1
|
Kong D, Zhang M, Mujumdar AS, Luo Z. Novel heterogeneous 3D printing process of protein-polysaccharide gel containing orange juice sacs: Optimization of material properties and printing parameters. Int J Biol Macromol 2025; 305:141277. [PMID: 39978505 DOI: 10.1016/j.ijbiomac.2025.141277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The rapid advancement of 3D food printing technology for heterogeneous systems has been driven by increasing consumer demand for personalized meals, enhanced nutrition, and overall wellness. By using κ-carrageenan (KC), konjac gum (KGM), and whey protein isolate (WPI), this study developed a thermoreversible composite gel (WPI-KC-KGM) for temperature-controlled extrusion, focusing on the effect of the KC to KGM ratio on the composite gel's rheological properties and printability. Rheological tests indicated that KGM reduced the thermal sensitivity of KC, with the K7M3 formulation being optimal for minimizing sensitivity while maintaining thermoreversibility. Printing accuracy analysis revealed that K5M5 samples achieved the best pore area (1.392 cm2) and fidelity (96.66 %), while K7M3 samples exhibited the highest support similarity (95.78 %). For the WPI-KC-KGM (K7M3) composite gel containing 3 wt% orange juice sacs, the recommended printing settings are a nozzle diameter of 2.5 mm, a speed of 20 mm/s, and a temperature of 40 °C, resulting in aesthetically pleasing and clearly defined planar and stereoscopic products.
Collapse
Affiliation(s)
- Demei Kong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Zhenjiang Luo
- R&D Center, Haitong Ninghai Foods Co., Ltd., Ninghai, Zhejiang, China
| |
Collapse
|
2
|
Li X, Huang M, Chen D, Xiao E, Li Y. Effect of Non-Meat Protein Addition on the 3D Printing Performance of Chicken Meat. Foods 2025; 14:1015. [PMID: 40232119 PMCID: PMC11941609 DOI: 10.3390/foods14061015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/26/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
In this study, three types of non-meat proteins, including soybean protein, wheat gluten, and whey protein, were used as additives to improve the 3D printing performance of chicken meat. The effects of non-meat proteins on rheological behavior, textural properties, moisture characteristics, and the microstructure of gels were investigated. Chicken meat paste without non-meat proteins added was taken as a control. Rheological results showed that the addition of non-meat proteins increased the apparent viscosity and the storage modulus of chicken meat paste. Textural properties of gels, including hardness, chewiness, cohesiveness, springiness, and resilience were also improved. The microstructure of gels with non-meat protein addition became denser and more compact, with improved connectivity. Nuclear magnetic resonance showed that the signals of bound water, immobilized water, and free water moved to the left towards lower relaxation time (p < 0.05) and part of immobile water and free water changed to bound water. The samples containing 15% soybean protein exhibited good shape-forming and shape-keeping capacities. There was an obvious increase in hardness (1991.40 ± 88.22 g), springiness (0.92 ± 0.00), cohesiveness (0.72 ± 0.01), gumminess (1299.14 ± 21.21), and resilience (0.34 ± 0.01) in these samples. The cooking loss of samples containing 15% soybean protein was 2.46 ± 0.36%, which was significantly lower than that of other treatments (p < 0.05). In summary, 15% soybean protein-added samples showed great potential for 3D printing.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China; (X.L.); (Y.L.)
| | - Mingyuan Huang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Enquan Xiao
- College of Life Science, Anhui Normal University, Wuhu 241008, China;
| | - Yuqing Li
- College of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China; (X.L.); (Y.L.)
| |
Collapse
|
3
|
Zhou X, Shi J, Yu N, Zhu X, Zhang Q, Ma L, Mao S, Zuo W, Zhang X, Yang J. Casein-grape seed proanthocyanidins complexes stabilized Pickering emulsion gels based on Lycium Barbarum seed oil with excellent mechanical properties and oxidation resistance. Food Chem 2025; 468:142416. [PMID: 39689490 DOI: 10.1016/j.foodchem.2024.142416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
Pickering emulsion gels received extensive attention in encapsulating fat-soluble substances such as Lycium barbarum seed oil (LBSO). However, the gels presented poor mechanical properties, otherwise, their physical encapsulation cannot inhibit lipid peroxidation. Herein, grape seed proanthocyanidins (OPCs) and casein (CAS) complexes interacted through hydrogen and covalent bonds were proposed to build Pickering emulsion gels and encapsulate LBSO, which changed the secondary structures of CAS and further enhanced emulsifying ability, oxidation resistance, and gelling performance. The CAS-OPCs gels had better microstructures and mechanical properties due to the enhancement of hydrogen and covalent interactions. Furthermore, gels with OPC contents of 8.00 mg/mL had performance in 3D printing. And gels reduced the peroxide value of LBSO (9.33±0.20 to 1.39±0.22 mmol/kg) after heating. This study helps reveal the possible mechanisms of OPCs on gels and provides a reference for the application and research of OPCs and CAS composites in Pickering emulsion gels.
