1
|
Tran TD, Lee SI, Hnasko R, McGarvey JA. Biocontrol of Escherichia coli O157:H7 by Enterobacter asburiae AEB30 on intact cantaloupe melons. Microb Biotechnol 2024; 17:e14437. [PMID: 38465735 PMCID: PMC10926056 DOI: 10.1111/1751-7915.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Escherichia coli O157:H7 causes >73,000 foodborne illnesses in the United States annually, many of which have been associated with fresh ready-to-eat produce including cantaloupe melons. In this study, we created a produce-associated bacterial (PAB) library containing >7500 isolates and screened them for the ability to inhibit the growth of E. coli O157:H7 using an in vitro fluorescence-based growth assay. One isolate, identified by 16S and whole-genome sequence analysis as Enterobacter asburiae, was able to inhibit the growth of E. coli by ~30-fold in vitro and produced zones of inhibition between 13 and 21 mm against 12 E. coli outbreak strains in an agar spot assay. We demonstrated that E. asburiae AEB30 was able to grow, persist and inhibit the growth of E. coli on cantaloupe melons under simulated pre- and post-harvest conditions. Analysis of the E. asburiae AEB30 genome revealed an operon encoding a contact-dependent growth inhibition (CDI) system that when mutated resulted in the loss of E. coli growth inhibition. These data suggest that E. asburiae AEB30 is a potential biocontrol agent to prevent E. coli contamination of cantaloupe melons in both pre- and post-harvest environments and that its mode of action is via a CDI system.
Collapse
Affiliation(s)
- Thao D. Tran
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Sang In Lee
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| | - Robert Hnasko
- USDA, ARS, Produce Safety and Microbiology Research UnitAlbanyCaliforniaUSA
| | - Jeffery A. McGarvey
- USDA, ARS, Foodborne Toxin Detection and Prevention Research UnitAlbanyCaliforniaUSA
| |
Collapse
|
2
|
Thomas GA, Paradell Gil T, Müller CT, Rogers HJ, Berger CN. From field to plate: How do bacterial enteric pathogens interact with ready-to-eat fruit and vegetables, causing disease outbreaks? Food Microbiol 2024; 117:104389. [PMID: 37919001 DOI: 10.1016/j.fm.2023.104389] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Ready-to-eat fruit and vegetables are a convenient source of nutrients and fibre for consumers, and are generally safe to eat, but are vulnerable to contamination with human enteric bacterial pathogens. Over the last decade, Salmonella spp., pathogenic Escherichia coli, and Listeria monocytogenes have been linked to most of the bacterial outbreaks of foodborne illness associated with fresh produce. The origins of these outbreaks have been traced to multiple sources of contamination from pre-harvest (soil, seeds, irrigation water, domestic and wild animal faecal matter) or post-harvest operations (storage, preparation and packaging). These pathogens have developed multiple processes for successful attachment, survival and colonization conferring them the ability to adapt to multiple environments. However, these processes differ across bacterial strains from the same species, and across different plant species or cultivars. In a competitive environment, additional risk factors are the plant microbiome phyllosphere and the plant responses; both factors directly modulate the survival of the pathogens on the leaf's surface. Understanding the mechanisms involved in bacterial attachment to, colonization of, and proliferation, on fresh produce and the role of the plant in resisting bacterial contamination is therefore crucial to reducing future outbreaks.
