1
|
Fuloria S, Mehta J, Talukdar MP, Sekar M, Gan SH, Subramaniyan V, Rani NNIM, Begum MY, Chidambaram K, Nordin R, Maziz MNH, Sathasivam KV, Lum PT, Fuloria NK. Synbiotic Effects of Fermented Rice on Human Health and Wellness: A Natural Beverage That Boosts Immunity. Front Microbiol 2022; 13:950913. [PMID: 35910609 PMCID: PMC9325588 DOI: 10.3389/fmicb.2022.950913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 12/26/2022] Open
Abstract
Fermented foods have been an important component of the human diet from the time immemorial. It contains a high amount of probiotics that have been associated to a wide range of health benefits, including improved digestion and immunity. This review focuses on the indigenously prepared prebiotic- and probiotic-containing functional fermented rice (named Xaj-pani) by the Ahom Community from Assam, in Northeast India, including all the beneficial and potential effects on human health. Literature was searched from scientific databases such as PubMed, ScienceDirect and Google Scholar. Glutinous rice (commonly known as bora rice of sali variety) is primarily employed to prepare beverages that are recovered through the filtration process. The beer is normally consumed during religious rites, festivals and ritual practices, as well as being used as a refreshing healthy drink. Traditionally, it is prepared by incorporating a variety of medicinal herbs into their starter culture (Xaj-pitha) inoculum which is rich in yeasts, molds and lactic acid bacteria (LAB) and then incorporated in alcoholic beverage fermentation. The Ahom communities routinely consume this traditionally prepared alcoholic drink with no understanding of its quality and shelf life. Additionally, a finally produced dried cake, known as vekur pitha act as a source of Saccharomyces cerevisiae and can be stored for future use. Despite the rampant use in this community, the relationship between Xaj-pani's consumption, immunological response, infectious and inflammatory processes remains unknown in the presence of factors unrelated or indirectly connected to immune function. Overall, this review provides the guidelines to promote the development of prebiotic- and probiotic-containing functional fermented rice that could significantly have an impact on the health of the consumers.
Collapse
Affiliation(s)
| | - Jyoti Mehta
- Department of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | | | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | | | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rusli Nordin
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Neeraj Kumar Fuloria
- Faculty of Pharmacy, AIMST University, Bedong, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
2
|
The Analysis of Changes in Nutritional Components and Flavor Characteristics of Wazu Rice Wine During Fermentation Process. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
Lin X, Ren X, Huang Y, Liang Z, Li W, Su H, He Z. Regional characteristics and discrimination of the fermentation starter Hong Qu in traditional rice wine brewing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaozi Lin
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Yingying Huang
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Weixin Li
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Hao Su
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| | - Zhigang He
- Institute of Agricultural Engineering Technology Fujian Academy of Agricultural Sciences Fuzhou Fujian 350003 China
- Fujian Key Laboratory of Agricultural Products (Food) Processing Fuzhou Fujian 350013 China
| |
Collapse
|
4
|
Yu P, Du J, Cao C, Cai G, Sun J, Wu D, Lu J. Development of a novel multi-strain wheat Qu with high enzyme activities for Huangjiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4808-4817. [PMID: 33502765 DOI: 10.1002/jsfa.11127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat Qu has long been used as a fermentation starter to produce Huangjiu. Wheat Qu quality depends on its microbial community structure and the hydrolytic enzymes generated by the micro-organisms. RESULTS Strain YF1 and YF2 were successfully screened as they exhibited high acidic protease (231.9 ± 1.4 U g-1 ) and cellulase (7.1 ± 0.6 U g-1 ) activities. Based on a morphological and sequence analysis of the internal transcribed spacer (ITS) gene, YF1 and YF2 were identified as Rhizopus oryzae and Aspergillus niger, respectively. Cooked wheat Qu was produced using mixed fungal starter fermentations with Aspergillus oryzae SU-16, YF1, and YF2. For Qu-making, the optimized conditions for fermentation time, water content, and inoculum size were 47.8 h, 69.4%, and 6.1%, respectively. Under these conditions, compared with single-strain cooked wheat Qu, enzyme activities of amylase, acidic protease, and cellulase increased by 27.4%, 657.1%, and 1276.2%, respectively. Short peptides and free amino acids contents increased by 19.6% and 131.8%, respectively. This wheat Qu was used for Huangjiu brewing, and the alcohol content increased by approximately 14.6% because of the increased starch hydrolysis efficiency mainly attributed to its high enzyme activity. CONCLUSION Using mixed fungal strains as starter cultures may be an efficient strategy to improve wheat Qu quality, with great potential for application in industrial Huangjiu production. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jing Du
