, mi-RNAs, and their modulating signaling pathways involved in tooth development and alveolar resorption. Taken together, this review explores and gives a systematic account of the recent research findings that enhance our understanding of the molecular mechanisms that drive these processes and their potential consequences for the remodeling of teeth and bones in the oral cavity.
Collapse
Affiliation(s)
- Lilliane Aol
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhong Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Hao
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiaqi Nie
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanjun Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dunjie Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wanlin Xue
- Affiliated Hospital of Huazhong University of Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Feng X, Peng D, Qiu Y, Guo Q, Zhang X, Li Z, Pan C. Identification and Validation of Aging- and Endoplasmic Reticulum Stress-Related Genes in Periodontitis Using a Competing Endogenous RNA Network. Inflammation 2024:10.1007/s10753-024-02124-0. [PMID: 39136902 DOI: 10.1007/s10753-024-02124-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025]
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that destroy periodontium. Apart from microbial infection and host immune responses, emerging evidence shows aging and endoplasmic reticulum stress (ER stress) play a key role in periodontitis pathogenesis. The aim of this study is to identify aging-related genes (ARGs) and endoplasmic reticulum stress-related genes (ERGs) in periodontitis. Data were obtained from the Gene Expression Omnibus (GEO), Human Ageing Genomic Resources (HAGR) and GeneCards databases to identify differentially expressed mRNAs/miRNAs/lncRNAs (DEmRNAs/DEmiRNAs/DElncRNAs), ARGs and ERGs, respectively. We used the MultiMiR database for the reverse prediction of miRNAs and predicted miRNA-lncRNA interactions using the STARBase database. Afterwards, we constructed a mRNA-miRNA-lncRNA ceRNA network. A total of 10 hub genes, namely LCK, LYN, CXCL8, IL6, HCK, IL1B, BTK, CXCL12, GNAI1 and FCER1G, and 5 DEmRNAs-ARGs-ERGs were then discovered. Further, weighted gene co-expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) were performed to explore co-expression modules and immune infiltration respectively. Finally, we used transmission electron microscope (TEM), inverted fluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot to verify the bioinformatic results in periodontal ligament stem cells (PDLSCs) infected with Porphyromonas gingivalis (P. gingivalis). The experimental results broadly confirmed the accuracy of bioinformatic analysis. The present study established an aging- and ER stress-related ceRNA network in periodontitis, contributing to a deeper understanding of the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xinran Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Da Peng
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Yunjing Qiu
- School of Nursing & Midwifery, Faculty of Health, University of Technology Sydney, Sydney, 2007, Australia
| | - Qian Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhixuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chunling Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China.
| |
Collapse
|
7
|
Zhai W, Gao J, Qin W, Xu Y. Non-coding RNAs Function in Periodontal Ligament Stem Cells. Stem Cell Rev Rep 2024; 20:1521-1531. [PMID: 38848014 DOI: 10.1007/s12015-024-10731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 08/13/2024]
Abstract
Non-coding RNA has many types which has rich functions and plays an important role in the study of basic molecular mechanisms. Many non-coding RNA have important implications for pluripotent stem cells and embryonic stem cells. It has been found to affect the self-renewal and osteogenesis of many types of stem cells. They have also been found to regulate stem cell proliferation and induct bone differentiation. Periodontal ligament stem cells are essential for the regeneration of periodontal tissue. In recent years, in the field of stomatology, studies have found that many non-coding RNA also have significant regulatory effects on the proliferation and differentiation of periodontal stem cells and may become potential therapeutic targets for many common periodontal diseases such as periodontitis, bone/tooth/soft tissue loss and orthodontic treatment. Therefore, we summarized the current research status of non-coding RNA in the field of molecular mechanism of periodontal ligament stem cells and prospected its future progress.