Collapse
Affiliation(s)
- Xin Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jie Shi
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, China
| | - Xiuzhen Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qiqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lanlan Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shan Mao
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenbao Zuo
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| | - Xia Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| | - Jianhong Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China..
| |
Collapse
|
4
|
Millik SC, Sadaba N, Hilburg SL, Sanchez-Rexach E, Zhang M, Yu S, Vass AF, Pozzo LD, Nelson A. 3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers. Biomacromolecules 2025; 26:1725-1736. [PMID: 39917884 DOI: 10.1021/acs.biomac.4c01497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Protein-based materials can be engineered to derive utility from the structures and functions of the incorporated proteins. Modern methods of protein engineering bring promise of unprecedented control over molecular and network design, which will enable new and improved functionalities in materials that incorporate proteins as functional building blocks. For these advantages to be fully realized, there is a need for robust methods for producing protein-based networks, as well as methods for tuning their mechanical properties. Light-based 3D-printing techniques afford high-resolution fabrication capability with unparalleled design freedom in an inexpensive and decentralized capacity. This work features 3D-printed serum albumin-based bioplastics with mechanical properties modulated through the incorporation of glycerol or hyperbranched poly(glycerol)s (HPGs) as plasticizers. These materials capitalize upon important features of serum albumin, including its low intrinsic viscosity, high aqueous solubility, and relatively low cost. The incorporation of glycerol or HPGs of different sizes resulted in softer and more ductile bioplastics than those obtained natively without additives. These bioplastics showed shape-memory behavior and could be used to fabricate functional objects. These materials are accessible, possess minimal chemical hazards, and can be used for fabricating rigid and strong as well as soft and ductile parts using inexpensive commercial 3D printers.
Collapse
Affiliation(s)
- S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Eva Sanchez-Rexach
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Meijing Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Siwei Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexander F Vass
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Zhao Y, Zhang M, Bhandari B, Li C. Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: research progress, applications, and trends. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39895375 DOI: 10.1080/10408398.2025.2457420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Food 3D printing brings food processing technology into the digital age. This is a vast field that can provide entertainment experience, personalized food and specific nutritional needs. However, the limited availability of suitable food raw materials has restricted the extensive use of 3D food printing processing technique. The search for novel nutritious and healthy food materials that meet the demand for 3D food printing processing technology is core of the sustainable development of this emerging technology. The printing mechanism, precise nutrition, future outlooks and challenges of 3D food printing technology application in hybrid plant and animal food materials are also analyzed.The results demonstrate that selecting suitable animal and plant materials and mixing them into 3D food printing ingredients without adding food additives can result in printable inks, which can also improve the nutritive value and eating quality of 3D food printed products. Sustainability of novel food materials such as animal cell culture meat and microbial protein mixed with conventional food materials to realize 3D printed food can be a potential research direction. Some other issues should also be considered in future research, such as evaluation of the nutritional efficacy of the product, product stability, shelf life, production efficiency and convenience of process operation.
Collapse
Affiliation(s)
- Yonggan Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Kou K, Du Y, Yao F, Jia L, Chen F. Effect of Haematococcus pluvialis addition on the rheological property and 3D printing performance of soy protein isolate- and wheat gluten-based pastes. J Food Sci 2025; 90:e70036. [PMID: 39921288 DOI: 10.1111/1750-3841.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
To improve the 3D printing performance of plant protein-based pastes, varying mass fractions of Haematococcus pluvialis (HP) were mixed with soybean protein isolate (SPI) and wheat gluten (WG). The rheological characteristics, microstructure, water distribution, and 3D printing suitability of the composite pastes were evaluated. Results demonstrated that as the HP additions increased, the apparent viscosity and energy storage modulus decreased, exhibiting ameliorative shear-thinning behavior and elastic deformation capacity. Low-field nuclear magnetic resonance and confocal laser scanning microscopy showed that increasing HP enhanced water mobility and resulted in a more uniform protein structure, improving fluidity. 3D-printed Chinese character and cylindrical models manifested that the paste consisted of pure SPI-WG was hard to be extruded from the nozzle, while both HP (0.7) and HP (1.0) additions were suitable for printing. Notably, when the mass ratio of SPI:WG:HP was 1:1:0.7, the diameter of the extruded strands (0.87 mm) was the most closest to the nozzle diameter (0.84 mm), and the printed object maintained stability over 80 min with height and diameter variations <2%, implying the best printing fidelity. By employing HP as a novel, nutrient-rich additive, this work not only enhanced the printability and nutritional profile of SPI-WG based pastes, but also offered a pioneering framework for developing future customizable, high-quality 3D-printed foods that better address consumer needs. PRACTICAL APPLICATION: This research provides a method for improving the 3D printing performance of plant-based pastes by incorporating Haematococcus pluvialis. The findings can be applied in the food industry to develop bio-inks for producing high-quality, nutritionally enhanced 3D-printed foods with better printing precision and stability, supporting the growing demand for personalized nutrition and functional foods.