- Department of Technologies, Jiangsu Yiming Biological Co., Ltd, Taizhou, P. R. China
| | - Chunlei Cao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Guolin Cai
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Junyong Sun
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
| | - Dianhui Wu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
5
|
Effect of enzymes addition on the fermentation of Chinese rice wine using defined fungal starter. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Leo VV, Viswanath V, Deka P, Zothanpuia, Ramji DR, Pachuau L, Carrie W, Malvi Y, Singh G, Singh BP. Saccharomyces and Their Potential Applications in Food and Food Processing Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Assessment of microbial quality and health risks associated with traditional rice wine starter Xaj-pitha of Assam, India: a step towards defined and controlled fermentation. 3 Biotech 2020; 10:64. [PMID: 32030333 DOI: 10.1007/s13205-020-2059-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
This study reports the microbial quality of ethnic starter culture Xaj-pitha used for rice wine fermentation in Assam. Here, we collected 60 Xaj-pitha samples belonging to Ahom community of the state and enumerated the microorganisms using spread plate technique. Illumina-based whole genome shotgun sequencing detected the presence of microbial contaminants like Acidovorax, Herbaspirillum, Methylobacterium, Pantoea, Pseudomonas, Stenotrophomonas, Staphylococcus, Micrococcus, Acinetobacter, etc. Presence of major health hazards associated with spontaneous rice wine fermentation necessitated method optimization through the development of a defined mixed starter culture. For this, functionally important α-amylase producers viz., Penicillium sp. ABTSJ23, Rhizopus oryzae ABTSJ63, Mucor guilliermondii ABTSJ72 and Amylomyces rouxii ABTSJ82 and eight yeasts viz., Saccharomyces cerevisiae ABTY1J, ABTY1S, ADJ5 & ADJ1, Wickerhamomyces anomalus ADJ2, Saccharomycopsis malanga ADJ3, Saccharomycopsis fibuligera ADJ4 and Saccharomycopsis malanga ADJ6 were retrieved using appropriate media. All the mould cultures tested negative for aflotoxins production. Among the yeasts, Saccharomyces cerevisiae ABTY1S and ADJ1 decarboxylated lysine HCl and tyramine HCl, respectively, indicating their biogenic amine production ability. For defined mixed starter culture, Amylomyces rouxii ABT82 with α-amylase (5.92 U/ml) and glucoamylase (7.50 U/ml) activities was selected as fungal partner; while Saccharomycopsis fibuligera ADJ4 and Saccharomyces cerevisiae ABT-Y1J with high ethanol production (up to 10.11% and 9.88% v/v, respectively) were selected as yeast partners. The mixed culture was able to produce high amount of glucose, ethanol and liquid (glucose 10.91% w/v; ethanol 7.5% w/v; liquid 51.0% w/v). Therefore, this study demonstrated the efficiency of mixed starter cultures for safe and controlled rice wine production.
Collapse
|
8
|
Liu S, Yang L, Zhou Y, He S, Li J, Sun H, Yao S, Xu S. Effect of mixed moulds starters on volatile flavor compounds in rice wine. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Engineering Synthetic Microbial Communities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Microorganisms 2019; 7:microorganisms7070206. [PMID: 31330825 PMCID: PMC6680646 DOI: 10.3390/microorganisms7070206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/24/2022] Open
Abstract
Production of Cambodian rice wine involves complex microbial consortia. Indeed, previous studies focused on traditional microbial starters used for this product revealed that three microbial strains with complementary metabolic activities are required for an effective fermentation, i.e., filamentous fungi (Rhizopus oryzae), yeast (Saccharomycescerevisiae), and lactic acid bacteria (Lactobacillusplantarum). Modulating the ratio between these three key players led to significant differences, not only in terms of ethanol and organic acid production, but also on the profile of volatile compounds, in comparison with natural communities. However, we observed that using an equal ratio of spores/cells of the three microbial strains during inoculation led to flavor profile and ethanol yield close to that obtained through the use of natural communities. Compartmentalization of metabolic tasks through the use of a biofilm cultivation device allows further improvement of the whole fermentation process, notably by increasing the amount of key components of the aroma profile of the fermented beverage (i.e., mainly phenylethyl alcohol, isobutyl alcohol, isoamyl alcohol, and 2-methyl-butanol) and reducing the amount of off-flavor compounds. This study is a step forward in our understanding of interkingdom microbial interactions with strong application potential in food biotechnology.
