1
|
Zhu W, Yao Y, Tao P, Li H. Insight into the conformational changes and allergenic reactivity of coarse wheat bran induced by ozone treatment. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2373-2381. [PMID: 39508293 DOI: 10.1002/jsfa.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Whole grain food has gradually come into view because of its high nutritional value, but the incidence of wheat allergies has been increasing year by year. Ozone is a new non-thermal desensitization technology in food processing, and its effect on coarse wheat bran protein has received little study. We investigated the effects of different ozone airflow rates and treatment times on wheat bran allergenic property and protein structure. RESULTS The ozone treatment time of 30 min at an airflow rate of 5 L min-1 reduced the coarse wheat bran allergenic property by 61.14%; subunits of 33, 46, 48 and 68 kDa were significantly less allergenic via western blotting; and the lowest releasing rate of β-hexosaminidase was 25.32% in the cell model of rat basophilic leukaemia 2H3. According to secondary structure and chemical interaction determination, the protein molecules were reorganized and aggregated by disulfide bonds and hydrophobic contacts following ozone exposure. CONCLUSION Ozone treatment has a beneficial potential in reducing the allergenic property of coarse wheat bran and improving the safety of whole wheat products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenyan Zhu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Peijun Tao
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Wang R, Liu Y, He Y, Feng C, Xia X. Changes in basic composition and in vitro digestive characteristics of pork induced by frozen storage. Front Nutr 2025; 11:1511698. [PMID: 39845923 PMCID: PMC11752999 DOI: 10.3389/fnut.2024.1511698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Frozen pork can reduce the quality of the meat and alter the digestibility and bioavailability of meat proteins in the human body. In this study, we investigated the changes in the basic composition during frozen storage and their effects on the structural properties of digestion products after protein digestion. Methods The impacts of frozen storage at different temperatures (-8, -18, -25, and -40°C) and for different times (1, 3, 6, 9, and 12 months) on the basic components and in vitro digestive characteristics of pork were evaluated. Results The moisture, crude fat, and protein contents decreased with extended storage and increased temperature, whereas muscle juice loss increased (p < 0.05). During in vitro digestion of samples frozen at -8°C for 12 months, trichloroacetic acid (TCA)-soluble peptides were decreased by 25.46% and 14.37% in the gastric and small intestinal phases, respectively, compared with fresh samples. Confocal laser scanning microscope (CLSM) showed that samples stored at -8°C had the largest particle size after digestion. Disruption of protein structure was confirmed by the decrease in α-helix, β-turn, and fluorescence intensity (all p < 0.05) and the increase in β-sheet, random coil, and maximum fluorescence wavelength of the digestion products of samples frozen at -8°C (all p < 0.05). Discussion Therefore, long-term high-temperature frozen storage brought about a significant decline in basic components of muscle and acceleration of loss of protein structural integrity after digestion.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Caiping Feng
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Náthia-Neves G, Getachew AT, Ghelichi S, Jacobsen C. The use of green technologies for processing lupin seeds (Lupinus angustifolius L.): Extraction of non-polar and polar compounds for concentrated-protein flour production. Food Res Int 2025; 200:115434. [PMID: 39779090 DOI: 10.1016/j.foodres.2024.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to promote the valorization of lupin seeds by extracting both non-polar and polar fractions to produce a protein-rich flour suitable for food applications. Green extraction methods such as Supercritical Fluid Extraction (SFE) and SFE followed by gas-expanded liquid extraction with ethanol/CO2 mixtures were employed. SFE yielded lupin oil with extraction yields ranging from 2.27 ± 0.02 to 4.5 ± 0.2 %, significantly influenced by temperature (40 and 60 °C) and pressure (150-350 bar). SFE extracts exhibited higher tocopherol concentration, particularly α-tocopherol (116.7-296.9 µg/g oil) and γ-tocopherol (2006-4749 µg/g oil), compared to the Bligh and Dyer (B&D) method. The fatty acid profiles were similar, although they differed slightly in composition, with the extracts obtained by SFE having higher proportions of unsaturated fatty acids (UFA) and lower proportions of saturated fatty acids (SFA). Ethanol proportion positively correlated with extraction yield (r = 0.991), resulting in higher recovery of polar lipids (PL). However, increasing ethanol percentage decreased the phenolic compounds content and antioxidant activity assessed by DPPH radical scavenging method. SFE produced lupin flour with 36 % protein content, increased by 11 % post-extraction. Ethanolic extraction also increased protein concentration, albeit less pronounced (6.8-11 % increase post-sequential extraction). Essential amino acids consistently increased post-SFE, highlighting the potential of this sustainable method to yield protein-rich flour free of non-GRAS (Generally Recognized as Safe) solvents and containing compounds essential for human health. SDS-PAGE analysis showed consistent protein profiles across all extracted flours, while FTIR assessment revealed changes in the secondary structure of proteins induced by SFE and SFE followed by gas-expanded liquid extraction processes. These findings highlight the potential of this approach to enhance the nutritional and commercial value of lupin-based products while promoting sustainable food processing practices.
