1
|
Araújo JF, Fernandes JM, Madalena D, Gonçalves RFS, Vieira JM, Martins JT, Vicente AA, Pinheiro AC. Development of 3D-printed foods incorporating riboflavin-loaded whey protein isolate nanostructures: characterization and in vitro digestion. Food Funct 2025; 16:2124-2135. [PMID: 39976479 DOI: 10.1039/d4fo05102e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
3D printing has emerged as a groundbreaking technology, aiming to enhance sensory attributes and improving nutritional/functional aspects. Simultaneously, nano-delivery systems have emerged as an opportunity to protect bioactive compounds against degradation and improve their bioaccessibility. Therefore, a novel concept is underway, involving the 3D printing of perishable healthy foods previously fortified with bioactive compound-loaded nanostructures. As a model concept, whey protein isolate (WPI) nanostructures were associated with riboflavin with an efficiency of 59.2%. Carrot pastes with adequate printability, shape retention and rheological characteristics were formulated. Riboflavin-WPI loaded nanostructures were incorporated into carrot inks and submitted to a static in vitro digestion. There was a notable increase in riboflavin bioaccessibility (+23.1%), suggesting a synergistic interaction between WPI nanostructures and carrot matrix. These results may contribute to validating the use of WPI nanostructures as effective encapsulating systems allied with 3D food printing towards the development of functional foods with personalized structure and nutrition profile.
Collapse
Affiliation(s)
- João F Araújo
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
| | | | - Daniel Madalena
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
| | | | - Jorge M Vieira
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana T Martins
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Pinheiro
- CEB - Centre of Biological Engineering, University of Minho, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Guo Y, Wang J, Du L, Ma C, Xu Y, Yang X. Beyond Imitation: How Food Colloids Are Shaping the Next Generation of Biomimetic Foods. Gels 2025; 11:155. [PMID: 40136860 PMCID: PMC11941916 DOI: 10.3390/gels11030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
In the new global landscape of population, environmental, and energy sustainability, the manufacture of future food products that meet human nutritional and health needs is a major challenge. Biomimetic food, as a new type of food, has made significant progress in the use of plant proteins and other ingredients to mimic animal food, and it has also achieved important results in sensory and nutritional properties. In the study of biomimetic foods, food colloids play an irreplaceable role as the key framework for building food structures. In this paper, we first review the recent research progress on food colloids in the fields of biomimetic plant-based food, biomimetic animal-based food and 3D printed biomimetic food. Then, the mechanism of action, application effects, and quality improvement strategies of food colloids are deeply analyzed. Finally, the future research directions and application prospects are envisioned. This paper aims to give theoretical support and practical guidance for the development of biomimetic food through the above elaboration, to deal with the current problems in food development by means of the unique properties of food colloids, and to open up new ideas for the application of food colloids in future food innovation, and then to promote the further development of the field of biomimetic food.
Collapse
Affiliation(s)
- Yong Guo
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Jiacheng Wang
- Medical College, Yangzhou University, Yangzhou 225009, China;
| | - Lianxin Du
- Graduate School, Harbin Sport University, Harbin 150008, China;
| | - Chao Ma
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| | - Yan Xu
- College of Sports and Human Sciences, Harbin Sport University, Harbin 150008, China;
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China;
| |
Collapse
|
3
|
Guo J, Zhang M, Law CL, Luo Z. 3D printing technology for prepared dishes: printing characteristics, applications, challenges and prospects. Crit Rev Food Sci Nutr 2024; 64:11437-11453. [PMID: 37480290 DOI: 10.1080/10408398.2023.2238826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Prepared dishes are popular convenience foods that meet the needs of consumers who pursue delicious tastes while saving time and effort. As a new technology, food 3D printing (also known as food additive manufacturing technology) has great advantage in the production of personalized food. Applying food 3D printing technology in the production of prepared dishes provides the solution to microbial contamination, poor nutritional quality and product standardization. This review summarizes the problems faced by the prepared dishes industry in traditional food processing, and introduces the characteristics of prepared dishes and 3D printing technology. Food additives are suitable for 3D prepared dishes and novel 3D printing technologies are also included in this review. In addition, the challenges and possible solutions of the application of food 3D printing technology in the field of prepared dishes are summarized and explored. Food additives with advantages in heat stability, low temperature protection and bacteriostasis help to accelerate the application of 3D printing in prepared dishes industry. The combination of 3D printing technology with heat-assisted sources (microwave, laser) and non-heat-assisted sources (electrolysis, ultrasound) provides the possibility for the development of customized prepared dishes in the future, and also promotes more 3D food printing technologies for commercial use. It is noteworthy that these technologies are still at research stage, and there are challenges for the formulation design, the stability of printed ink storage, as well as implementation of customized nutrition for the elderly and children.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih, Malaysia
| | - Zhenjiang Luo
- R&D center, Haitong Ninghai Foods Co., Ltd, Ninghai, China
| |
Collapse
|
4
|
Chen K, Zhang M, Bhandari B, Deng D. 3D printed cinnamon essential oil/banana peel carbon dots loaded corn starch/gelatin bilayer film with enhanced functionality for food packaging application. Food Chem 2024; 448:139176. [PMID: 38574719 DOI: 10.1016/j.foodchem.2024.139176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Using 3D printing technology, a gelatin-polyvinyl alcohol‑carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, QLD, Australia
| | - Dewei Deng
- Zhengzhou Xuemailon Food Flavor Co. R & D center, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Pan Y, Sun Q, Liu Y, Wei S, Han Z, Zheng O, Ji H, Zhang B, Liu S. Investigation on 3D printing of shrimp surimi under different printing parameters and thermal processing conditions. Curr Res Food Sci 2024; 8:100745. [PMID: 38694555 PMCID: PMC11061261 DOI: 10.1016/j.crfs.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Improving the printing accuracy and stability of shrimp surimi and finding appropriate printing parameters and suitable thermal processing method can help to develop high value-added 3D printing products of shrimp surimi. It was found that in order to make the 3D printing products of shrimp surimi have higher printing adaptability (printing accuracy and printing stability reach more than 97%), by choosing nozzle diameter of 1.20 mm and setting the printing height of the nozzle to 2.00 mm, the layers of the printed products were better fused with each other, and the printing accuracy of the products could be greatly improved; there was no uneven discharge and filament breakage when the nozzle moved at the speed of 30 mm/s; and the products were internally compact and had good stability when the printing filling rate was 80%. In addition, the deformation rates of steamed, boiled and deep-fried shrimp surimi products were significantly higher than those of oven-baked and microwaved shrimp surimi products (P < 0.05). Microwave heating had a greater effect on the deformation and color of shrimp surimi products, and was not favored by the evaluators. In terms of deformation rate, sensory score, and textural characteristic, the oven-baked thermal processing method was selected to obtain higher sensory evaluation scores and lower deformation rates of shrimp surimi 3D printed products. In the future, DIY design can be carried out in 3D printing products of shrimp surimi to meet the needs of different groups of people for modern food.