Collapse
Affiliation(s)
- Wei Zhai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Jie Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yuerong Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
8
|
Wang Y, Huang Y, Zhu H, Guo Z, Cheng J, Zhang C, Zhong M. Exostoisns (EXT1/2) in Head and Neck Cancers: An In Silico Analysis and Clinical Correlates. Int Dent J 2024; 74:446-453. [PMID: 37989698 PMCID: PMC11123571 DOI: 10.1016/j.identj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVES The exostosins (EXT), which are responsible for heparan sulfate backbone synthesis and play a vital role in tissue homeostasis, have been reported to be correlated with prognosis of various cancers. However, the expression, prognostic value, and immune infiltration of EXT1 and EXT2 in head and neck squamous cell carcinoma (HNSC) remain uncertain. METHODS GEPIA, UALCAN, and Xiantao bioinformatics tools were used to explore the EXT1 and EXT2 expression level in HNSC. GEPIA and Sangerbox were utilised to obtain the prognostic value of EXT1 and EXT2 in HNSC. Genetic alterations, immune cell infiltration, and single-cell analysis were conducted in cBioPortal, TIMER, and TISCH2. In addition, the expressions of EXT1 and EXT2 were validated by real-time polymerase chain reaction (PCR) in HNSC samples. RESULTS EXT1 and EXT2 were highly expressed in HNSC, especially in malignant cells. Only EXT2 was significantly negatively correlated to the prognosis of patients with HNSC. EXT1 and EXT2 were found to be associated with focal adhesin and cell adhesin molecule binding. EXT1 expression levels were considerably connected with CD8+ T cell infiltrating levels, whilst EXT2 expression levels were considerably negatively connected with infiltrating levels of CD4+ T cells, macrophages, neutrophils, and dendritic cells in HNSC. The gene mutation rates of EXT1 and EXT2 in HNSC were 7% and 2.8%, respectively. Moreover, EXT2 was validated to be highly expressed in HNSC samples by real-time PCR. CONCLUSION EXT2 was highly expressed and presented negative correlation with the prognosis and immune infiltration of HNSC, which might be a potential biomarker for HNSC.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Houwei Zhu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Zhenzhen Guo
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Jun Cheng
- Department of Oral Histopathology, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Churen Zhang
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Ming Zhong
- Department of Oral Histopathology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Sun X, Meng X, Piao Y, Dong S, Dong Q. METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells through IGF2BP1-Mediated Regulation of Runx2 Stability. Int J Med Sci 2024; 21:664-673. [PMID: 38464837 PMCID: PMC10920842 DOI: 10.7150/ijms.90485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
N6-Methyladenosine (m6A) has been reported to play a dynamic role in osteoporosis and bone metabolism. However, whether m6A is involved in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) remains unclear. Here, we found that methyltransferase-like 3 (METTL3) was up-regulated synchronously with m6A during the osteogenic differentiation of hPDLSCs. Functionally, lentivirus-mediated knockdown of METTL3 in hPDLSCs impaired osteogenic potential. Mechanistic analysis further showed that METTL3 knockdown decreased m6A methylation and reduced IGF2BP1-mediated stability of runt-related transcription factor 2 (Runx2) mRNA, which in turn inhibited osteogenic differentiation. Therefore, METTL3-based m6A modification favored osteogenic differentiation of hPDLSCs through IGF2BP1-mediated Runx2 mRNA stability. Our study shed light on the critical roles of m6A on regulation of osteogenic differentiation in hPDLSCs and served novel therapeutic approaches in vital periodontitis therapy.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiujiao Meng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yu Piao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Qianqian Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
10
|
Wang Z, Chen H, Peng L, He Y, Zhang X. Revealing a potential necroptosis-related axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) in periodontitis by construction of the ceRNA network. J Periodontal Res 2023; 58:968-985. [PMID: 37357608 DOI: 10.1111/jre.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis, a prevalent chronic inflammatory condition, poses a significant risk of tooth loosening and subsequent tooth loss. Within the realm of programmed cell death, a recently recognized process known as necroptosis has garnered attention for its involvement in numerous inflammatory diseases. Nevertheless, its correlation with periodontitis is indistinct. Our study aimed to identify necroptosis-related lncRNAs and crucial lncRNA-miRNA-mRNA regulatory axes in periodontitis to further understand the pathogenesis of periodontitis. MATERIALS AND METHODS Gene expression profiles in gingival tissues were acquired from the Gene Expression Omnibus (GEO) database. Selecting hub necroptosis-related lncRNA and extracting the key lncRNA-miRNA-mRNA axes based on the ceRNA network by adding novel machine-learning models based on conventional analysis and combining qRT-PCR validation. Then, an artificial neural network (ANN) model was constructed for lncRNA in regulatory axes, and the accuracy of the model was validated by receiver operating characteristic (ROC) curve analysis. The clinical effect of the model was evaluated by decision curve analysis (DCA). Weighted correlation network analysis (WGCNA) and single-sample gene set enrichment analysis (ssGSEA) was performed to explore how these lncRNAs work in periodontitis. RESULTS Seven hub necroptosis-related lncRNAs and three lncRNA-miRNA-mRNA regulatory axes (RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis, RP11-96D1.11/hsa-miR-185-5p/EZH2 axis, and RP4-773 N10.4/hsa-miR-21-5p/TLR3 axis) were predicted. WGCNA revealed that RP11-138A9.1 was significantly correlated with the "purple module". Functional enrichment analysis and ssGSEA demonstrated that the RP11-138A9.1/hsa-miR-98-5p/ZBP1 axis is closely related to the inflammation and immune processes in periodontitis. CONCLUSION Our study predicted a crucial necroptosis-related regulatory axis (RP11-138A9.1/hsa-miR-98-5p/ZBP1) based on the ceRNA network, which may aid in elucidating the role and mechanism of necroptosis in periodontitis.
