1
|
Zhou Y, Zuo H, Dai Z, Guo Z, Holman BWB, Ding Y, Shi J, Ding X, Huang M, Mao Y. Changes to Pork Bacterial Counts and Composition After Dielectric Barrier Discharge Plasma Treatment and Storage in Modified-Atmosphere Packaging. Foods 2024; 13:4162. [PMID: 39767103 PMCID: PMC11675310 DOI: 10.3390/foods13244162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to compare the succession of natural microbiota in pork held under refrigerated storage for up to 10 days after dielectric barrier discharge (DBD) plasma treatment. Two methods were used to assess the impact of DBD on microorganisms. Firstly, traditional selective media (SM) were employed to detect the bactericidal effects of DBD on Pseudomonas spp., Enterobacteriaceae, Lactic acid bacteria (LAB), and Brochothrix thermosphacta. Secondly, the thin agar layer (TAL) method was used to further evaluate the bactericidal effects of DBD. In addition, the Baranyi and Roberts model was applied to explore the kinetic parameters of Pseudomonas spp., Enterobacteriaceae, LAB, and B. thermosphacta during storage. Finally, the modified Lotka-Volterra model was used to describe the interactions between each microorganism. The study found that when using traditional selective media (SM), 85 kV DBD had a significant bactericidal effect on Pseudomonas spp., Enterobacteriaceae, LAB, and Brochothrix thermosphacta. However, when using the thin agar layer (TAL) method, the results suggested that DBD had no significant bactericidal effect, suggesting that DBD caused sublethal damage to the natural microorganisms on pork. Analysis with the Baranyi and Roberts model showed that DBD treatment significantly extended the lag phase of these four types of microorganisms and significantly reduced the μmax of all microorganisms except LAB. The analysis results of the modified Lotka-Volterra model showed that LAB had a greater impact on Pseudomonas spp., Enterobacteriaceae, and B. thermosphacta (a21 > a12). In conclusion, DBD treatment was shown to have a significant sublethal bactericidal effect that impacted both the count and composition of natural microorganisms found on pork.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Huixin Zuo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Zhaoqi Dai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zonglin Guo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Yanqin Ding
- College of Biotechnology, Shandong Agricultural University, Tai’an 271018, China;
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Xiaoxiao Ding
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| | - Yanwei Mao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.Z.); (H.Z.); (J.S.); (X.D.); (Y.M.)
| |
Collapse
|
2
|
Akritidou T, Akkermans S, Smet C, Delens V, Van Impe JFM. Effect of food structure and buffering capacity on pathogen survival during in vitro digestion. Food Res Int 2023; 164:112305. [PMID: 36737908 DOI: 10.1016/j.foodres.2022.112305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Even though a plethora of barriers are employed by the human gastrointestinal tract (GIT) to cope with invading pathogens, foodborne diseases are still a common problem. The survival of food pathogens in the GIT is known to depend on food carrier properties. The aim of this study was to investigate the influence of food buffering capacity and food structure on the survival of Salmonella Typhimurium and Listeria monocytogenes during simulated digestion, following contamination of different food model systems that had different combinations of fat and protein content. The results illustrated the strong protective properties of proteins, acting either as a strong buffering agent or as a physical barrier against gastric acidity, for both pathogens. In comparison, fat manifested a lower buffering capacity and weaker protective effects against the two pathogens. Intriguingly, a low fat content was often linked with increased microbial resistance. Nonetheless, both pathogens survived their transit through the simulated GIT in all cases, with S. Typhimurium exhibiting growth during intestinal digestion and L.monocytogenes demonstrating a healthy residual population at the end of the intestinal phase. These results corroborate the need for a deeper understanding regarding the mechanisms with which food affects bacterial survival in the human GIT.