Collapse
Affiliation(s)
- Kun Kou
- College of Food Science and Technology, Henan University of Technology, Henan, P. R. China
| | - Yan Du
- College of Food Science and Technology, Henan University of Technology, Henan, P. R. China
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Henan, P. R. China
| | - Fei Yao
- College of Food Science and Technology, Henan University of Technology, Henan, P. R. China
| | - Li'ao Jia
- College of Food Science and Technology, Henan University of Technology, Henan, P. R. China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan, P. R. China
| |
Collapse
|
7
|
Domżalska Z, Jakubczyk E. Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods 2025; 14:393. [PMID: 39941986 PMCID: PMC11817896 DOI: 10.3390/foods14030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Three-dimensional printing, or additive manufacturing, produces three-dimensional objects using a digital model. Its utilisation has been observed across various industries, including the food industry. Technology offers a wide range of possibilities in this field, including creating innovative products with unique compositions, shapes, and textures. A significant challenge in 3D printing is the development of the optimal ink composition. These inks must possess the appropriate rheology and texture for printing and meet nutritional and sensory requirements. The rheological properties of inks play a pivotal role in the printing process, influencing the formation of stable structures. This article comprehensively characterises food inks, distinguishing two primary categories and their respective subgroups. The first category encompasses non-natively extrudable inks, including plant-based inks derived from fruits and vegetables and meat-based inks. The second category comprises natively extrudable inks, encompassing dairy-based, hydrogel-based, and confectionary-based inks. The product properties of rheology, texture, fidelity, and printing stability are then discussed. Finally, the innovative use of food inks is shown.
Collapse
Affiliation(s)
| | - Ewa Jakubczyk
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
8
|
Zhao N, Guo C, Liu Z, Chen L, Hu Y, Han M, Huang F, Kang Z, Feng X. Effects of different hydrocolloids on the 3D printing and thermal stability of chicken paste. Int J Biol Macromol 2024; 277:134006. [PMID: 39032898 DOI: 10.1016/j.ijbiomac.2024.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
This study investigated the effect of different hydrocolloids on the improvement of the printability and post-processing stability of minced chicken meat, each hydrocolloid was prepared with 1 % formulation and compared with the control. The effects of these hydrocolloids on the rheological properties of chicken mince and complex model printing capability were explored separately, while the cooking loss and microstructure changes of the samples before and after heating were analyzed. The results showed that the chicken mince gel containing carrageenan was more suitable for printing, increased the yield stress and apparent viscosity of the samples, and the printing process was easier to mold. In addition, carrageenan increased the hardness of the samples, and the microstructures were compact and changed little during the heating process, and the water was locked in the gel matrix, reducing shape changes during the heating process. The use of hydrocolloids improves the stability of post-processing of chicken 3D printing.
Collapse
Affiliation(s)
- Nanqi Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziyao Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Yayun Hu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Minyi Han
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feng Huang
- Institute of Food Science and Technology CAAS, Beijing 100193, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Liu Y, Zhang Y, Cai L, Zeng Q, Wang P. Protein and protein-polysaccharide composites-based 3D printing: The properties, roles and opportunities in future functional foods. Int J Biol Macromol 2024; 272:132884. [PMID: 38844274 DOI: 10.1016/j.ijbiomac.2024.132884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
The food industry is undergoing a significant transformation with the advancement of 3D technology. Researchers in the field are increasingly interested in using protein and protein-polysaccharide composite materials for 3D printing applications. However, maintaining nutritional and sensory properties while guaranteeing printability of these materials is challenging. This review examines the commonly used protein and composite materials in food 3D printing and their roles in printing inks. This review also outlines the essential properties required for 3D printing, including extrudability, appropriate viscoelasticity, thixotropic properties, and gelation properties. Furthermore, it explores the wide range of potential applications for 3D printing technology in novel functional foods such as space food, dysphagia food, kid's food, meat analogue, and other specialized food products.
Collapse
Affiliation(s)
- Yi Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Lei Cai
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qinglin Zeng
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China
| | - Pengrui Wang
- FooodLab (Hangzhou) Technology Co., Ltd, Hangzhou 310024, China.
| |
Collapse
|
10
|
Abedini A, Sohrabvandi S, Sadighara P, Hosseini H, Farhoodi M, Assadpour E, Alizadeh Sani M, Zhang F, Seyyedi-Mansour S, Jafari SM. Personalized nutrition with 3D-printed foods: A systematic review on the impact of different additives. Adv Colloid Interface Sci 2024; 328:103181. [PMID: 38749383 DOI: 10.1016/j.cis.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Three-dimensional (3D) printing is one of the world's top novel technologies in the food industry due to the production of food in different conditions and places (restaurants, homes, catering, schools, for dysphagia patients, and astronauts' food) and the production of personalized food. Nowadays, 3D printers are used in the main food industries, including meat, dairy, cereals, fruits, and vegetables, and have been able to produce successfully on a small scale. However, due to the expansion of this technology, it has challenges such as high-scale production, selection of printable food, formulation optimization, and food production according to the consumer's opinion. Food additives (gums, enzymes, proteins, starches, polyphenols, spices, probiotics, algae, edible insects, oils, salts, vitamins, flavors, and by-products) are one of the main components of the formulation that can be effective in food production according to the consumer's attitude. Food additives can have the highest impact on textural and sensory characteristics, which can be effective in improving consumer attitudes and reducing food neophobia. Most of the 3D-printed food cannot be printed without the presence of hydrocolloids, because the proper flow of the selected formulation is one of the key factors in improving the quality of the printed product. Functional additives such as probiotics can be useful for specific purposes and functional food production. Food personalization for specific diseases with 3D printing technology requires a change in the formulation, which is closely related to the selection of correct food additives. For example, the production of 3D-printed plant-based steaks is not possible without the presence of additives, or the production of food for dysphagia patients is possible in many cases by adding hydrocolloids. In general, additives can improve the textural, rheological, nutritional, and sensory characteristics of 3D printed foods; so, investigating the mechanism of the additives on all the characteristics of the printed product can provide a wide perspective for industrial production and future studies.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Sepidar Seyyedi-Mansour