Collapse
Affiliation(s)
- Grazielle Náthia-Neves
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Sakhi Ghelichi
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
4
|
Acuña-Nelson SM, Henríquez-González LP, Sepúlveda-Villagra VB, Opazo-Navarrete M, Durán-Agüero S, Parra-Flores JE. Effect of UHT Thermal Treatment on the Secondary Structures of Milk Proteins: Insights From FTIR Analysis and Potential Allergenic Activity. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:1880779. [PMID: 39220440 PMCID: PMC11362581 DOI: 10.1155/2024/1880779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Although thermal treatments are beneficial for the preservation and safety of milk, they can also alter its immunogenic activity by affecting its protein components. To achieve precise results, it is essential to identify the specific proteins that cause food allergies. Therefore, investigating the possible alterations of cow's milk proteins (CMPs) resulting from thermal treatments is necessary. In this study, the Fourier transform infrared spectroscopy (FTIR) technique was used to analyze the effect of UHT thermal treatment on the secondary structures of milk casein. Using the second derivative, six characteristic peaks were identified in the Amide I region, ranging from 1700 to 1600 cm-1. It was found that thermal treatments produce shifts in absorption peaks, indicating changes in protein conformation and possibly in allergenic activity. These shifts were clearly identified in the first characteristic peak of samples M8 and M9, from 1621 to 1600 cm-1. The results suggest that thermal treatments may promote protein aggregation by increasing β turns and reducing β sheets and α helices, which could enhance the allergenic potential of the proteins and facilitate the formation of complexes between different milk proteins, such as β-lactoglobulin and κ-casein. Further studies are needed to experimentally validate the allergenic activity of proteins modified by thermal treatments, as only an analytical method (FTIR) was used to evaluate the secondary structures of the proteins.
Collapse
Affiliation(s)
| | | | | | | | - Samuel Durán-Agüero
- Nutrition and Dietetic SchoolSan Sebastián University, Providencia 7500000, Chile
| | | |
Collapse
|
5
|
Sari TP, Dhamane AH, Pawar K, Bajaj M, Badgujar PC, Tarafdar A, Bodana V, Pareek S. High-pressure microfluidisation positively impacts structural properties and improves functional characteristics of almond proteins obtained from almond meal. Food Chem 2024; 448:139084. [PMID: 38569403 DOI: 10.1016/j.foodchem.2024.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Almond protein isolate (API) obtained from almond meal was processed using dynamic high-pressure microfluidisation (0, 40, 80, 120, and 160 MPa pressure; single pass). Microfluidisation caused significant reductions in the particle size and increased absolute zeta potential. SDS-PAGE analysis indicated reduction in band intensity and the complete disappearance of bands beyond 80 MPa. Structural analysis (by circular dichroism, UV-Vis, and intrinsic-fluorescence spectra) of the API revealed disaggregation (up to 80 MPa) and then re-aggregation beyond 80 MPa. Significant increments in protein digestibility (1.16-fold) and the protein digestibility corrected amino acid score (PDCAAS; 1.15-fold) were observed for the API (80 MPa) than control. Furthermore, significant improvements (P < 0.05) in the functional properties were observed, viz., the antioxidant activity, protein solubility, and emulsifying properties. Overall, the results revealed that moderate microfluidisation treatment (80 MPa) is an effective and sustainable technique for enhancing physico-chemical and functional attributes of API, thus potentially enabling its functional food/nutraceuticals application.
Collapse
Affiliation(s)
- T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Amresh H Dhamane
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Kamlesh Pawar
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi NCR 201 314, India
| | - Mudit Bajaj
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India.
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Vikrant Bodana
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| |
Collapse
|
6
|
Ben-Fadhel Y, Perreault V, Marciniak A, Gaillard R, Pouliot Y, Brisson G, Doyen A. Effect of high-hydrostatic pressure on the digestibility of egg yolk and granule. J Food Sci 2024; 89:2803-2813. [PMID: 38551196 DOI: 10.1111/1750-3841.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
The impact of high hydrostatic pressure (HHP) on protein digestibility of egg yolk and egg yolk granule was evaluated by static in vitro digestion using the standardized INFOGEST 2.0 method. The degree of hydrolysis (DH) and the phospholipid content were determined during digestion, and the protein and peptide profiles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse phase-high pressure liquid chromatography (RP-HPLC). The results showed that HHP induced protein aggregation in egg yolk and granule, mainly by disulfide bridges, which were not disrupted in the oral phase. Proteolysis during the gastric phase improved egg yolk and granule protein solubility, regardless of whether HHP was applied. However, the extent of the samples' digestibility was not affected, with DH values ranging from 15% to 20%. During the intestinal phase, the DH of egg yolk protein (∼40%) was higher than that of the granule (∼25%), probably due to the denser structure of the granule reducing the accessibility of intestinal enzymes. The DH, peptide, and protein profiles of control and HHP-treated egg yolk showed similar protein digestion behaviors for both gastric and intestinal phases. Among the different proteins, only the digestibility of β-phosvitin in HHP-treated granule was enhanced. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin with the potential to generate bioactive phosvitin-derived phosphopeptides. PRACTICAL APPLICATION: High hydrostatic pressure, mainly used as a preservation process, did not impair the nutritional quality of the egg yolk and granule proteins but improved the susceptibility of phosvitin (protein contained in egg yolk) proteolysis to produce bioactive phosphopeptides. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin.