Collapse
|
10
|
Waché Y, Do TL, Do TBH, Do TY, Haure M, Ho PH, Kumar Anal A, Le VVM, Li WJ, Licandro H, Lorn D, Ly-Chatain MH, Ly S, Mahakarnchanakul W, Mai DV, Mith H, Nguyen DH, Nguyen TKC, Nguyen TMT, Nguyen TTT, Nguyen TVA, Pham HV, Pham TA, Phan TT, Tan R, Tien TN, Tran T, Try S, Phi QT, Valentin D, Vo-Van QB, Vongkamjan K, Vu DC, Vu NT, Chu-Ky S. Prospects for Food Fermentation in South-East Asia, Topics From the Tropical Fermentation and Biotechnology Network at the End of the AsiFood Erasmus+Project. Front Microbiol 2018; 9:2278. [PMID: 30374334 PMCID: PMC6196250 DOI: 10.3389/fmicb.2018.02278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 12/03/2022] Open
Abstract
Fermentation has been used for centuries to produce food in South-East Asia and some foods of this region are famous in the whole world. However, in the twenty first century, issues like food safety and quality must be addressed in a world changing from local business to globalization. In Western countries, the answer to these questions has been made through hygienisation, generalization of the use of starters, specialization of agriculture and use of long-distance transportation. This may have resulted in a loss in the taste and typicity of the products, in an extensive use of antibiotics and other chemicals and eventually, in a loss in the confidence of consumers to the products. The challenges awaiting fermentation in South-East Asia are thus to improve safety and quality in a sustainable system producing tasty and typical fermented products and valorising by-products. At the end of the “AsiFood Erasmus+ project” (www.asifood.org), the goal of this paper is to present and discuss these challenges as addressed by the Tropical Fermentation Network, a group of researchers from universities, research centers and companies in Asia and Europe. This paper presents current actions and prospects on hygienic, environmental, sensorial and nutritional qualities of traditional fermented food including screening of functional bacteria and starters, food safety strategies, research for new antimicrobial compounds, development of more sustainable fermentations and valorisation of by-products. A specificity of this network is also the multidisciplinary approach dealing with microbiology, food, chemical, sensorial, and genetic analyses, biotechnology, food supply chain, consumers and ethnology.