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxia e Alimentacion (IAA)- CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
11
|
Shi R, Liu Z, Yi J, Hu X, Guo C. The synergistic effect of κ-carrageenan and l-lysine on the 3D printability of yellow flesh peach gels: The importance of material elasticity in the printing process. Int J Biol Macromol 2024; 254:127920. [PMID: 37944739 DOI: 10.1016/j.ijbiomac.2023.127920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
This study investigated the effect of κ-carrageenan and l-lysine on the physical, chemical and textural properties of yellow flesh peaches and their suitability for 3D printing. The addition of κ-carrageenan and l-lysine was found to improve the apparent viscosity, elasticity, gel strength, and Young's modulus of the yellow flesh peach with κ-carrageenan and l-lysine gels (PCLG) and increase the minimum piston pressure required for 3D printing, thereby improving the printing performance. Optimum levels of κ-carrageenan and l-lysine (0.1 mmol/mL and 3.42 × 10-2 mmol/mL, respectively) were found to enhance mechanical strength, viscoelasticity and print fidelity. On the other hand, when the addition of κ-carrageenan is 0.1 mmol/mL, the addition of l-lysine causes an increase in the G0 value and a decrease in the η0 value of the PCLG according to Burger's model, indicating a transition from viscosity to elasticity and an increase in maximum extrusion force, while the apparent viscosity does not change significantly. The results of 3D printing showed that when the addition of κ-carrageenan and l-lysine reached 0.1 mmol/mL and 6.84 × 10-2 mmol/mL, respectively, the PCLG could not be smoothly extruded, indicating that elasticity also plays an important role during the extrusion process of the mixed gel.
Collapse
Affiliation(s)
- Rong Shi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chaofan Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
12
|
Wen Y, Che QT, Wang S, Park HJ, Kim HW. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps. Compr Rev Food Sci Food Saf 2024; 23:e13267. [PMID: 38284586 DOI: 10.1111/1541-4337.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 01/30/2024]
Abstract
Three-dimensional (3D) printing has been applied to produce food products with intricate and fancy shapes. Dimensional quality, such as dimensional stability, surface smoothness, shape fidelity, and resolution, are essential for the attractive appearance of 3D-printed food. Various methods have been extensively studied and proposed to control the dimensional quality of printed foods, but few papers focused on comprehensively and deeply summarizing the key factors of the dimensional quality of printed products at each stage-before, during, and after printing-of the 3D printing process. Therefore, the effects of pretreatment, printing parameters and rheological properties, and cooking and storage on the dimensional quality of the printed foods are summarized, and solutions are also provided for improving the dimensional quality of the printed products at each step. Before printing, incorporating additives or applying physical, chemical, or biological pretreatments can improve the dimensional quality of carbohydrate-based, protein-based, or lipid-based printed food. During printing, controlling the printing parameters and modifying the rheological properties of inks can affect the shape of printed products. Furthermore, post-processing is essential for some printed foods. After printing, changing formulations, incorporating additives, and selecting post-processing methods and conditions may help achieve the desired shape of 3D-printed or 4D-printed products during cooking. Additives help in the storage stability of printed food. Finally, various opportunities have been proposed to regulate the dimensional properties of 3D-printed structures. This review provides detailed guidelines for researchers and users of 3D printers to produce various printed foods with the desired shapes and appearances.
Collapse
Affiliation(s)
- Yaxin Wen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Quang Tuan Che
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Hassoun A, Garcia-Garcia G, Trollman H, Jagtap S, Parra-López C, Cropotova J, Bhat Z, Centobelli P, Aït-Kaddour A. Birth of dairy 4.0: Opportunities and challenges in adoption of fourth industrial revolution technologies in the production of milk and its derivatives. Curr Res Food Sci 2023; 7:100535. [PMID: 37448632 PMCID: PMC10336415 DOI: 10.1016/j.crfs.2023.100535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Embracing innovation and emerging technologies is becoming increasingly important to address the current global challenges facing many food industry sectors, including the dairy industry. Growing literature shows that the adoption of technologies of the fourth industrial revolution (named Industry 4.0) has promising potential to bring about breakthroughs and new insights and unlock advancement opportunities in many areas of the food manufacturing sector. This article discusses the current knowledge and recent trends and progress on the application of Industry 4.0 innovations in the dairy industry. First, the "Dairy 4.0" concept, inspired by Industry 4.0, is introduced and its enabling technologies are determined. Second, relevant examples of the use of Dairy 4.0 technologies in milk and its derived products are presented. Finally, conclusions and future perspectives are given. The results revealed that robotics, 3D printing, Artificial Intelligence, the Internet of Things, Big Data, and blockchain are the main enabling technologies of Dairy 4.0. These advanced technologies are being progressively adopted in the dairy sector, from farm to table, making significant and profound changes in the production of milk, cheese, and other dairy products. It is expected that, in the near future, new digital innovations will emerge, and greater implementations of Dairy 4.0 technologies is likely to be achieved, leading to more automation and optimization of this dynamic food sector.
