1
|
Gundogdu Ezer U, Gunpinar S. Local application of 0.8% hyaluronic acid gel as an adjunct to minimally invasive nonsurgical treatment of periodontal intrabony defects-A randomized clinical trial. J Periodontal Res 2025; 60:215-225. [PMID: 39114889 DOI: 10.1111/jre.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 01/03/2025]
Abstract
AIM The aim of this study was to evaluate the clinical and radiographic effects of hyaluronic acid (HA) gel application as an adjunct to minimally invasive nonsurgical treatment (MINST) in intrabony defects ≥3 mm. METHODS A total of 36 patients were included and randomly assigned to two groups: (a) MINST + HA (test; n = 17) and (b) MINST (control, n = 19). Subgingival 0.8% HA gel was applied in intrabony defects of test group and repeated 4 weeks following MINST protocol. Clinical measurements including probing depth (PD), clinical attachment level (CAL), and gingival recession (GR) were recorded at baseline and repeated at 3 and 6 months. Radiographic evaluation was performed at baseline and 6 months. RESULTS Test group showed significantly greater reduction in PD and gain in CAL at 3 months compared to baseline than that of controls (p < .05), but the changes (Δ) at 6 months compared to baseline did not differ between the groups (p > .05). Although, both groups showed statistically significant GR in all evaluated time periods (p < .05), control group showed higher ΔGR than that of test group (p < .05). There was no significant difference between the groups in terms of radiographic defect fill/bone gain (p > .05). CONCLUSIONS The additional use of 0.8% HA gel in the treatment of periodontal intrabony defects did not provide additional benefits in clinical and radiographic parameters. On the other hand, GR measurements showed favorable results in the test group.
Collapse
Affiliation(s)
- Umran Gundogdu Ezer
- Faculty of Dentistry, Department of Periodontology, Bezmialem Vakif University, Istanbul, Turkey
| | - Sadiye Gunpinar
- Faculty of Dentistry, Department of Periodontology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
2
|
Fu Y, Yang Y, Mu K, Zhou Y, Chai H. Efficacy of toothpaste containing OPTIMEALTH® OR in inhibiting dental plaque and gingivitis: A randomized controlled trial. Medicine (Baltimore) 2025; 104:e41225. [PMID: 39889197 PMCID: PMC11789894 DOI: 10.1097/md.0000000000041225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 02/02/2025] Open
Abstract
BACKGROUND This randomized double-blind, placebo-controlled clinical trial evaluated the effects of 2% OPTIMEALTH® OR toothpaste in regulating dental plaque microbiota and alleviating gingivitis. METHODS Subjects were randomly assigned to the placebo group and test group. They were instructed to brush their teeth with placebo toothpaste (placebo group) or OPTIMEALTH® OR toothpaste (test group) for a continuous 4 weeks. Clinical indices of plaque index, gingival index, and bleeding on probe (%) were examined, and images of dental plaque staining were captured at baseline and after 2 and 4 weeks. The plaque microbiome was analyzed by 16s rDNA amplicon sequencing at baseline and after 4 weeks. RESULTS Thirty-two participants with similar characteristics were recruited. After using OPTIMEALTH® OR toothpaste for 4 weeks, a decrease of 27.05% (P < .01), 8.29% (P > .05), and 47.44% (P < .05) in plaque index, gingival index, and bleeding on probe (%) scores was observed compared to the baseline, respectively. The extent of decline in these indices is greater than that in the placebo group. A decrease in dental plaque could be observed after 2 and 4 weeks in the test group. The 16s rDNA sequencing results showed that the observed species index and Chao index, but not the Shannon index and beta diversity, were reduced significantly after using OPTIMEALTH® OR toothpaste for 4 weeks. In addition, compared with the placebo group, using OPTIMEALTH® OR toothpaste reduced the abundance of bacterial species such as Veillonella parvula and Prevotella denticola. CONCLUSION Brushing teeth with 2% OPTIMEALTH® OR-fortified toothpaste could effectively reduce dental plaque and regulate plaque microbiota.