Collapse
Affiliation(s)
- Yves Waché
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France
| | - Thuy-Le Do
- Food Industries Research Institute, Hanoi, Vietnam
| | | | - Thi-Yen Do
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Maxime Haure
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France.,Atelier du Fruit, Longvic, France
| | - Phu-Ha Ho
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Klong Luang, Thailand
| | - Van-Viet-Man Le
- Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - Wen-Jun Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hélène Licandro
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France
| | - Da Lorn
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France.,Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | | | - Sokny Ly
- Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Warapa Mahakarnchanakul
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Dinh-Vuong Mai
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France.,Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Hasika Mith
- Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | | | - Thi-Kim-Chi Nguyen
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France
| | - Thi-Minh-Tu Nguyen
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thi-Thanh-Thuy Nguyen
- Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | | | - Hai-Vu Pham
- Agreenium, Paris, France.,CESAER, AgroSup Dijon/INRA/Université Bourgogne Franche-Comté, Dijon, France
| | - Tuan-Anh Pham
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thanh-Tam Phan
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Reasmey Tan
- Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Tien-Nam Tien
- Center of Experiment and Practice, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Thierry Tran
- Agreenium, Paris, France.,International Center for Tropical Agriculture, CGIAR Research Program on Roots, Tubers and Bananas, Cali, Colombia.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Qualisud, CGIAR Research Program on Roots, Tubers and Bananas, Montpellier, France
| | - Sophal Try
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Dijon, France.,PAM UMR A 02.102, Université Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Agreenium, Paris, France.,Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dominique Valentin
- Agreenium, Paris, France.,Le Centre des Sciences du Goût et de l'Alimentation - AgroSup Dijon/INRA/CNRS/Université Bourgogne Franche-Comté, Dijon, France
| | - Quoc-Bao Vo-Van
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Kitiya Vongkamjan
- Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Duc-Chien Vu
- Food Industries Research Institute, Hanoi, Vietnam
| | | | - Son Chu-Ky
- Tropical Bioresources & Biotechnology International Joint Laboratory, Université Bourgogne Franche-Comté/AgroSup Dijon- Hanoi University of Science and Technology, Hanoi, Vietnam.,School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
11
|
Ly S, Mith H, Tarayre C, Taminiau B, Daube G, Fauconnier ML, Delvigne F. Impact of Microbial Composition of Cambodian Traditional Dried Starters (Dombea) on Flavor Compounds of Rice Wine: Combining Amplicon Sequencing With HP-SPME-GCMS. Front Microbiol 2018; 9:894. [PMID: 29867806 PMCID: PMC5951977 DOI: 10.3389/fmicb.2018.00894] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Dombae is a traditional ferment starter which has been used for starchy based wine production in Cambodia. However, the production technology of rice wine in Cambodia is not optimized. The current study aimed to investigate the microbiota associated in five ferment starters and the effect of a traditional fermentation process using a metagenomics sequencing analysis and HS-SPME-GCMS for the characterization of the aromatic profiles at the end of fermentation. Most of bacteria identified in this study were lactic acid bacteria including Weissella cibaria, Pediococcus sp. MMZ60A, Lactobacillus fermentum, and Lactobacillus plantarum. Saccharomyces cerevisiae and Saccharomycopsis fibuligera were found to be abundant yeasts while the only amylolytic filamentous fungus was Rhizopus oryzae. A total of 25 aromatic compounds were detected and identified as esters, alcohols, acids, ketones and aldehydes. The alcohol group was dominant in each rice wine. Significant changes were observed at the level of microbial communities during fermentation, suggesting microbial succession for the assimilation of starch and subsequently assimilation of fermentation by-products leading to the production of flavor compounds. At this level, the presence of Weissella, Pediococcus, and Lactobacillus genus was strongly correlated with most of the flavor compounds detected.
Collapse
Affiliation(s)
- Sokny Ly
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.,Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Hasika Mith
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Cédric Tarayre
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Bernard Taminiau
- Food Science Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health, University of Liège, Liège, Belgium
| | - Georges Daube
- Food Science Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health, University of Liège, Liège, Belgium
| | - Marie-Laure Fauconnier
- General and Organic Chemistry, Université de Liège - Gembloux Agro-BioTech, Gembloux, Belgium
| | - Frank Delvigne
- Terra Research Centre, Microbial Processes and Interactions, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
12
|
Chay C, Dizon E, Elegado F, Norng C, Hurtada W, Raymundo L. Isolation and identification of molds and yeasts in medombae, a rice wine starter culture from Kompong Cham Province, Cambodia. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.6.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Mangang KCS, Das AJ, Deka SC. Comparative shelf life study of two different rice beers prepared using wild-type and established microbial starters. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Arup Jyoti Das
- Department of Food Engineering and Technology; Tezpur University; Napaam Tezpur -784028 Assam India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology; Tezpur University; Napaam Tezpur -784028 Assam India
| |
Collapse
|
14
|
Bora SS, Keot J, Das S, Sarma K, Barooah M. Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture (Xaj-pitha) of Assam, India. 3 Biotech 2016; 6:153. [PMID: 28330225 PMCID: PMC4947050 DOI: 10.1007/s13205-016-0471-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
This is the first report on the microbial diversity of xaj-pitha, a rice wine fermentation starter culture through a metagenomics approach involving Illumine-based whole genome shotgun (WGS) sequencing method. Metagenomic DNA was extracted from rice wine starter culture concocted by Ahom community of Assam and analyzed using a MiSeq® System. A total of 2,78,231 contigs, with an average read length of 640.13 bp, were obtained. Data obtained from the use of several taxonomic profiling tools were compared with previously reported microbial diversity studies through the culture-dependent and culture-independent method. The microbial community revealed the existence of amylase producers, such as Rhizopus delemar, Mucor circinelloides, and Aspergillus sp. Ethanol producers viz., Meyerozyma guilliermondii, Wickerhamomyces ciferrii, Saccharomyces cerevisiae, Candida glabrata, Debaryomyces hansenii, Ogataea parapolymorpha, and Dekkera bruxellensis, were found associated with the starter culture along with a diverse range of opportunistic contaminants. The bacterial microflora was dominated by lactic acid bacteria (LAB). The most frequent occurring LAB was Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc lactis, Weissella cibaria, Lactococcus lactis, Weissella para mesenteroides, Leuconostoc pseudomesenteroides, etc. Our study provided a comprehensive picture of microbial diversity associated with rice wine fermentation starter and indicated the superiority of metagenomic sequencing over previously used techniques.