Collapse
Affiliation(s)
- Yosra Ben-Fadhel
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Véronique Perreault
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alice Marciniak
- Department of Food Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Romuald Gaillard
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Yves Pouliot
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Guillaume Brisson
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alain Doyen
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Liao M, Li W, Peng L, Li J, Ren J, Li K, Chen F, Hu X, Liao X, Ma L, Ji J. High hydrostatic pressure induced gastrointestinal digestion behaviors of quercetin-loaded casein delivery systems under different calcium concentration. Food Chem X 2024; 21:101177. [PMID: 38434693 PMCID: PMC10904925 DOI: 10.1016/j.fochx.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Casein micelle has a structure of outer hydrophilicity and inner hydrophobicity, its typical digestion characteristic is gastric coagulation. Based on calcium content as the key factor to control this process, high hydrostatic pressure (HHP) was firstly used to modify the micelle structure by mediating the tight connection between casein molecules themselves and with colloidal calcium, then the quercetin-loaded delivery systems were prepared. And in order to investigate the effect of exogenous calcium, calcium chloride was added for digestion. The results indicated that HHP broke the limitation of casein micelles as delivery carriers for hydrophobic components and increased the EE from 51.18 ± 3.07 % to 76.17 ± 3.41 %. During gastric digestion, higher pressure and exogenous calcium synergistically increased the clotting ability and inhibited the release of quercetin. In the small intestine, curds decomposed more slowly under higher pressure and calcium concentration, so the degradation of quercetin was effectively inhibited.
Collapse
Affiliation(s)
| | | | - Lu Peng
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiahao Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jinbo Ren
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Kaixin Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
8
|
Wan W, Li W, Sun L, Liu H, Xia X. Effects of freeze-thaw cycles on in-vitro digestive properties of myofibrillar protein in mirror carp (Cyprinus carpio L.), based on protein degradation, oxidation, and structural properties. Food Chem 2024; 436:137662. [PMID: 37832412 DOI: 10.1016/j.foodchem.2023.137662] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The in-vitro digestive properties of myofibrillar protein (MP) in mirror carp (Cyprinus carpio L.) after freeze-thaw (F-T) cycles were analyzed in terms of the relationship between protein degradation, oxidation, and structural properties. The F-T samples exhibited a significant increase in glucosidase activity, N-acetyl-β-d-glucosidase activity, total protease activity, and non-protein nitrogen content. α-aminoadipate semialdehyde and γ-glutamate semialdehyde contents increased by 23.17% and 123.12%, respectively. Furthermore, 53.97% decrease in the total nitrogen content and changes in the content of different soluble proteins were observed. X-ray diffraction intensity, thermal stability, free amine content, hydrolysis degree, and digestibility of the MP samples decreased, and the 2θ angle and zeta potential were reversed. Besides, changes in the amide band wavenumbers were also detected. Therefore, the protein structure was unfolded and aggregates were formed through degradation and oxidation induced by the F-T cycles, ultimately making the in-vitro digestion of MP difficult.
Collapse
Affiliation(s)
- Wei Wan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Liang Sun
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison WI 53726, USA
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
9
|
Wang Y, Zheng Z, Zhang C, Wu C, Tan CP, Liu Y. Comparative structural, digestion and absorption characterization of three common extruded plant proteins. Food Res Int 2024; 177:113852. [PMID: 38225129 DOI: 10.1016/j.foodres.2023.113852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Extruded plant proteins, also known as textured vegetable proteins (TVPs), serve as vital components in plant-based meat analogue, yet their structural and nutritional characteristics remain elusive. In this study, we examined the impact of high-moisture (HM) and low-moisture (LM) extrusion on the structures, digestion and absorption of three types of plant proteins. Extrusion transformed plant proteins from spherical to fibrous forms, and formed larger aggregate particles. It also led to the disruption of original disulfide bonds and hydrophobic interactions within protein molecules, and the formation of new cross-links. Intriguingly, compared to native plant proteins, TVPs' α-helix/β-sheet values decreased from 0.68 to 0.69 to 0.56-0.65. Extrusion increased the proportion of peptides shorter than 1 kD in digesta of TVPs by 1.44-23.63%. In comparison to unextruded plant proteins, TVPs exhibited lower content of free amino acids in cell transport products. Our findings demonstrated that extrusion can modify protein secondary structure by diminishing the α-helix/β-sheet value, and impact protein tertiary structure by reducing disulfide bonds and hydrophobic interactions, promoting the digestion and absorption of plant proteins. These insights offer valuable scientific backing for the utilization of extruded plant-based proteins, bolstering their role in enhancing the palatability and nutritional profile of plant-based meat substitutes.