Collapse
Affiliation(s)
- Gareth A Thomas
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Teresa Paradell Gil
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Carsten T Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Cedric N Berger
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| |
Collapse
|
3
|
Gollop R, Kroupitski Y, Matz I, Chahar M, Shemesh M, Sela Saldinger S. Bacillus strain BX77: a potential biocontrol agent for use against foodborne pathogens in alfalfa sprouts. FRONTIERS IN PLANT SCIENCE 2024; 15:1287184. [PMID: 38313804 PMCID: PMC10834763 DOI: 10.3389/fpls.2024.1287184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
Despite regulatory and technological measures, edible sprouts are still often involved in foodborne illness and are considered a high-risk food. The present study explored the potential of spore-forming Bacillus isolates to mitigate Salmonella and Escherichia coli contamination of alfalfa sprouts. Food-derived Bacillus strains were screened for antagonistic activity against S. enterica serovar Typhimurium SL1344 (STm) and enteropathogenic E. coli O55:H7. Over 4 days of sprouting, levels of STm and E. coli on contaminated seeds increased from 2.0 log CFU/g to 8.0 and 3.9 log CFU/g, respectively. Treatment of the contaminated seeds with the most active Bacillus isolate, strain BX77, at 7 log CFU/g seeds resulted in substantial reductions in the levels of STm (5.8 CFU/g) and E. coli (3.9 log CFU/g) in the sprouted seeds, compared to the control. Similarly, co-culturing STm and BX77 in sterilized sprout extract at the same ratio resulted in growth inhibition and killed the Salmonella. Confocal-microscopy experiments using seeds supplemented with mCherry-tagged Salmonella revealed massive colonization of the seed coat and the root tip of 4-day-old sprouted seeds. In contrast, very few Salmonella cells were observed in sprouted seeds grown with BX77. Ca-hypochlorite disinfection of seeds contaminated with a relatively high concentration of Salmonella (5.0 log CFU/g) or treated with BX77 revealed a mild inhibitory effect. However, disinfection followed by the addition of BX77 had a synergistic effect, with a substantial reduction in Salmonella counts (7.8 log CFU/g) as compared to untreated seeds. These results suggest that a combination of chemical and biological treatments warrants further study, toward its potential application as a multi-hurdle strategy to mitigate Salmonella contamination of sprouted alfalfa seeds.
Collapse
Affiliation(s)
- Rachel Gollop
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Ilana Matz
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Madhvi Chahar
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
- Current address: Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute for Postharvest and Food Science, The Volcani Institute, Agriculture Research Organization, Rishon LeZion, Israel
| |
Collapse
|
4
|
Hashemi M, Amiel A, Zouaoui M, Adam K, Clemente HS, Aguilar M, Pendaries R, Couzigou JM, Marti G, Gaulin E, Roy S, Rey T, Dumas B. The mycoparasite Pythium oligandrum induces legume pathogen resistance and shapes rhizosphere microbiota without impacting mutualistic interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1156733. [PMID: 37929182 PMCID: PMC10625430 DOI: 10.3389/fpls.2023.1156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Pythium oligandrum is a soil-borne oomycete associated with rhizosphere and root tissues. Its ability to enhance plant growth, stimulate plant immunity and parasitize fungal and oomycete preys has led to the development of agricultural biocontrol products. Meanwhile, the effect of P. oligandrum on mutualistic interactions and more generally on root microbial communities has not been investigated. Here, we developed a biological system comprising P. oligandrum interacting with two legume plants, Medicago truncatula and Pisum sativum. P. oligandrum activity was investigated at the transcriptomics level through an RNAseq approach, metabolomics and finally metagenomics to investigate the impact of P. oligandrum on root microbiota. We found that P. oligandrum promotes plant growth in these two species and protects them against infection by the oomycete Aphanomyces euteiches, a devastating legume root pathogen. In addition, P. oligandrum up-regulated more than 1000 genes in M. truncatula roots including genes involved in plant defense and notably in the biosynthesis of antimicrobial compounds and validated the enhanced production of M. truncatula phytoalexins, medicarpin and formononetin. Despite this activation of plant immunity, we found that root colonization by P. oligandrum did not impaired symbiotic interactions, promoting the formation of large and multilobed symbiotic nodules with Ensifer meliloti and did not negatively affect the formation of arbuscular mycorrhizal symbiosis. Finally, metagenomic analyses showed the oomycete modifies the composition of fungal and bacterial communities. Together, our results provide novel insights regarding the involvement of P. oligandrum in the functioning of plant root microbiota.
Collapse
Affiliation(s)
- Maryam Hashemi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Mohamed Zouaoui
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Kévin Adam
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Rémi Pendaries
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- Metatoul-AgromiX Platform, MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| | - Sébastien Roy
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- AGRONUTRITION, Carbonne, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
- DE SANGOSSE, Pont-Du-Casse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III, Toulouse Institut National Polytechnique (INP), Auzeville-Tolosane, France
| |
Collapse
|
5
|
Lee SI, Tran TD, Hnasko R, McGarvey JA. Use of Pantoea agglomerans ASB05 as a biocontrol agent to inhibit the growth of Salmonella enterica on intact cantaloupe melons. J Appl Microbiol 2023; 134:lxad235. [PMID: 37852677 DOI: 10.1093/jambio/lxad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
AIMS To identify biocontrol agents to prevent the growth of Salmonella serotype Enterica on cantaloupe melons during the pre- and postharvest periods. METHODS AND RESULTS We created a produce-associated bacterial library containing 8736 isolates and screened it using an in-vitro fluorescence inhibition assay to identify bacteria that inhibit the growth of S. Enterica. One isolate, Pantoea agglomerans ASB05, was able to grow, persist, and inhibit the growth of S. Enterica on intact cantaloupe melons under simulated pre- and postharvest conditions. We also demonstrated that the growth inhibition of S. Enterica by P. agglomerans ASB05 was due to the production of a phenazine type antibiotic. CONCLUSIONS Pantoea agglomerans ASB05 is an effective biocontrol agent for the prevention of S. Enterica growth on intact cantaloupe melons in both the pre- and postharvest environments.