Collapse
Affiliation(s)
- Theodora Akritidou
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Valérie Delens
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium.
| |
Collapse
|
3
|
Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Nwabor OF, Onyeaka H, Miri T, Obileke K, Anumudu C, Hart A. A Cold Plasma Technology for Ensuring the Microbiological Safety and Quality of Foods. FOOD ENGINEERING REVIEWS 2022. [PMCID: PMC9226271 DOI: 10.1007/s12393-022-09316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractChanging consumers’ taste for chemical and thermally processed food and preference for perceived healthier minimally processed alternatives is a challenge to food industry. At present, several technologies have found usefulness as choice methods for ensuring that processed food remains unaltered while guaranteeing maximum safety and protection of consumers. However, the effectiveness of most green technology is limited due to the formation of resistant spores by certain foodborne microorganisms and the production of toxins. Cold plasma, a recent technology, has shown commendable superiority at both spore inactivation and enzymes and toxin deactivation. However, the exact mechanism behind the efficiency of cold plasma has remained unclear. In order to further optimize and apply cold plasma treatment in food processing, it is crucial to understand these mechanisms and possible factors that might limit or enhance their effectiveness and outcomes. As a novel non-thermal technology, cold plasma has emerged as a means to ensure the microbiological safety of food. Furthermore, this review presents the different design configurations for cold plasma applications, analysis the mechanisms of microbial spore and biofilm inactivation, and examines the impact of cold plasma on food compositional, organoleptic, and nutritional quality.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Kechrist Obileke
- Renewable and Sustainable Energy, University of Fort Hare, Alice, 5700 Eastern Cape South Africa
| | - Christian Anumudu
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT UK
| | - Abarasi Hart
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD UK
| |
Collapse
|
5
|
Birania S, Attkan AK, Kumar S, Kumar N, Singh VK. Cold plasma in food processing and preservation: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sapna Birania
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Sunil Kumar
- AICRP on Post Harvest Engineering and Technology, Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology CCS Haryana Agricultural University Hisar India
| |
Collapse
|
6
|
Saremnezhad S, Soltani M, Faraji A, Hayaloglu AA. Chemical changes of food constituents during cold plasma processing: A review. Food Res Int 2021; 147:110552. [PMID: 34399529 DOI: 10.1016/j.foodres.2021.110552] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
There is a growing demand for the consumption of nutritious and safe food products. Cold plasma is a novel non-thermal technology that in recent years, has found numerous applications in the food industry. Study on the applications of this technology and its effects on food quality is increasing. Like any other technology, using cold plasma for the processing of foods can be associated with food quality challenges. This paper reviews the effect of cold plasma on the chemical structure of different food constituents as well as its influence on food characteristics. The emphasis is on the recent studies about the plasma mechanisms of action and chemical alterations of different food components. The studies show that the interaction of plasma-reactive species with food components depends on process conditions. Developing the functional characteristics and reducing the anti-nutritional compounds are of promising potentials of cold plasma. Finally, the research gaps, the salient drawbacks, and future prospects of this technology are highlighted.
Collapse
Affiliation(s)
- Solmaz Saremnezhad
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
7
|
A Population Balance Model to Describe the Evolution of Sublethal Injury. Foods 2021; 10:foods10071674. [PMID: 34359544 PMCID: PMC8304568 DOI: 10.3390/foods10071674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
The detection and quantification of sublethal injury (SI) of pathogenic microorganisms has become a common procedure when assessing the efficiency of microbial inactivation treatments. However, while a plethora of studies investigates SI in function of time, no suitable modelling procedure for SI data has been proposed thus far. In this study, a new SI model structure was developed that relies on existing microbial inactivation models. This model is based on the description of inactivation kinetics between the subpopulations of healthy, sublethally injured and dead cells. The model was validated by means of case studies on previously published results, modelled by different inactivation models, i.e., (i) log-linear inactivation; (ii) biphasic inactivation; and (iii) log-linear inactivation with tailing. Results were compared to those obtained by the traditional method that relies on calculating SI from independent inactivation models on non-selective and selective media. The log-linear inactivation case study demonstrated that the SI model is equivalent to the use of independent models when there can be no mistake in calculating SI. The biphasic inactivation case study illustrated how the SI model avoids unrealistic calculations of SI that would otherwise occur. The final case study on log-linear inactivation with tailing clarified that the SI model provides a more mechanistic description than the independent models, in this case allowing the reduction of the number of model parameters. As such, this paper provides a comprehensive overview of the potential and applications for the newly presented SI model.