Collapse
Affiliation(s)
- Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Fu E, Kuo CY, Hsia YJ, Huang YM, Tseng HH, Fu MW, Shih KC. Role of ferroptosis in periodontitis: An animal study in rats. J Periodontal Res 2023; 58:1031-1040. [PMID: 37477155 DOI: 10.1111/jre.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate (1) the temporal pattern of ferroptosis, an iron-dependent cell death, in ligation-induced rat periodontitis and (2) the effect of ferrostatin-1, a ferroptosis inhibitor, on the model. BACKGROUND Ferroptosis may contribute to various diseases. However, the role of ferroptosis in periodontitis is still fully understood. METHODS In the first experiment, 25 rats with ligation-induced periodontitis were sacrificed on days 0, 1, 2, 7, and 10. Gingivae were obtained to determine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and ferroptotic biomarkers, including solute carrier family 3 member 2 (SLC3A2) and solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (Gpx4), via immunoblotting. Using microcomputed tomography (μCT) and histology, the periodontal soft and hard tissue lesions, including dental alveolar bone crest level, bony characteristics of the surrounding alveolus, periodontal tissue inflammation, and periodontal tissue losses, were evaluated. In study two, 16 rats with induced periodontitis were grouped according to ferrostatin-1 treatment. The rats were intraperitoneally injected with solvent or ferrostatin-1 (1.5 mg/kg/day) 1 day before ligation and sacrificed on days 7 and 10. Gingival protein changes and periodontal tissue damage were also examined. RESULTS In study one, SLC3A2/SLC7A11 and Gpx4 decreased since day 1; however, TNF-α/IL-1β increased on days 7 and 10. Moreover, the μCT/histology revealed resorptive bony characteristics, inflamed gingival tissue, and periodontal attachment loss. In study two, ferrostatin-1-injected rats exhibited significantly increased SLC3A2/SLC7A11 and Gpx4 but decreased TNF-α/IL-1β than vehicle rats. They also revealed lessened bone resorption, tissue inflammation, and attachment loss. CONCLUSION This study highlights the role of ferroptosis, via the system Xc/Gpx4 pathway, in experimental periodontitis and may serve as a regulatory strategy.
Collapse
Affiliation(s)
- Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Jan Hsia
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Hwa Tseng
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Wen Fu
- Department of Endodontics, College of Dentistry, New York University, New York City, New York, USA
| | - Kuang-Chung Shih
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front Pharmacol 2023; 13:1098851. [PMID: 36686646 PMCID: PMC9852864 DOI: 10.3389/fphar.2022.1098851] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory oral disease that destroys soft and hard periodontal support tissues. Multiple cell death modes including apoptosis, necroptosis, pyroptosis, and ferroptosis play a crucial role in the pathogenicity of inflammatory diseases. This study aimed to identify genes associated with ferroptosis, necroptosis, and pyroptosis in different cells present in the periodontium of periodontitis patients. Methods: Gingival tissues' mRNA sequencing dataset GSE173078 of 12 healthy control and 12 periodontitis patients' and the microarray dataset GSE10334 of 63 healthy controls and 64 periodontitis patients' were obtained from Gene Expression Omnibus (GEO) database. A total of 910 differentially expressed genes (DEGs) obtained in GSE173078 were intersected with necroptosis, pyroptosis, and ferroptosis-related genes to obtain the differential genes associated with cell death (DCDEGs), and the expression levels of 21 differential genes associated with cell death were verified with dataset GSE10334. Results: Bioinformatic analysis revealed 21 differential genes associated with cell death attributed to ferroptosis, pyroptosis, and necroptosis in periodontitis patients compared with healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that 21 differential genes associated with cell death were related to various cellular and immunological pathways including inflammatory responses, necroptosis, and osteoclast differentiation. Additionally, the single-cell RNA (scRNA) sequencing data GSE171213 of 4 healthy controls and 5 periodontitis patients' periodontal tissue was analyzed to obtain cell clustering and cell types attributed to differential genes associated with cell death. We found that among 21 DCDEGs, SLC2A3, FPR2, TREM1, and IL1B were mainly upregulated in neutrophils present in the periodontium of periodontitis patients. Gene overlapping analysis revealed that IL-1B is related to necroptosis and pyroptosis, TREM1 and FPR2 are related to pyroptosis, and SLC2A3 is related to ferroptosis. Finally, we utilized the CIBERSORT algorithm to assess the association between DCDEGs and immune infiltration phenotypes, based on the gene expression profile of GSE10334. The results revealed that the upregulated SLC2A3, FPR2, TREM1, and IL1B were positively correlated with neutrophil infiltration in the periodontium. Discussion: The findings provide upregulated SLC2A3, FPR2, TREM1, and IL1B in neutrophils as a future research direction on the mode and mechanism of cell death in periodontitis and their role in disease pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Li