Collapse
Affiliation(s)
- Sang In Lee
- Foodborne Toxin Detection and Prevention Research Unit, USDA, ARS, Albany, CA 94710, United States
| | - Thao D Tran
- Foodborne Toxin Detection and Prevention Research Unit, USDA, ARS, Albany, CA 94710, United States
| | - Robert Hnasko
- Produce Safety and Microbiology Research Unit, USDA, ARS, Albany, CA 94710, United States
| | - Jeffery A McGarvey
- Foodborne Toxin Detection and Prevention Research Unit, USDA, ARS, Albany, CA 94710, United States
| |
Collapse
|
6
|
Yin HB, Chen CH, Gu G, Nou X, Patel J. Pre-harvest biocontrol of Listeria and Escherichia coli O157 on lettuce and spinach by lactic acid bacteria. Int J Food Microbiol 2023; 387:110051. [PMID: 36516726 DOI: 10.1016/j.ijfoodmicro.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Recent outbreaks linked to contaminated leafy greens underline the need for identifying effective natural approaches to improve produce safety at pre-harvest level. Lactic acid bacteria (LAB) have been evaluated as biocontrol agents in food products. In this study, the efficacy of a cocktail of LAB including Lactococcus lactis, Lactiplantibacillus plantarum, Lactobacillus johnsonii, and Lactobacillus acidophilus as pre-harvest biocontrol agents against Listeria and Escherichia coli O157 on lettuce and spinach was investigated. Bacterial pathogens L. monocytogenes and E. coli O157:H7 and the non-pathogenic surrogates L. innocua and E. coli O157:H12 were used to spray-inoculate cultivars of lettuce and spinach grown in growth chamber and in field, respectively. Inoculated plants were spray-treated with water or a cocktail of LAB. On day 0, 3, and 5 post-inoculation, four samples from each group were collected and bacterial populations were determined by serial dilution and spiral plating on selective agars. LAB treatment exhibited an immediate antimicrobial efficacy against L. monocytogenes and E. coli O157:H7 on "Green Star" lettuce by ~2 and ~ 1 log reductions under growth chamber conditions, respectively (P < 0.05). The effect of LAB against E. coli O157:H7 on "New Red Fire" lettuce remained effective during the 5-day period in growth chamber (P < 0.05). Treatment of LAB delivered an effective bactericidal effect against E. coli O157:H12 immediately after application on the field-grown lettuce plants (P < 0.05). Approximately 1 log L. innocua reduction was observed on "Matador" and "Palco" spinach on day 5 (P < 0.05). Results of this study support that LAB could potentially be applied as biocontrol agents for controlling Listeria and E. coli O157 contamination on leafy greens at the pre-harvest level.