Collapse
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte D’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), F-62000, Arras, France
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre ‘Camino de Purchil’, Institute of Agricultural and Fisheries Research and Training (IFAPA), P.O. Box 2027, 18080, Granada, Spain
| | - Hana Trollman
- School of Business, University of Leicester, Leicester, LE2 1RQ, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport & Manufacturing, Cranfield University, Cranfield, MK43 0AL, UK
| | - Carlos Parra-López
- Department of Agrifood System Economics, Centre ‘Camino de Purchil’, Institute of Agricultural and Fisheries Research and Training (IFAPA), P.O. Box 2027, 18080, Granada, Spain
| | - Janna Cropotova
- Department of Biological Sciences, Ålesund, Norwegian University of Science and Technology, Larsgårdsvegen 4, 6025, Ålesund, Norway
| | | | - Piera Centobelli
- Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | | |
Collapse
|
14
|
Wang T, Kaur L, Beniwal AS, Furuhata Y, Aoyama H, Singh J. Physico-chemical and Textural Properties of 3D Printed Plant-based and Hybrid Soft Meat Analogs. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01068-4. [PMID: 37199825 PMCID: PMC10363036 DOI: 10.1007/s11130-023-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.
Collapse
Affiliation(s)
- Tianxiao Wang
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Akashdeep Singh Beniwal
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Yasufumi Furuhata
- Ajinomoto Co., Inc, Suzuki-cho 3-1, Kawasaki-ku, Kawasaki-shi, Japan
| | - Hiroaki Aoyama
- Ajinomoto Co., Inc, Suzuki-cho 3-1, Kawasaki-ku, Kawasaki-shi, Japan
| | - Jaspreet Singh
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
- Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
15
|
Xie Y, Liu Q, Zhang W, Yang F, Zhao K, Dong X, Prakash S, Yuan Y. Advances in the Potential Application of 3D Food Printing to Enhance Elderly Nutritional Dietary Intake. Foods 2023; 12:1842. [PMID: 37174380 PMCID: PMC10177834 DOI: 10.3390/foods12091842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The contradiction between the growing demand from consumers for "nutrition & personalized" food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this problem. This article reviews the recent research on 3D food printing, mainly including the use of different sources of protein to improve the performance of food ink printing, high internal phase emulsion or oleogels as a fat replacement and nutrition delivery system, and functional active ingredients and the nutrition delivery system. In our opinion, 3D food printing is crucial for improving the appetite and dietary intake of the elderly. The critical obstacles of 3D-printed food for the elderly regarding energy supplements, nutrition balance, and even the customization of the recipe in a meal are discussed in this paper. By combining big data and artificial intelligence technology with 3D food printing, comprehensive, personalized, and customized geriatric foods, according to the individual traits of each elderly consumer, will be realized via food raw materials-appearance-processing methods. This article provides a theoretical basis and development direction for future 3D food printing for the elderly.
Collapse
Affiliation(s)
- Yisha Xie
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qingqing Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenwen Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Feng Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kangyu Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Yongjun Yuan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
16
|
Xu K, Wu C, Fan G, Kou X, Li X, Li T, Dou J, Zhou Y. Rheological properties, gel properties and 3D printing performance of soy protein isolate gel inks added with different types of apricot polysaccharides. Int J Biol Macromol 2023; 242:124624. [PMID: 37119894 DOI: 10.1016/j.ijbiomac.2023.124624] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
A soybean protein isolate (SPI)-apricot polysaccharide gel with hypolipidemic activity that can be used for 3D printing was prepared and the mechanism of its gel formation was studied in this work. The results demonstrated that adding apricot polysaccharide to SPI could effectively improve the bound water content, viscoelastic properties and rheological properties of the gels. Low-field NMR, FT-IR spectroscopy and surface hydrophobicity confirmed that the interactions between SPI and apricot polysaccharide were mainly realized by electrostatic interactions, hydrophobic and hydrogen bonding. Furthermore, adding modified polysaccharide treated by ultrasonic-assisted Fenton method to SPI on the basis of low-concentration apricot polysaccharide contributed to improving the 3D printing accuracy and stability of the gel. Consequently, the gel formed by adding apricot polysaccharide (0.5 %, m/v) and modified polysaccharide (0.1 %, m/v) to SPI had the best hypolipidemic activity (the binding rate of sodium taurocholate and sodium glycocholate were 75.33 % and 72.86 %, respectively) and 3D printing characteristics.