- *Correspondence: Janak L. Pathak, ; Jiang Li,
| | | |
Collapse
|
13
|
Ma J, Li C, Liu T, Zhang L, Wen X, Liu X, Fan W. Identification of Markers for Diagnosis and Treatment of Diabetic Kidney Disease Based on the Ferroptosis and Immune. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9957172. [PMID: 36466094 PMCID: PMC9712001 DOI: 10.1155/2022/9957172] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 08/05/2023]
Abstract
BACKGROUND In advanced diabetic kidney disease (DKD), iron metabolism and immune dysregulation are abnormal, but the correlation is not clear. Therefore, we aim to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with immune inflammatory response and to identify new diagnostic biomarkers to help treat and diagnose DKD. METHODS Download data from gene expression omnibus (GEO) database and FerrDb database, and construct random forest tree (RF) and support vector machine (SVM) model to screen hub ferroptosis genes (DE-FRGs). We used consistent unsupervised consensus clustering to cluster DKD samples, and enrichment analysis was performed by Gene Set Variation Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) and then assessed immune cell infiltration abundance using the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms. Ferroptosis scoring system was established based on the Boruta algorithm, and then, core compounds were screened, and binding sites were predicted by Coremine Medical database. RESULTS We finally established a 7-gene signature (DUSP1, PRDX6, PEBP1, ZFP36, GABARAPL1, TSC22D3, and RGS4) that exhibited good stability across different datasets. Consistent clustering analysis divided the DKD samples into two ferroptosis modification patterns. Meanwhile, autophagy and peroxisome pathways and immune-related pathways can participate in the regulation of ferroptosis modification patterns. The abundance of immune cell infiltration differs significantly across patterns. Further, molecular docking results showed that the core compound could bind to the protein encoded by the core gene. CONCLUSIONS Our findings suggest that ferroptosis modification plays a crucial role in the diversity and complexity of the DKD immune microenvironment, and the ferroptosis score system can be used to effectively verify the relationship between ferroptosis and immune cell infiltration in DKD patients. Kaempferol and quercetin may be potential drugs to improve the immune and inflammatory mechanisms of DKD by affecting ferroptosis.
Collapse
Affiliation(s)
- JingYuan Ma
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - ChangYan Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Tao Liu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, California 92521, USA
| | - XiaoLing Wen
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - XiaoLing Liu
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - WenXing Fan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
14
|
Pan S, Hu B, Sun J, Yang Z, Yu W, He Z, Gao X, Song J. Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation. Front Immunol 2022; 13:1015491. [PMID: 36248844 PMCID: PMC9556735 DOI: 10.3389/fimmu.2022.1015491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose There is a bidirectional relationship between periodontitis and type 2 diabetes mellitus (T2DM). The aim of this study was to further explore the pathogenesis of this comorbidity, screen out ferroptosis-related genes involved in the pathological process, and predict potential drug targets to develop new therapeutic strategies. Methods Common cross-talk genes were identified from periodontitis datasets (GSE16134, GSE10334 and GSE106090) and T2DM databases (DisGeNET and GeneCard). Then, GO and KEGG enrichment analyses, PPI network analysis and hub gene identification were performed. The association between ferroptosis and periodontitis with T2DM was investigated by Pearson correlation analysis. Core ferroptosis-related cross-talk genes were identified and verified by qRT-PCR. Potential drugs targeting these core genes were predicted via DGIDB. Results In total, 67 cross-talk genes and two main signalling pathways (immuno-inflammatory pathway and AGE-RAGE signalling pathway) were identified. Pearson correlation analysis indicated that ferroptosis served as a crucial target in the pathological mechanism and treatment of periodontitis with T2DM. IL-1β, IL-6, NFE2L2 and ALOX5 were identified as core ferroptosis-related genes and the qRT-PCR detection results were statistically different. In total, 13 potential drugs were screened out, among which, Echinacea and Ibudilast should be developed first. Conclusions This study contributes to a deeper understanding of the common pathogenesis of periodontitis and T2DM and provides new insights into the role of ferroptosis in this comorbidity. In addition, two drugs with potential clinical application value were identified. The potential utility of these drugs requires further experimental investigation.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jicheng Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zun Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song, ; Xiang Gao,
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song, ; Xiang Gao,
| |
Collapse
|