Collapse
Affiliation(s)
- Yimin Fu
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yong Yang
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Keyun Mu
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Yuye Zhou
- Sethic (Guangzhou) Research & Development Center Co., Ltd, Guangzhou, People’s Republic of China
| | - Hui Chai
- Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Li R, Xu S, Guo Y, Cao C, Xu J, Hao L, Luo S, Chen X, Du Y, Li Y, Xie Y, Gao W, Li J, Xu B. Application of collagen in bone regeneration. J Orthop Translat 2025; 50:129-143. [PMID: 40171103 PMCID: PMC11960539 DOI: 10.1016/j.jot.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 04/03/2025] Open
Abstract
At present, there is a significant population of individuals experiencing bone deficiencies caused by injuries, ailments affecting the bones, congenital abnormalities, and cancer. The management of substantial bone defects a significant global orthopedic challenge due to the intricacies involved in promoting and restoring the growth of fresh osseous tissue. Autografts are widely regarded as the "gold standard" for repairing bone defects because of their superior tissue acceptance and ability to control osteogenesis. However, patients undergoing autografts may encounter various challenges, including but not limited to hernia, bleeding, nerve impairment, tissue death. Therefore, researchers in regenerative medicine are striving to find alternatives. Collagen is the most abundant protein in the human body, and its triple helix structure gives it unique characteristics that contribute to its strength and functionality in various tissues. Collagen is commonly processed into various forms such as scaffolds, sponges, membranes, hydrogels, and composite materials, due to its unique compatibility with the human body, affinity for water, minimal potential for immune reactions, adaptability, and ability to transport nutrients or drugs. As an alternative material in the field of bone regeneration, collagen is becoming increasingly important. The objective of this review is to provide a comprehensive analysis of the primary types and sources of collagen, their processes of synthesis and degradation, as well as the advancements made in bone regeneration research and its potential applications. A comprehensive investigation into the role of collagen in bone regeneration is undertaken, providing valuable points of reference for a more profound comprehension of collagen applications in this field. The concluding section provides a comprehensive overview of the prospective avenues for collagen research, underscoring their promising future and highlighting their significant potential in the field of bone regeneration. The Translational Potential of this Article. The comprehensive exploration into the diverse functions and translational potential of collagen in bone regeneration, as demonstrated in this review, these findings underscore their promising potential as a treatment option with significant clinical implications, thus paving the way for innovative and efficacious therapeutic strategies in this domain.
Collapse
Affiliation(s)
- Rou Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Yanning Guo
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Cong Cao
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Jingchen Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Lijun Hao
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Sai Luo
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Xinyao Chen
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Yuyang Du
- The Plastic and Aesthetic Center, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, PR China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guang Zhou 510515, PR China
| | - Yong Xie
- Department of Cardiac Surgery, The First Affiliated Hospital of Tsinghua University, Beijing 100036, PR China
| | - Weitong Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, PR China
| | - Jing Li
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
| | - Baohua Xu
- China–Japan Friendship Hospital (Institute of Clinical Medical Sciences), Beijing 100029, PR China
- China Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| |
Collapse
|
4
|
Liu Y, Yin T, He M, Fang C, Peng S. The relationship of dietary flavonoids and periodontitis in US population: a cross-sectional NHANES analysis. Clin Oral Investig 2024; 28:168. [PMID: 38396151 DOI: 10.1007/s00784-024-05561-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES We investigated the association between dietary flavonoids intake and periodontitis. MATERIALS AND METHODS This cross-sectional study analyzed data from the US National Health and Nutrition Examination Survey 2009-2010 on 3025 participants aged between 30 and 80 years who had full-mouth periodontal examination and dietary flavonoids intake data. This study used periodontal pocket depth (PPD) and clinical attachment loss (CAL) as periodontitis markers. Data were analyzed using multivariate linear regression. RESULTS After adjusting confounders, the middle tertile of total dietary flavonoids was associated with decreased mean PPD (0.06 mm, P = 0.016) and mean CAL (0.13 mm, P = 0.001) and the top tertile of total dietary flavonoids was significantly associated with decreases in mean PPD (0.05 mm, P = 0.029) and mean CAL (0.11 mm, P = 0.010). Both the middle and top tertiles of total flavonoids intake were significantly related with decreased mean CAL in females, those flossing 0 days/week, overweight and non-diabetic population but not in males, smokers, those flossing 1-6 days/week and diabetic population. Higher anthocyanidins, flavones and flavonols intake was significantly associated with decreased mean PPD and mean CAL while higher flavanones intake was only significantly associated with decreased mean CAL. Higher anthocyanidins intake was particularly related with greatest decreases in mean CAL (top tertile: 0.22 mm, middle tertile: 0.17 mm, both P < 0.010). However, no significant associations were found between isoflavones and flavan_3_ols intake and mean CAL. CONCLUSIONS Higher dietary flavonoids intake may be beneficial for periodontal health. CLINICAL RELEVANCE Additional anthocyanidins, flavanones, flavones and flavonols intake was associated with improved periodontal health.