Collapse
Affiliation(s)
- Sudipta Sankar Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Jyotshna Keot
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Saurav Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Kishore Sarma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, Assam, India.
| |
Collapse
|
15
|
New insight into microbial diversity and functions in traditional Vietnamese alcoholic fermentation. Int J Food Microbiol 2016; 232:15-21. [DOI: 10.1016/j.ijfoodmicro.2016.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/13/2016] [Accepted: 05/20/2016] [Indexed: 11/19/2022]
|
16
|
Yang D, Luo X, Wang X. Characteristics of traditional Chinese shanlan wine fermentation. J Biosci Bioeng 2013; 117:203-207. [PMID: 24012384 DOI: 10.1016/j.jbiosc.2013.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/13/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Abstract
Shanlan rice wine is made by a unique method by removing the saccharified liquid from wine mash constantly since it appeared during saccharification and fermentation. The objective of this study is to find the advantages of this technique of wine making by analyzing data of shanlan wine fermentation. Since the liquid was removed, the mash (rice) bed was fluffier than immersed in the saccharified liquid, under ambient condition constantly and it is favorable for starch degradation. This technique made shanlan rice wine tasted sweet and slightly acidic, lower content of alcohol and higher alcohol than in other non-distilled rice wines.
Collapse
Affiliation(s)
- Dongsheng Yang
- Department of Bioengineering, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China; Hainan Institute for Low Carbon Development, Haikou 570228, China.
| | - Xianqun Luo
- Department of Bioengineering, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xinguang Wang
- Department of Bioengineering, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Yeasts preservation: alternatives for lyophilisation. World J Microbiol Biotechnol 2012; 28:3239-44. [PMID: 22806747 PMCID: PMC3465650 DOI: 10.1007/s11274-012-1118-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cakes. During storage at 25 °C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4 months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6 months of storage at 25 °C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4 °C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications.
Collapse
|
18
|
Rich nutrition from the poorest – Cereal fermentations in Africa and Asia. Food Microbiol 2009; 26:685-92. [DOI: 10.1016/j.fm.2009.07.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 11/20/2022]
|
19
|
Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int J Food Microbiol 2008; 128:268-73. [DOI: 10.1016/j.ijfoodmicro.2008.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/03/2008] [Accepted: 08/28/2008] [Indexed: 11/23/2022]
|
20
|
Abstract
In the Asian region, indigenous fermented foods are important in daily life. In many of these foods, yeasts are predominant and functional during the fermentation. The diversity of foods in which yeasts predominate ranges from leavened bread-like products such as nan and idli, to alcoholic beverages such as rice and palm wines, and condiments such as papads and soy sauce. Although several products are obtained by natural fermentation, the use of traditional starter cultures is widespread. This minireview focuses on the diversity and functionality of yeasts in these products, and on opportunities for research and development.
Collapse
Affiliation(s)
- Kofi E Aidoo
- Food Research Laboratories, Caledonian University, Glasgow, Scotland
| | | | | |
Collapse
|