Collapse
Affiliation(s)
- Kaiqian Xu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinfeng Dou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; College of Life and Health Sciences, Anhui Science and Technology University, Fengyang 233100, China
| | - Yifan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
17
|
Ermis E, Tekiner IH, Lee CC, Ucak S, Yetim H. An overview of protein powders and their use in food formulations. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ertan Ermis
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Ismail Hakki Tekiner
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
- Department of Industrial Biotechnology Ansbach University of Applied Sciences Ansbach Germany
| | - Chi Ching Lee
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Sumeyye Ucak
- Department of Nutrition and Dietetics Istanbul Sabahattin Zaim University Istanbul Turkey
| | - Hasan Yetim
- Department of Food Engineering Istanbul Sabahattin Zaim University Istanbul Turkey
- Halal Food R&D Center of Excellence Istanbul Sabahattin Zaim University Istanbul Turkey
| |
Collapse
|
18
|
Qiu Y, McClements DJ, Chen J, Li C, Liu C, Dai T. Construction of 3D printed meat analogs from plant-based proteins: improving the printing performance of soy protein- and gluten-based pastes facilitated by rice protein. Food Res Int 2023; 167:112635. [PMID: 37087230 DOI: 10.1016/j.foodres.2023.112635] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Additive technology (3D printing) is increasingly being used to produce plant-based meat analogs. However, there are several challenges to fabricating meat analogs using this technology: (i) the protein content in the final printed product is often too low to match the nutritional profile of real meat; (ii) it is often difficult to accurately mimic the textural and structural attributes of real meat using existing plant protein edible inks. In this study, the rheological properties and printing performance of edible inks produced from soy protein isolate (SPI), wheat gluten (WG), and rice protein (RP) were investigated. Our goal was to mix SPI, WG, RP powders to develop a high-protein edible ink (25% of total dry matter content) that can be used to create 3D-printed meat analogs. The rheological properties, moisture distribution, texture, microstructure, and printing performance (fidelity and stability) of protein pastes with different SPI-WG-to-RP ratios were measured. These protein-enriched inks exhibited pseudoplastic behavior with viscoelastic properties. The apparent viscosity and storage modulus of these pastes decreased with increasing rice protein proportion, which improved their 3D printing performance, such as hardness, support force, and plasticization. These edible inks prepared by mixed protein may be useful for 3D printing of plant-based foods.
Collapse
Affiliation(s)
- Yuxuan Qiu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | | | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Changhong Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
19
|
Effects of preheating-induced denaturation treatments on the printability and instant curing property of soy protein during microwave 3D printing. Food Chem 2022; 397:133682. [DOI: 10.1016/j.foodchem.2022.133682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/22/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
|
20
|
Applications of micellar casein concentrate in 3D-printed food structures. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
A bibliometric analysis of 3D food printing research: A global and African perspective. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Kadival A, Kour M, Meena D, Mitra J. Extrusion-Based 3D Food Printing: Printability Assessment and Improvement Techniques. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
|
24
|
Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Zhang J, Li Y, Cai Y, Ahmad I, Zhang A, Ding Y, Qiu Y, Zhang G, Tang W, Lyu F. Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydr Polym 2022; 294:119763. [DOI: 10.1016/j.carbpol.2022.119763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
26
|
Liu K, Zhao N, Xiang C, Li Y, Jiang X, Zeng M, Xu H, Wang H, Wu H, Yu X, Zhao Y. Three-Dimensional Printing Properties of Polysaccharide Hydrocolloids-Unrinsed Sturgeon Surimi Complex Hydrogels. Foods 2022; 11:2947. [PMID: 36230023 PMCID: PMC9563570 DOI: 10.3390/foods11192947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/24/2023] Open
Abstract
Herein, the microstructure and mechanical properties of hydrogels consisting of unrinsed sturgeon surimi (URSS) and plant-derived polysaccharides such as κ-carrageenan (KC), konjac gum (KG), xanthan gum (XG), guar gum (GG) and sodium alginate (SA), were studied by texture analysis, rheological measurement and scanning electron microscopy (SEM). Rheological results showed that the apparent viscosity, storage modulus (G') and loss modulus (G″) of URSS increased by addition of KC, KG, GG and SA. The gel strength of resultant surimi products fabricated with KG/URSS mixture was significantly higher than that of other groups. KG could significantly improve the hardness (44.14 ± 1.14 N), chewiness (160.34 ± 8.33 mJ) and cohesiveness (0.56 ± 0.02) of the unrinsed surimi gel. Adding SA and KC had no significant effect on the textural characteristics of printed gels. However, an apparent decrease in the relevant mechanical properties of printed hydrogels was observed when XG and GG were added into surimi. SEM indicated that the incorporation of KG and KC could further integrate the gel structure of URSS as compared to hindering the cross-linking of surimi protein by XG and GG, which were in accordance with gel strength and water-holding capacity. These results provided useful information to regulate the 3D printing performance in functionalized surimi-based material.