Collapse
|
8
|
Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2020; 337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Collapse
Affiliation(s)
- Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Cindy Smet
- Chemical and Biochemical Process Technology and Control Laboratory (BioTeC+), KU Leuven, Sustainable Chemical Process Technology, Ghent, Belgium
| | | | - Madeleine Bussemaker
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Jan F Van Impe
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
9
|
Huang M, Zhuang H, Zhao J, Wang J, Yan W, Zhang J. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020; 132:107445. [DOI: 10.1016/j.bioelechem.2019.107445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
|
10
|
Feizollahi E, Misra NN, Roopesh MS. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Crit Rev Food Sci Nutr 2020; 61:666-689. [PMID: 32208859 DOI: 10.1080/10408398.2020.1743967] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atmospheric cold plasma (ACP) is an emerging technology in the food industry with a huge antimicrobial potential to improve safety and extend the shelf life of food products. Dielectric barrier discharge (DBD) is a popular approach for generating ACP. Thanks to the numerous advantages of DBD ACP, it is proving to be successful in a number of applications, including microbial decontamination of foods. The antimicrobial efficacy of DBD ACP is influenced by multiple factors. This review presents an overview of ACP sources, with an emphasis on DBD, and an analysis of their antimicrobial efficacy in foods in open atmosphere and in-package modes. Specifically, the influence of process, product, and microbiological factors influencing the antimicrobial efficacy of DBD ACP are critically reviewed. DBD ACP is a promising technology that can improve food safety with minimal impact on food quality under optimal conditions. Once the issues pertinent to scale-up of plasma sources are appropriately addressed, the DBD ACP technology will find wider adaptation in food industry.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Halifax, NS, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Smet C, Baka M, Steen L, Fraeye I, Walsh J, Valdramidis V, Van Impe J. Combined effect of cold atmospheric plasma, intrinsic and extrinsic factors on the microbial behavior in/on (food) model systems during storage. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Hojnik N, Modic M, Tavčar-Kalcher G, Babič J, Walsh JL, Cvelbar U. Mycotoxin Decontamination Efficacy of Atmospheric Pressure Air Plasma. Toxins (Basel) 2019; 11:E219. [PMID: 31013734 PMCID: PMC6521119 DOI: 10.3390/toxins11040219] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins, the toxic secondary metabolites of mould species, are a growing global concern, rendering almost 25% of all food produced unfit for human or animal consumption, thus placing immense pressure on the food supply chain. Cold Atmospheric pressure Plasma (CAP) represents a promising, low-cost, and environmentally friendly means to degrade mycotoxins with negligible effect on the quality of food products. Despite this promise, the study of CAP-mediated mycotoxin degradation has been limited to a small subset of the vast number of mycotoxins that plague the food supply chain. This study explores the degradation of aflatoxins, trichothecenes, fumonisins, and zearalenone using CAP generated in ambient air. CAP treatment was found to reduce aflatoxins by 93%, trichothecenes by 90%, fumonisins by 93%, and zearalenone by 100% after 8 minutes exposure. To demonstrate the potential of CAP-mediated mycotoxin degradation against more conventional methods, its efficiency was compared against ultraviolet C (UVC) light irradiation. In all cases, CAP was found to be considerably more efficient than UVC, with aflatoxin G1 and zearalenone being completely degraded, levels that could not be achieved using UVC irradiation.
Collapse
Affiliation(s)
- Nataša Hojnik
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Martina Modic
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| | - James L Walsh
- Department of Electrical, Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.