Collapse
Affiliation(s)
- Yuxiang Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Chaoyang Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Cong Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
10
|
Han C, Zheng Y, Wang L, Zhou C, Wang J, He J, Sun Y, Cao J, Pan D, Xia Q. Contribution of process-induced molten-globule state formation in duck liver protein to the enhanced binding ability of (E,E)-2,4-heptadienal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3334-3345. [PMID: 36786016 DOI: 10.1002/jsfa.12499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracted proteins of alternative animal origin tend to present strong off-flavor perception due to physicochemical interactions of coextracted off-flavor compounds with proteins. To investigate the relationship between absorption behaviors of volatile aromas and the processes-induced variations in protein microstructures and molecular conformations, duck liver protein isolate (DLp) was subjected to heating (65/100 °C, 15 min) and ultra-high pressure (UHP, 100-500 MPa/10 min, 28 °C) treatments to obtain differential unfolded protein states. RESULTS Heat and UHP treatments induced the unfolding of DLp to varied degrees, as revealed by fluorescence spectroscopy, ultraviolet-visible absorption, circular dichroism spectra and surface hydrophobicity measurements. Two types of heating-denatured states with varied unfolding degrees were obtained, while UHP at both levels of 100/500 MPa caused partial unfolding of DLp and the presence of a molten-globule state, which significantly enhanced the binding affinity between DLp and (E,E)-2,4-heptadienal. In particular, significantly modified secondary structures of DLp were observed in heating-denatured samples. Excessive denaturing and unfolding degrees resulted in no significant changes in the absorption behavior of the volatile ligand, as characterized by observations of fluorescence quenching and analysis of headspace concentrations. CONCLUSION Defining process-induced conformational transition behavior of matrix proteins could be a promising strategy to regulate food flavor attributes and, particularly, to produce DLp coextracted with limited off-flavor components by modifying their interaction during extraction processes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanhu Han
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co. Ltd, Shanghai, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Changyu Zhou
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha, China
| | - Jun He
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yangying Sun
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Daodong Pan
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Qiang Xia
- College of Food and Pharmaceutical Science, Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Khalid W, Maggiolino A, Kour J, Arshad MS, Aslam N, Afzal MF, Meghwar P, Zafar KUW, De Palo P, Korma SA. Dynamic alterations in protein, sensory, chemical, and oxidative properties occurring in meat during thermal and non-thermal processing techniques: A comprehensive review. Front Nutr 2023; 9:1057457. [PMID: 36712529 PMCID: PMC9876618 DOI: 10.3389/fnut.2022.1057457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Meat processing represents an inevitable part of meat and meat products preparation for human consumption. Both thermal and non-thermal processing techniques, both commercial and domestic, are able to induce chemical and muscle's proteins modification which can have implication on oxidative and sensory meat characteristics. Consumers' necessity for minimally processed foods has paved a successful way to unprecedented exploration into various novel non-thermal food processing techniques. Processing of meat can have serious implications on its nutritional profile and digestibility of meat proteins in the digestive system. A plethora of food processing techniques can potentially induce alterations in the protein structure, palatability, bioavailability and digestibility via various phenomena predominantly denaturation and Maillard reaction. Apart from these, sensory attributes such as color, crispness, hardness, and total acceptance get adversely affected during various thermal treatments in meat. A major incentive in the adoption of non-thermal food processing is its energy efficiency. Considering this, several non-thermal processing techniques have been developed for evading the effects of conventional thermal treatments on food materials with respect to Maillard reactions, color changes, and off-flavor development. Few significant non-thermal processing techniques, such as microwave heating, comminution, and enzyme addition can positively affect protein digestibility as well as enhance the value of the final product. Furthermore, ultrasound, irradiation, high-pressure processing, and pulsed electric fields are other pivotal non-thermal food processing technologies in meat and meat-related products. The present review examines how different thermal and non-thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect meat proteins, chemical composition, oxidation, and sensory profile.