Collapse
Affiliation(s)
- Kang Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Nana Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Chenxi Xiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Institute for Nutrition and Health Innovation, Qingdao 266237, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., Lianyungang 222100, China
| | - Haiyan Wang
- Hisense (Shandong) Refrigerator Co., Ltd., Qingdao 266100, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| | - Xiaoqing Yu
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Qingdao Engineering Research Center for Preservation Technology of Marine Foods, Qingdao 266003, China
| |
Collapse
|
27
|
Wu J, Zhang M, Devahastin S, Chen H. Improving
3D
printability of pumpkin pastes by addition of surimi. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University 214122 Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University 214122 Wuxi Jiangsu China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha u‐tid Road, Tungkru 10140 Bangkok Thailand
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
| |
Collapse
|
28
|
Zhang Y, Wang X, Guan X. Effects of adding quinoa flour on the composite wheat dough: a comprehensive analysis of the pasting, farinograph and rheological properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center Shanghai 200093 China
| | - Xiaoxuan Wang
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiao Guan
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center Shanghai 200093 China
| |
Collapse
|
29
|
Shan S, Chen D, Federici E, Jones OG, Campanella OH. The effects of whey protein fibrils on the linear and non-linear rheological properties of a gluten-free dough. Front Nutr 2022; 9:909877. [PMID: 35967788 PMCID: PMC9372581 DOI: 10.3389/fnut.2022.909877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The increasing awareness of the celiac disease, an autoimmune disorder caused by the consumption of products containing gluten, has led to a growing interest in the development of gluten-free bakery products. In this study, whey protein fibrils (WPFs) were incorporated to mimic the fibrous network of gluten. The rheological properties and microstructure of the developed gluten-free doughs were evaluated and compared with gluten doughs. Protein fibrils were prepared by heating a whey protein isolate (WPI) solution at 80°C in an acidic environment with low salt concentration, and then the fibril lengths were adjusted by leveling up the solution pH to 3.5 and 7. The dimensions of the fibrils were measured by atomic force microscopy (AFM). Rice and potato starches were mixed with fibrils, WPI, gluten, or without protein, to form different doughs for further investigation. Shear tests, including stress sweep, frequency sweep, and creep recovery, were performed to study the viscoelastic properties of doughs under small or large deformation. The strain-hardening properties of doughs under biaxial extension were studied by the lubricated squeezing flow method. The microstructure of the doughs was characterized by cryo-scanning electron microscopy (cryo-SEM). Compared with doughs prepared with WPI and no proteins, doughs incorporating fibrils showed comparable linear viscoelasticity to gluten dough tested with stress sweep, frequency sweep, and creep recovery in the linear viscoelastic region. More differences between the protein fibril doughs were revealed in the rheological properties in the non-linear region. Creep recovery parameters, such as compliance, elastic moduli during the creep, and recovery stages of gluten dough, were like those of WPF pH7 dough, but significantly different from those of the WPF pH3.5 dough. Strain-hardening properties were found in the WPF pH7 dough, although not in WPF pH3.5 dough. Microstructural characterization showed that both fibrils prepared with the different conditions formed a continuous protein phase for the improvement of dough cohesiveness, but the structure of the phase was different between the two fibrils. To summarize, whey protein fibril at pH 7 seemed to have the potential of being used as an ingredient with similar functions to gluten in gluten-free bakery products.
Collapse
Affiliation(s)
- Shengyue Shan
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Enrico Federici
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Owen G. Jones
- Department of Food Science, Purdue University, West Lafayette, IN, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
30
|
Cao F, Chen R, Li Y, Han R, Li F, Shi H, Jiao Y. Effects of NaCl and MTGase on printability and gelling properties of extrusion-based 3D printed white croaker (Argyrosomus argentatus) surimi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Phuhongsung P, Zhang M, Devahastin S, Mujumdar AS. Defects in 3D/4D food printing and their possible solutions: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:3455-3479. [PMID: 35678036 DOI: 10.1111/1541-4337.12984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
3D food printing has recently attracted significant attention, both from academic and industrial researchers, due to its ability to manufacture customized products in such terms as size, shape, texture, color, and nutrition to meet demands of individual consumers. 4D printing, which is a technique that allows evolution of various characteristics/properties of 3D printed objects over time through external stimulation, has also been gaining more attention. In order to produce defect-free printed objects via both 3D and 4D printing, it is necessary to first identify the causes of defects and then their mitigation strategies. Comprehensive review on these important issues is nevertheless missing. The purpose of this review is to investigate causes and characteristics of defects occurring during and/or after 3D food printing, with a focus on how different factors affect the printing accuracy. Various techniques that can potentially minimize or eliminate printing defects and produce high-quality 3D/4D printed food products without the need for time-consuming trial and error printing experiments are critically discussed. Guidelines to avoid defects to improve the efficiency of future 3D/4D printed food production are given.
Collapse
Affiliation(s)
- Pattarapon Phuhongsung
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Arun S Mujumdar
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
32
|
Zhong Y, Cai Q, Huang Q, Lu X. Application of LF-NMR to characterize the roles of different emulsifiers in 3D printed emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Pattarapon P, Zhang M, Mujumdar AS. Application potential of 3D food printing to improve the oral intake for immunocompromised patients: A Review. Food Res Int 2022; 160:111616. [DOI: 10.1016/j.foodres.2022.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
|
34
|
Ji S, Xu T, Liu Y, Li H, Luo J, Zou Y, Zhong Y, Li Y, Lu B. Investigation of the mechanism of casein protein to enhance 3D printing accuracy of cassava starch gel. Carbohydr Polym 2022; 295:119827. [DOI: 10.1016/j.carbpol.2022.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
|
35
|
Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
Pan H, Pei F, Ma G, Ma N, Zhong L, Zhao L, Hu Q. 3D printing properties of Flammulina velutipes polysaccharide-soy protein complex hydrogels. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111170] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
|
38
|
Liu Y, Wang K, Zhou P. Microscopic structure, viscoelastic behaviour and 3D printing potential of milk protein concentrate‐hydrocolloid complex coacervates. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yaowei Liu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| | - Keyu Wang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi China
| |
Collapse
|
39
|
Tejada-Ortigoza V, Cuan-Urquizo E. Towards the Development of 3D-Printed Food: A Rheological and Mechanical Approach. Foods 2022; 11:1191. [PMID: 35563914 PMCID: PMC9103916 DOI: 10.3390/foods11091191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023] Open
Abstract
Additive manufacturing, or 3D printing, has raised interest in many areas, such as the food industry. In food, 3D printing can be used to personalize nutrition and customize the sensorial characteristics of the final product. The rheological properties of the material are the main parameters that impact the 3D-printing process and are crucial to assuring the printability of formulations, although a clear relationship between these properties and printability has not been studied in depth. In addition, an understanding of the mechanical properties of 3D-printed food is crucial for consumer satisfaction, as they are related to the texture of food products. In 3D-printing technologies, each manufacturing parameter has an impact on the resulting mechanical properties; therefore, a thorough characterization of these parameters is necessary prior to the consumption of any 3D-printed food. This review focuses on the rheological and mechanical properties of printed food materials by exploring cutting-edge research working towards developing printed food for personalized nutrition.