| | - Uroš Cvelbar
- Laboratory for Gaseous Electronics F6, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Resistance of L. monocytogenes and S. Typhimurium towards Cold Atmospheric Plasma as Function of Biofilm Age. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The biofilm mode of growth protects bacterial cells against currently applied disinfection methods for abiotic (food) contact surfaces. Therefore, innovative methods, such as Cold Atmospheric Plasma (CAP), should be investigated for biofilm inactivation. However, more knowledge is required concerning the influence of the biofilm age on the inactivation efficacy in order to comment on a possible application of CAP in the (food) processing industry. L. monocytogenes and S. Typhimurium biofilms with five different ages (i.e., 1, 2, 3, 7, and 10 days) were developed. For the untreated biofilms, the total biofilm mass and the cell density were determined. To investigate the biofilm resistance towards CAP treatment, biofilms with different ages were treated for 10 min and the remaining cell density was determined. Finally, for the one-day old reference biofilms and the most resistant biofilm age, complete inactivation curves were developed to examine the influence of the biofilm age on the inactivation kinetics. For L. monocytogenes, an increased biofilm age resulted in (i) an increased biomass, (ii) a decreased cell density prior to CAP treatment, and (iii) an increased resistance towards CAP treatment. For S. Typhimurium, similar results were obtained, except for the biomass, which was here independent of the biofilm age.
Collapse
|
14
|
Schottroff F, Fröhling A, Zunabovic-Pichler M, Krottenthaler A, Schlüter O, Jäger H. Sublethal Injury and Viable but Non-culturable (VBNC) State in Microorganisms During Preservation of Food and Biological Materials by Non-thermal Processes. Front Microbiol 2018; 9:2773. [PMID: 30515140 PMCID: PMC6255932 DOI: 10.3389/fmicb.2018.02773] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
The viable but non-culturable (VBNC) state, as well as sublethal injury of microorganisms pose a distinct threat to food safety, as the use of traditional, culture-based microbiological analyses might lead to an underestimation or a misinterpretation of the product's microbial status and recovery phenomena of microorganisms may occur. For thermal treatments, a large amount of data and experience is available and processes are designed accordingly. In case of innovative inactivation treatments, however, there are still several open points with relevance for the investigation of inactivation mechanisms as well as for the application and validation of the preservation processes. Thus, this paper presents a comprehensive compilation of non-thermal preservation technologies, i.e., high hydrostatic pressure (HHP), pulsed electric fields (PEFs), pulsed light (PL), and ultraviolet (UV) radiation, as well as cold plasma (CP) treatments. The basic technological principles and the cellular and molecular mechanisms of action are described. Based on this, appropriate analytical methods are outlined, i.e., direct viable count, staining, and molecular biological methods, in order to enable the differentiation between viable and dead cells, as well as the possible occurrence of an intermediate state. Finally, further research needs are outlined.
Collapse
Affiliation(s)
- Felix Schottroff
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Antje Fröhling
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Anna Krottenthaler
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Oliver Schlüter
- Quality and Safety of Food and Feed, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Henry Jäger
- Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
15
|
Inactivation Kinetics of Salmonella typhimurium and Staphylococcus aureus in Different Media by Dielectric Barrier Discharge Non-Thermal Plasma. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A study was conducted to determine the effect of dielectric barrier discharge non-thermal plasma (DBD-NTP) on Salmonella typhimurium and Staphylococcus aureus populations on solid surfaces and in liquid suspensions. Our results showed that inactivation kinetics of S. typhimurium and S. aureus by DBD-NTP treatments can be well predicted with mathematical models. The survival curves of both S. typhimurium and S. aureus showed a log-linear phase followed by tailing behaviors on solid surfaces, and shoulder behaviors followed by a log-linear phase in liquid suspensions. The D values (decimal reduction time) for S. typhimurium and S. aureus in suspension were higher than those on solid surfaces (p < 0.05). Additionally, the maxima of sublethal injury values under low NaCl concentration and neutral pH condition were higher than those under high NaCl and low pH condition. In addition, mathematical modeling was evaluated to predict the final inactivation result for potential industrial applications. This study indicates that different microbial supporting matrices significantly influence the inactivation effect of DBD-NTP; it also provides useful information for future applications of NTP in enhancing food shelf life and safety.