Collapse
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jasmeet Kour
- Department of Food Science and Technology, Padma Shri Padma Sachdev Government PG College for Women, Jammu, Jammu and Kashmir, India
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Noman Aslam
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Faizan Afzal
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Parkash Meghwar
- Department of Food Science and Technology, University of Karachi, Karachi, Pakistan
| | | | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
13
|
Effect of Enzymatic Hydrolysis on Solubility and Emulsifying Properties of Lupin Proteins (Lupinus luteus). COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solubility and emulsifying properties are important functional properties associated with proteins. However, many plant proteins have lower techno-functional properties, which limit their functional performance in many formulations. Therefore, the objective of this study was to investigate the effect of protein hydrolysis by commercial enzymes to improve their solubility and emulsifying properties. Lupin protein isolate (LPI) was hydrolyzed by 7 commercial proteases using different E/S ratios and hydrolysis times while the solubility and emulsifying properties were evaluated. The results showed that neutral and alkaline proteases are most efficient in hydrolyzing lupin proteins than acidic proteases. Among the proteases, Protamex® (alkaline protease) showed the highest DH values after 5 h of protein hydrolysis. Meanwhile, protein solubility of LPI hydrolysates was significantly higher (p < 0.05) than untreated LPI at all pH analyzed values. Moreover, the emulsifying capacity (EC) of undigested LPI was lower than most of the hydrolysates, except for acidic proteases, while emulsifying stability (ES) was significantly higher (p < 0.05) than most LPI hydrolysates by acidic proteases, except for LPI hydrolyzed with Acid Stable Protease with an E/S ratio of 0.04. In conclusion, the solubility, and emulsifying properties of lupin (Lupinus luteus) proteins can be improved by enzymatic hydrolysis using commercial enzymes.
Collapse
|
14
|
Characterization and emulsifying properties of mantle proteins from scallops (Patinopecten yessoensis) treated by high hydrostatic pressure treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bu G, Li T. High hydrostatic pressure treatment reduces the potential antigenicity of β-conglycinin by changing the protein structure during in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4025-4034. [PMID: 34997598 DOI: 10.1002/jsfa.11751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND High hydrostatic pressure (HHP) treatment has been used to alleviate the allergenicity of soybeans, but there are little data about the potential antigenicity of β-conglycinin after HHP treatment. RESULTS We examined the effects of HHP treatment on the antigenicity and structure of β-conglycinin. When the pressure was 300 and 400 MPa, HHP treatment reduced the immunoglobulin (Ig)G binding capacity of β-conglycinin, while its IgE binding capacity did not change significantly. After in vitro digestion, both the IgE and IgG binding of β-conglycinin was obviously inhibited after HHP treatment at 400 MPa and 60 °C, although its binding capacity with linear epitope antibodies increased. Moreover, HHP treatment changed the secondary structure of β-conglycinin, the content of α-helix and random coils increased, while the β-sheet and β-turn decreased. After HHP treatment, the conformational structure was unfolded so that a large number of hydrophobic regions were exposed. CONCLUSION HHP treatment alleviated the potential antigenicity of β-conglycinin by modifying its structure, which facilitated in vitro digestion and destroyed epitopes. This research provides a new insight into the mechanism of HHP treatment that affects the sensitization of soy protein allergens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Tanghao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
16
|
Cepero‐Betancourt Y, Tabilo‐Munizaga G, Lemus‐Mondaca R, Pérez‐Won M, Villalobos‐Carvajal R, Moreno‐Osorio L. High pressure impregnation‐assisted drying of abalone (
Haliotis rufescens
) slices: Changes in protein conformation, thermal properties, and microstructure. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yamira Cepero‐Betancourt
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío‐Bío, Av. Andrés Bello 720 Chillán Chile
| | - Gipsy Tabilo‐Munizaga
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío‐Bío, Av. Andrés Bello 720 Chillán Chile
| | - Roberto Lemus‐Mondaca
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca 964, Independencia Santiago Chile
| | - Mario Pérez‐Won
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío‐Bío, Av. Andrés Bello 720 Chillán Chile
| | - Ricardo Villalobos‐Carvajal
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío‐Bío, Av. Andrés Bello 720 Chillán Chile
| | - Luis Moreno‐Osorio
- Departamento de Ciencias Básicas, Universidad del Bío‐Bío, Avda. Andrés Bello 720 Chillán Chile
| |
Collapse
|
17
|
Jiang Q, Zhang Z, Yang F, Gao P, Yu D, Xu Y, Xia W. Impact of protein oxidation induced by different cooking methods in channel fish (
Ietalurus punetaus
) on structure and
in vitro
digestion of protein. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qixing Jiang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Zhiyun Zhang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Pei Gao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Dawei Yu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Jiangsu Province Wuxi 214122 China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangsu Province Wuxi 214122 China
| |
Collapse
|
18
|
Jia S, Cao J, Dai Y, Cui B, Yuan C, Hou H, Ding X, Wang W, Zhang H, Zhao L. Effects of soybean oil on rheological characteristics of dough under high hydrostatic pressure. J Texture Stud 2022; 53:684-692. [PMID: 35730248 DOI: 10.1111/jtxs.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
In order to improve the stability of dough with soybean oil, this paper explored the effect of soybean oil addition on the rheological characteristics of dough under high hydrostatic pressure. The results showed that, compared with the dough without soybean oil, the β-sheet, disulfide bonds content and gauche-ganche-ganche in the dough increased by 4.23%, 0.85 μmol/g and 4.16% respectively when the dough was added with 6% soybean oil, which improved the degree of cross-linking polymerization of gluten protein and the stability of gluten network. Meanwhile, the dough had the highest elastic modulus and the lowest maximum creep compliance (6.85 Pa-1 ×10-4 ), indicating that 6% soybean oil significantly increased the elasticity and hardness of the dough. The results of short-range ordered structure and paste properties showed that with the addition of soybean oil, the ordered structure and paste viscosity decreased with the increase of soybean oil.