Collapse
Affiliation(s)
- Yundong Liu
- Health Management Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China.
| | - Tao Yin
- Changsha Health Vocational College, Changsha, Hunan, 410605, P.R. China
| | - Mi He
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changyun Fang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
5
|
Zięba M, Sikorska W, Musioł M, Janeczek H, Włodarczyk J, Pastusiak M, Gupta A, Radecka I, Parati M, Tylko G, Kowalczuk M, Adamus G. Designing of Drug Delivery Systems to Improve the Antimicrobial Efficacy in the Periodontal Pocket Based on Biodegradable Polyesters. Int J Mol Sci 2023; 25:503. [PMID: 38203673 PMCID: PMC10778800 DOI: 10.3390/ijms25010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV-VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15-20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity.
Collapse
Affiliation(s)
- Magdalena Zięba
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
- Department of Optoelectronics, Silesian University of Technology, B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Abhishek Gupta
- Faculty of Science and Engineering, School of Pharmacy, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Iza Radecka
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Mattia Parati
- Faculty of Science and Engineering, Wolverhampton School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (I.R.); (M.P.)
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St., 41-819 Zabrze, Poland; (M.Z.); (W.S.); (M.M.); (H.J.); (J.W.); (M.P.); (M.K.)
| |
Collapse
|
6
|
Guo Y, Li Z, Chen F, Chai Y. Polyphenols in Oral Health: Homeostasis Maintenance, Disease Prevention, and Therapeutic Applications. Nutrients 2023; 15:4384. [PMID: 37892459 PMCID: PMC10610286 DOI: 10.3390/nu15204384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Polyphenols, a class of bioactive compounds with phenolic structures, are abundant in human diets. They have gained attention in biomedical fields due to their beneficial properties, including antioxidant, antibacterial, and anti-inflammatory activities. Therefore, polyphenols can prevent multiple chronic or infectious diseases and may help in the prevention of oral diseases. Oral health is crucial to our well-being, and maintaining a healthy oral microbiome is essential for preventing various dental and systemic diseases. However, the mechanisms by which polyphenols modulate the oral microbiota and contribute to oral health are still not fully understood, and the application of polyphenol products lies in different stages. This review provides a comprehensive overview of the advancements in understanding polyphenols' effects on oral health: dental caries, periodontal diseases, halitosis, and oral cancer. The mechanisms underlying the preventive and therapeutic effects of polyphenols derived from dietary sources are discussed, and new findings from animal models and clinical trials are included, highlighting the latest achievements. Given the great application potential of these natural compounds, novel approaches to dietary interventions and oral disease treatments may emerge. Moreover, investigating polyphenols combined with different materials presents promising opportunities for developing innovative therapeutic strategies in the treatment of oral diseases.
Collapse
Affiliation(s)
- Yuanyuan Guo
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Yujuan Chai
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|