Collapse
|
16
|
Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS. Non-thermal technologies and its current and future application in the food industry: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13903] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Lang-Hong Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Xin-An Zeng
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Zhong Han
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences; Centre for Food Research and Innovation; Lincoln University; Lincoln 85084 New Zealand
| |
Collapse
|
17
|
Mošovská S, Medvecká V, Halászová N, Ďurina P, Valík Ľ, Mikulajová A, Zahoranová A. Cold atmospheric pressure ambient air plasma inhibition of pathogenic bacteria on the surface of black pepper. Food Res Int 2018; 106:862-869. [PMID: 29579997 DOI: 10.1016/j.foodres.2018.01.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
In present study, the inhibition effect of low temperature plasma on Bacillus subtilis, Escherichia coli, Salmonella Enteritidis and B. subtilis endospores inoculated on the surface of black peppercorns was studied. Plasma was generated by Diffuse Coplanar Surface Barrier Discharge (DCSBD) at atmospheric pressure in ambient air. Plasma treatment time of 300 s led to log10 CFU/g reduction of B. subtilis from 7.36 to 2.30 and B. subtilis endospores from 4.42 to 2.39. Plasma treatment reduced the number of E. coli and Salmonella Enteritidis to below detection level (1.0 log10 CFU/g) from initial populations of 7.45 log10 CFU/g and 7.60 log10 CFU/g, respectively. The inactivation kinetics was explained by Weibull model. Decimal reduction times (D-values) for B. subtilis, E. coli, Salmonella Enteritidis, and B. subtilis endospores were determined as 43 s, 47 s, 58 s, and 142 s, respectively. The surface morphology observed by Scanning Electron Microscopy showed no significant changes after the plasma treatment. The influence of plasma on chemical bonds on the surface and inside the peppercorns was studied by Attenuated Total Reflectance - Fourier Transform Infrared Spectroscopy.
Collapse
Affiliation(s)
- Silvia Mošovská
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.
| | - Veronika Medvecká
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Mlynská Dolina F1, 842 48 Bratislava, Slovak Republic.
| | - Noémi Halászová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Pavol Ďurina
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Mlynská Dolina F1, 842 48 Bratislava, Slovak Republic.
| | - Ľubomír Valík
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.
| | - Anna Mikulajová
- Department of Nutrition and Food Quality Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovak Republic.
| | - Anna Zahoranová
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Mlynská Dolina F1, 842 48 Bratislava, Slovak Republic.
| |
Collapse
|
18
|
Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends Biotechnol 2018; 36:615-626. [PMID: 29329724 DOI: 10.1016/j.tibtech.2017.11.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022]
Abstract
Cold plasma science and technology is increasingly investigated for translation to a plethora of issues in the agriculture and food sectors. The diversity of the mechanisms of action of cold plasma, and the flexibility as a standalone technology or one that can integrate with other technologies, provide a rich resource for driving innovative solutions. The emerging understanding of the longer-term role of cold plasma reactive species and follow-on effects across a range of systems will suggest how cold plasma may be optimally applied to biological systems in the agricultural and food sectors. Here we present the current status, emerging issues, regulatory context, and opportunities of cold plasma with respect to the broad stages of primary and secondary food production.
Collapse
Affiliation(s)
- Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin 1, Ireland.
| | - Patrick J Cullen
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kevin Keener
- Centre for Crops Utilization Research, Bio-Century Research Farm, Iowa State University, 1041 Food Sciences Building, Ames, IA 50011-1061, USA
| |
Collapse
|
19
|
Calvo T, Alvarez-Ordóñez A, Prieto M, Bernardo A, López M. Stress adaptation has a minor impact on the effectivity of Non-Thermal Atmospheric Plasma (NTAP) against Salmonella spp. Food Res Int 2017; 102:519-525. [DOI: 10.1016/j.foodres.2017.09.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/28/2022]
|
20
|
Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-2014-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination. Toxins (Basel) 2017; 9:toxins9050151. [PMID: 28452957 PMCID: PMC5450699 DOI: 10.3390/toxins9050151] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.
Collapse
Affiliation(s)
- Nataša Hojnik
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Uroš Cvelbar
- Jožef Stefan Institute, Department of Surface Engineering and Optoelectronics, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Gabrijela Tavčar-Kalcher
- University of Ljubljana, Veterinary Faculty, Institute of Food Safety, Feed and Environment, Gerbičeva 60, SI-1000 Ljubljana, Slovenia.
| | - James L Walsh
- University of Liverpool, Department of Electrical, Engineering and Electronics, Brownlow Hill, Liverpool L69 3GJ, UK.
| | - Igor Križaj
- Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|