Collapse
Affiliation(s)
- Shuqi Jia
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Jian Cao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, PR China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, PR China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, PR China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| | - Luping Zhao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, PR China.,Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong, PR China
| |
Collapse
|
19
|
Mao M, Ni D, Ma L, Chen F, Hu X, Ji J. Impact of high hydrostatic pressure on the micellar structures and physicochemical stability of casein nanoemulsion loading quercetin. Food Chem X 2022; 14:100356. [PMID: 35706831 PMCID: PMC9189874 DOI: 10.1016/j.fochx.2022.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mengqi Mao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Dandan Ni
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Corresponding author.
| |
Collapse
|
20
|
The effects of high pressure treatment on the structural and digestive properties of myoglobin. Food Res Int 2022; 156:111193. [DOI: 10.1016/j.foodres.2022.111193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
21
|
Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Liu N, Lin P, Zhang K, Yao X, Li D, Yang L, Zhao M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
An N, Hou R, Liu Y, Han P, Zhao W, Wu W, Lu S, Ji H, Dong J. Application of iTRAQ Technology to Identify Differentially Expressed Proteins of Sauce Lamb Tripe with Different Secondary Pasteurization Treatments. Foods 2022; 11:foods11081166. [PMID: 35454754 PMCID: PMC9032106 DOI: 10.3390/foods11081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Vacuum-packed sauce lamb tripe was subjected to secondary pasteurization by high-pressure processing (HPP) and heat treatment (HT), and iTRAQ technology was applied to investigate the differentially expressed proteins (DEPs). The analysis revealed 484 and 398 DEPs in the HPP and HT samples, respectively, compared with no treatment. These DEPs were sorted by texture results, and it was revealed that these DEPs acted in different biological processes with many structural proteins and protein subunits related to lamb tripe texture. The results verified by Western blot were consistent with the protein expression changes observed by proteomics. The bioinformatics analysis showed that the hardness and gumminess of the sauce lamb tripe after HT might be related to changes in the expression of CNN1 and FN1. The changes in the expression of TMP, FN1, YWHAG, TTN, collagen isoforms, and ARPC3 might be related to the improved springiness and chewiness of lamb tripe after HPP.
Collapse
Affiliation(s)
- Ning An
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Ran Hou
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Yangming Liu
- Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Ping Han
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Wenxia Wu
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Shiling Lu
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Hua Ji
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
| | - Juan Dong
- College of Food Quality and Safety, Shihezi University, Shihezi 832000, China; (N.A.); (R.H.); (P.H.); (W.W.); (S.L.); (H.J.)
- Correspondence: ; Tel.: +86-099-3205-8735; Fax: +86-099-3205-7399
| |
Collapse
|
24
|
Ahmed J, Habeebullah SFK, Alagarsamy S, Mulla MZ, Thomas L. Impact of High-Pressure Treatment on Amino Acid Profile, Fatty Acid Compositions, and Texture of Yellowfin Seabream (Acanthopagrus arabicus) Filets. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.857072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This work describes the optimization of the pressure–time combination for the inactivation of Listeria monocytogenes in fish medium using a wide range of pressure (225–525 MPa) and holding time (5–30 min). Thereafter, the yellowfin seabream (Acanthopagrus arabicus) filets (100 g each) were subjected to high-pressure (HP) treatment at the optimum pressure/time combination, and the impact of HP on the amino acid profile, fatty acid profiles, color, and texture was assessed. Glycine, glutamic acid, and alanine were recorded as the major amino acids, which did not change significantly after pressurization. Conversely, alanine—the leading free amino acid—dropped significantly after treatment. The fatty acid analysis indicated that oleic acid and palmitic acid accounted for 29.88 and 25.59% of the total fatty acids, respectively. Pressurization did not influence the fatty acid profiles, nutritional quality indices, and hardness of yellowfin seabream fish. The color pigments of filets, measured as a* and b*, changed significantly after the treatment. Overall, this work indicates that HP treatment can be utilized to maintain the nutritional quality of seabream filets; however, further research is needed to maintain the visual color of the fish.