Collapse
Affiliation(s)
- Hsin-Bai Yin
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Chi-Hung Chen
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Ganyu Gu
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Xiangwu Nou
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Jitendra Patel
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
| |
Collapse
|
7
|
Karlsson ME, Uhlig E, Håkansson Å, Alsanius BW. Seed inoculation with antagonistic bacteria limits occurrence of E. coli O157:H7gfp + on baby spinach leaves. BMC Microbiol 2022; 22:131. [PMID: 35568814 PMCID: PMC9107235 DOI: 10.1186/s12866-022-02550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Backround During the last decades, outbreaks of foodborne illnesses have increasingly been linked to fresh and/or minimally processed fruit and vegetables. Enterohemorrhagic Escherichia coli was the causal agent for major outbreaks in Europe with leafy green vegetables and sprouts. To improve food safety, microbial antagonism has received attention during recent years and could be one of the solution to prevent contamination of food borne pathogens on fresh produce. Here we investigate the antagonistic effect of three bacterial strains (Pseudomonas orientalis, P. flavescens and Rhodococcus sp.) isolated from spinach leaves against E. coli O157:H7gfp + under laboratory and greenhouse conditions. Results Our results shows that significantly less culturable E.coli O157:H7gfp + were retrieved from the spinach canopy subjected to antagonist seed treatment than canopy inoculation. Seeds inoculated with Rhodococcus sp. significantly reduced growth of E. coli O157:H7gfp + compared with the other antagonists. The result from the in vitro study shows a significant reduction of growth of E. coli O157:H7gfp+, but only after 44 h when E. coli O157:H7gfp + was propagated in a mixture of spent media from all three antagonists. Conclusions The antagonistic effect on phyllospheric E.coli O157:H7gfp + observed after seed inoculation with Rhodococcus sp. might be an indication of induced resistance mechanism in the crop. In addition, there was a small reduction of culturable E.coli O157:H7gfp + when propagated in spent media from all three antagonists. Nutritional conditions rather than metabolites formed by the three chosen organisms appear to be critical for controlling E. coli O157:H7gfp+.
Collapse
Affiliation(s)
- Maria E Karlsson
- Microbial Horticulture Division, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, PO Box 190, 234 22, Lomma, SE, Sweden.
| | - Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE- 22100, Lund, Sweden
| | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE- 22100, Lund, Sweden
| | - Beatrix W Alsanius
- Microbial Horticulture Division, Department of Biosystems and Technology, Swedish University of Agricultural Sciences, PO Box 190, 234 22, Lomma, SE, Sweden
| |
Collapse
|
8
|
Uhlig E, Elli G, Nurminen N, Oscarsson E, Canaviri-Paz P, Burri S, Rohrstock AM, Rahman M, Alsanius B, Molin G, Zeller KS, Håkansson Å. Comparative immunomodulatory effects in mice and in human dendritic cells of five bacterial strains selected for biocontrol of leafy green vegetables. Food Chem Toxicol 2022; 165:113064. [PMID: 35561874 DOI: 10.1016/j.fct.2022.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The market for ready-to eat vegetables is increasing, but unfortunately so do the numbers of food-borne illness outbreaks related to these products. A previous study has identified bacterial strains suitable for biocontrol of leafy green vegetables to reduce the exposure to pathogens in these products. As a tentative safety evaluation, five selected strains (Rhodococcus cerastii MR5x, Bacillus coagulans LMG P-32205, Bacillus coagulans LMG P-32206, Pseudomonas cedrina LMG P-32207 and Pseudomonas punonensis LMG P-32204) were individually compared for immunomodulating effects in mice and in human monocyte-derived dendritic cells (MoDCs). Mice receiving the two B. coagulans strains consistently resemble the immunological response of the normal control, and no, or low, cell activation and pro-inflammatory cytokine expression was observed in MoDCs exposed to B. coagulans strains. However, different responses were seen in the two models for the Gram-negative P. cedrina and the Gram-positive R. cerastii. Moreover, P. punonensis and B. coagulans increased the microbiota diversity in mice as seen by the Shannon-Wiener index. In conclusion, the two strains of B. coagulans showed an immunological response that indicate that they lack pathogenic abilities, thus encouraging further safety evaluation and showing great potential to be used as biocontrol agents on leafy green vegetables.
Collapse
Affiliation(s)
- Elisabeth Uhlig
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden.
| | - Giulia Elli
- Department of Immunotechnology, Lund University, Medicon Village Bldg 406, 223 81, Lund, Sweden
| | - Noora Nurminen
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Elin Oscarsson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pamela Canaviri-Paz
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Stina Burri
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Anne-Marie Rohrstock
- Department of Clinical Sciences, Surgery Research Unit, Faculty of Medicine, Lund University, Inga Marie Nilssons Gata 47, 205 022, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Surgery Research Unit, Faculty of Medicine, Lund University, Inga Marie Nilssons Gata 47, 205 022, Malmö, Sweden
| | - Beatrix Alsanius
- Department of Biosystems and Technology, Microbial Horticulture Laboratory, Swedish University of Agricultural Sciences, P.O. Box 103, SE-230 53, Alnarp, Sweden
| | - Göran Molin
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Åsa Håkansson
- Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|