Collapse
Affiliation(s)
| | - Enrique Cuan-Urquizo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro 76130, Mexico;
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca 66629, Mexico
| |
Collapse
|
40
|
Taneja A, Sharma R, Ayush K, Sharma A, Mousavi Khaneghah A, Regenstein JM, Barba FJ, Phimolsiripol Y, Sharma S. Innovations and applications of 3‐D printing in food sector. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akriti Taneja
- School of Bioengineering and Food Technology Shoolini University Solan HP 173229 India
| | - Ruchi Sharma
- School of Bioengineering and Food Technology Shoolini University Solan HP 173229 India
| | - Krishna Ayush
- School of Bioengineering and Food Technology Shoolini University Solan HP 173229 India
| | - Anshu Sharma
- Department of Food Science and Technology Dr. Y. S. Parmar University of Horticulture and Forestry Nauni Solan HP 173230 India
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering University of Campinas Campinas SP Brazil
| | - Joe M. Regenstein
- Department of Food Science Cornell University Ithaca NY 14853‐7201 USA
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health Food Science, Toxicology and Forensic Medicine Faculty of Pharmacy Universitat de València Avda. Vicent Andrés Estellés s/n Burjassot 46100 Spain
| | - Yuthana Phimolsiripol
- Faculty of Agro‐Industry Chiang Mai University Chiang Mai 50100 Thailand
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai 50100 Thailand
| | - Somesh Sharma
- School of Bioengineering and Food Technology Shoolini University Solan HP 173229 India
| |
Collapse
|
41
|
Agunbiade AO, Song L, Agunbiade OJ, Ofoedu CE, Chacha JS, Duguma HT, Hossaini SM, Rasaq WA, Shorstkii I, Osuji CM, Owuamanam CI, Okpala COR, Korzeniowska M, Guine RPF. Potentials of
3D
extrusion‐based printing in resolving food processing challenges: A perspective review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adedoyin O. Agunbiade
- Department of Food Technology University of Ibadan Ibadan Nigeria
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Lijun Song
- Department of Mechanical and Vehicle Engineering Hunan University Changsha China
| | - Olufemi J. Agunbiade
- Department of Science Laboratory Technology Federal Polytechnic Ile‐Oluji Ondo Nigeria
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Owerri Nigeria
| | - James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Food Science and Agroprocessing Sokoine University of Agriculture Chuo Kikuu Morogoro Tanzania
| | - Haile T. Duguma
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Department of Post‐Harvest Management College of Agriculture and Veterinary Medicine Jimma University Jimma Ethiopia
| | | | - Waheed A. Rasaq
- Department of Applied Bioeconomy Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Ivan Shorstkii
- Department of Technological Equipment and Life‐support Systems Kuban State Technological University Krasnodar Russian Federation
| | - Chijioke M. Osuji
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Owerri Nigeria
| | - Clifford I. Owuamanam
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Owerri Nigeria
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development Wrocław University of Environmental and Life Sciences Wrocław Poland
| | - Małgorzata Korzeniowska
- Department of Functional Food Products Development Wrocław University of Environmental and Life Sciences Wrocław Poland
| | | |
Collapse
|
42
|
3D printed high oil custard cream: Effects of whey protein isolate, hydroxypropylated starch and carrageenan on physicochemical properties and printing performance. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
|
44
|
Structural characterization and fluidness analysis of lactose/whey protein isolate composite hydrocolloids as printing materials for 3D printing. Food Res Int 2022; 152:110908. [DOI: 10.1016/j.foodres.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
|
45
|
Shi Z, Blecker C, Richel A, Wei Z, Chen J, Ren G, Guo D, Yao Y, Haubruge E. Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Carvajal-Mena N, Tabilo-Munizaga G, Pérez-Won M, Lemus-Mondaca R. Valorization of salmon industry by-products: Evaluation of salmon skin gelatin as a biomaterial suitable for 3D food printing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Ran X, Lou X, Zheng H, Gu Q, Yang H. Improving the texture and rheological qualities of a plant-based fishball analogue by using konjac glucomannan to enhance crosslinks with soy protein. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102910] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Portanguen S, Tournayre P, Sicard J, Astruc T, Mirade PS. 3D food printing: Genesis, trends and prospects. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
50
|
Teng X, Zhang M, Mujumdar AS. Strategies for controlling over-puffing of 3D-printed potato gel during microwave processing. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|