Collapse
|
25
|
Palma-Acevedo A, Pérez-Won M, Tabilo-Munizaga G, Ortiz-Viedma J, Lemus-Mondaca R. Effects of PEF-Assisted Freeze-Drying on Protein Quality, Microstructure, and Digestibility in Chilean Abalone “Loco” (Concholepas concholepas) Mollusk. Front Nutr 2022; 9:810827. [PMID: 35369077 PMCID: PMC8968741 DOI: 10.3389/fnut.2022.810827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to apply different pulsed electric field (PEF) conditions as a pretreatment to the freeze-drying (FD) process of Chilean abalone and to assess its effects on protein quality, microstructure, and digestibility of the freeze-dried product. The treatments PEF (0.5, 1.0, and 2.0 kV cm−1) and cooking (CO) were applied at 100°C × 15 min. Then, their performances were subjected to a FD process. PEF + CO pretreated freeze-dried samples showed shorter process times than freeze-dried control samples without PEF + CO, where the treatment PEF at 2.0 kV cm−1 reached the shortest time. In addition, the abovementioned samples presented the best textural parameters but a low protein content. The thermal properties indicate a total denaturation of the proteins, where the amide I region presented greater mobility in the sample pretreated with an electric field of 2.0 kV cm−1. The assay for digestibility shows better hydrolysis for the 2.0 kV cm−1 PEF sample and has a higher Computer-Protein Efficiency Ratio (C-PER). Thereby, variations in thermal behavior and physicochemical parameters in comparison to combined PEF + CO pretreatments were observed. In addition, high protein quality and digestibility of pretreated freeze-dried Chilean abalones were maintained to the desired properties (texture and C-PER) and conditions (FD time).
Collapse
Affiliation(s)
- Anais Palma-Acevedo
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Mario Pérez-Won
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
- Mario Pérez-Won
| | - Gipsy Tabilo-Munizaga
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Universidad del Bío-Bío, Chillán, Chile
| | - Jaime Ortiz-Viedma
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Roberto Lemus-Mondaca
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- *Correspondence: Roberto Lemus-Mondaca
| |
Collapse
|
26
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
27
|
Yao Y, Jia Y, Lu X, Li H. Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure. Food Chem 2022; 368:130805. [PMID: 34404002 DOI: 10.1016/j.foodchem.2021.130805] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022]
Abstract
The gluten proteins of wheat are major causative agents of harmful immune responses. This study investigated the effects of high hydrostatic pressure (200, 300, 400, and 500 MPa), treatment time (5-25 min) and protein concentration (1%-5% protein weight/volume) on the structures underlying the allergenicity wheat gluten. The results showed that a combination of 400 MPa, 20 min treatment time and 3% protein reduced the wheat gluten allergenicity by 72.2%. Moreover, a Western blotting showed that the allergenicity of 26, 28, 48, 68 kDa and high molecular weight glutenin was sharply reduced. Fourier infrared spectroscopy and surface hydrophobicity indicated that gluten molecules aggregated after HHP treatment. Intermolecular forces indicated that gluten aggregated mainly through hydrophobic interactions and disulfide bonds but not by hydrogen bonds after HHP treatment. These results suggest that structural changes contributed to the reduction of wheat gluten allergenicity and that HHP may enhance safety for susceptible individuals.
Collapse
Affiliation(s)
- Yaya Yao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China
| | - Xuerui Lu
- Beijing Dongfu Jiuheng Instrument Technology Co., Ltd., China
| | - Huijing Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), China.
| |
Collapse
|
28
|
Wang F, Ma Y, Wang Y, Zhao L, Liao X. Physicochemical properties of seed protein isolates extracted from pepper meal by pressure-assisted and conventional solvent defatting. Food Funct 2021; 12:11033-11045. [PMID: 34665193 DOI: 10.1039/d1fo01726h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pepper seed is one by-product in pepper processing, rich in protein, fat, and fiber, and is a new plant-based protein source. In this paper, the physicochemical and functional properties of pepper seed protein isolates (PSPIs) extracted from pepper meal by pressure-assisted defatting (PAD) and conventional solvent defatting (CSD) were investigated. The yields of SPIs extracted by CSD and PAD were 22.8% and 20.5%, respectively. Compared with the PSPIs obtained by CSD, the solubility, water-holding and oil-holding capacities, and emulsifying and foaming abilities of the PSPIs obtained by PAD were significantly increased by 11.22%, 29.17%, 40%, 160%, and 100%, respectively. Additionally, UV-visible, intrinsic fluorescence and infrared spectroscopic characterization revealed the tertiary and secondary conformation changes of the PSPIs, which might contribute to the improvement of their functional properties. Overall, PAD significantly improved the functional properties of the PSPIs. The PSPIs extracted by this innovative technology would be a new plant protein alternative for food formulations with better functional properties.
Collapse
Affiliation(s)
- Fengzhang Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| | - Yan Ma
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China. .,Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Sciences, Xinjiang Deeper Processing and Engineering Technology Research Centre of Main Byproducts, Urumqi, 830091, China
| | - Yongtao Wang
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| | - Liang Zhao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China. .,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, 225700, Jiangsu, China
| | - Xiaojun Liao
- College of Food Science & Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing, Ministry of Agricultural and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
29
|
Ahmed J, Habeebullah SFK, Thomas L, Mulla MZ, Jacob H, Alagarsamy S. Effect of high‐pressure treatment and refrigerated storage on the amino acid profile, color, and texture of hammour (
Epinephelus coioides
) fillets. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jasim Ahmed
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | | | - Linu Thomas
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Mehrajfatema Z. Mulla
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Harsha Jacob
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| | - Surendraraj Alagarsamy
- Environment & Life Sciences Research Center Kuwait Institute for Scientific Research Safat Kuwait
| |
Collapse
|
30
|
Rathod NB, Kulawik P, Ozogul Y, Ozogul F, Bekhit AEA. Recent developments in non‐thermal processing for seafood and seafood products: cold plasma, pulsed electric field and high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikheel Bhojraj Rathod
- Department of Post Harvest management of Meat, Poultry and Fish Post Graduate Institute of Post‐Harvest Management Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth Roha, Raigad Maharashtra State 402116 India
| | - Piotr Kulawik
- Department of Animal Products Technology Faculty of Food Technology University of Agriculture Karakow Poland
| | - Yesim Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology Faculty of Fisheries Cukurova University Adana 01330 Turkey
| | | |
Collapse
|
31
|
Effects of High Hydrostatic Pressure Treatment: Characterization of Eel (Anguilla japonica) Surimi, Structure, and Angiotensin-Converting Enzyme Inhibitory Activity of Myofibrillar Protein. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Li X, Zhang ZH, Qi X, Li L, Zhu J, Brennan CS, Yan JK. Application of nonthermal processing technologies in extracting and modifying polysaccharides: A critical review. Compr Rev Food Sci Food Saf 2021; 20:4367-4389. [PMID: 34397139 DOI: 10.1111/1541-4337.12820] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Polysaccharides are natural polymer compounds widely distributed in plants, animals, and microorganisms, most of which have a broad spectrum of biological activities to promote human health. They could also be used as texture modifiers in food industry due to their excellent rheological and mechanical properties. Many researchers have shown that nonthermal processing technologies have numerous advantages, such as high extraction efficiency, short extraction time, and environmental friendliness, in the extraction of polysaccharides compared with the traditional extraction methods. Moreover, nonthermal technologies could effectively change the physicochemical properties and structural characteristics of polysaccharides to improve their biological activities or processing properties. Therefore, a comprehensive summary about the extraction and modification of polysaccharides by nonthermal technologies, including ultrasound, high hydrostatic pressure, pulsed electric fields, and cold plasma, was provided in this review. In particular, the underlying mechanisms, processing operations, and current application status of these technologies were discussed. In addition, the applications of combining nonthermal techniques with other technological methods in polysaccharide extraction and modification were briefly introduced.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | - Charles S Brennan
- School of Science, RMIT University, Victoria Road, Melbourne, VIC, 3500, Australia
| | - Jing-Kun Yan
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.,Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|
33
|
Liu H, Xu Y, Zu S, Wu X, Shi A, Zhang J, Wang Q, He N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021; 10:1872. [PMID: 34441648 PMCID: PMC8393269 DOI: 10.3390/foods10081872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.
Collapse
Affiliation(s)
- Huipeng Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Shuyu Zu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| |
Collapse
|
34
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem 2021; 356:129707. [PMID: 33873143 DOI: 10.1016/j.foodchem.2021.129707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Meat is a valuable protein source with a balanced composition of essential amino acids and various nutrients. This review aims to identify methods to improve digestion of meat proteins, as well as evaluate the digestive characteristics of infants and the elderly. Immature digestive conditions in infants, including a high gastric pH and low protease concentration, can hinder protein digestion, thus resulting in inhibited growth and development. Likewise, gastrointestinal (GI) tract aging and chronic health problems, including tooth loss and atrophic gastritis, can lead to reduction in protein digestion and absorption in the elderly compared with those in young adults. Moderate heating and several non-thermal technologies, such as aging, enzymatic hydrolysis, ultrasound, high-pressure processing, and pulsed electric field can alter protein structure and improve protein digestion in individuals with low digestive capacity.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
36
|
Lu W, Qin Y, Ruan Z. Effects of high hydrostatic pressure on color, texture, microstructure, and proteins of the tilapia (Orechromis niloticus) surimi gels. J Texture Stud 2020; 52:177-186. [PMID: 33191516 DOI: 10.1111/jtxs.12572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
The tilapia (Orechromis niloticus) surimi gels were prepared with high hydrostatic pressure (0, 100, 200, 300, and 400 MPa for 15 min) treatments to investigate the changes in water-holding capacity, color, gel strength, microstructure, texture, and proteins of the gels. Compared it with cooked gel (40°C/30 min + 90°C/30 min). The whiteness of heat-induced and HHP-induced gels were significant (p < .05) higher than that of untreated samples. The gels formed by pressurization were dense and flexible, and formed by cross-linking based on hydrogen bonding. SDS-PAGE patterns showed no major change in the actin and tropomyosin protein profiles of gels induced by HHP-300. Raman spectroscopy confirmed disulfide bonds played an important role in gel formation. A lower intensity ratio observed in HHP-induced protein supported the tyrosine residues involved in hydrogen bond formation. The changes of secondary structure suggested decreased α-helix content and increased β-sheet.
Collapse
Affiliation(s)
- Wangwei Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yuyue Qin
- Institute of Agriculture and Food Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zheng Ruan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|