Collapse
Affiliation(s)
- Yanmo Pan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
6
|
Wen Y, Che QT, Wang S, Park HJ, Kim HW. Elaboration of dimensional quality in 3D-printed food: Key factors in process steps. Compr Rev Food Sci Food Saf 2024; 23:e13267. [PMID: 38284586 DOI: 10.1111/1541-4337.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 01/30/2024]
Abstract
Three-dimensional (3D) printing has been applied to produce food products with intricate and fancy shapes. Dimensional quality, such as dimensional stability, surface smoothness, shape fidelity, and resolution, are essential for the attractive appearance of 3D-printed food. Various methods have been extensively studied and proposed to control the dimensional quality of printed foods, but few papers focused on comprehensively and deeply summarizing the key factors of the dimensional quality of printed products at each stage-before, during, and after printing-of the 3D printing process. Therefore, the effects of pretreatment, printing parameters and rheological properties, and cooking and storage on the dimensional quality of the printed foods are summarized, and solutions are also provided for improving the dimensional quality of the printed products at each step. Before printing, incorporating additives or applying physical, chemical, or biological pretreatments can improve the dimensional quality of carbohydrate-based, protein-based, or lipid-based printed food. During printing, controlling the printing parameters and modifying the rheological properties of inks can affect the shape of printed products. Furthermore, post-processing is essential for some printed foods. After printing, changing formulations, incorporating additives, and selecting post-processing methods and conditions may help achieve the desired shape of 3D-printed or 4D-printed products during cooking. Additives help in the storage stability of printed food. Finally, various opportunities have been proposed to regulate the dimensional properties of 3D-printed structures. This review provides detailed guidelines for researchers and users of 3D printers to produce various printed foods with the desired shapes and appearances.
Collapse
Affiliation(s)
- Yaxin Wen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Quang Tuan Che
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Hyun Jin Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyun Woo Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review. Foods 2022; 11:foods11244111. [PMID: 36553853 PMCID: PMC9777955 DOI: 10.3390/foods11244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing technology enables the personalization and on-demand production of edible products of individual specifications. Four-dimensional printing technology expands the application scope of 3D printing technology, which controllably changes the quality attributes of 3D printing products over time. The concept of 5D/6D printing technology is also gradually developing in the food field. However, the functional value of food printing technology remains largely unrealized on a commercial scale due to limitations of printability and printing efficiency. This review focuses on recent developments in breaking through these barriers. The key factors and improvement methods ranging from ink properties and printer design required for successful printing of personalized foods (including easy-to-swallow foods, specially shaped foods, and foods with controlled release of functional ingredients) are identified and discussed. Novel evaluation methods for printability and printing precision are outlined. Furthermore, the design of printing equipment to increase printing efficiency is discussed along with some suggestions for cost-effective commercial printing.
Collapse
|
8
|
Huang Y, Zhang M, Pattarapon P, Mujumdar AS. 4D
printing of mixed vegetable gel based on deformation and discoloration induced by acidification and dehydration. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiwen Huang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University Wuxi China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- International Joint Laboratory on Food Safety Jiangnan University Wuxi China
| | - Phuhongsung Pattarapon
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University Wuxi China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University Wuxi China
| | - Arun S. Mujumdar
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- Department of Bioresource Engineering, Macdonald Campus McGill University Ste. Anne de Bellevue Quebec Canada
| |
Collapse
|
9
|
Wu J, Zhang M, Devahastin S, Chen H. Improving
3D
printability of pumpkin pastes by addition of surimi. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghong Wu
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation Jiangnan University 214122 Wuxi Jiangsu China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring Jiangnan University 214122 Wuxi Jiangsu China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, 126 Pracha u‐tid Road, Tungkru 10140 Bangkok Thailand
| | - Huizhi Chen
- State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi Jiangsu China
| |
Collapse
|
10
|
Chen XH, Zhang M, Teng XX, Mujumdar AS. Internal structure design for improved shape fidelity and crispness of 3D printed pumpkin-based snacks after freeze-drying. Food Res Int 2022; 157:111220. [DOI: 10.1016/j.foodres.2022.111220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
11
|
Phuhongsung P, Zhang M, Devahastin S, Mujumdar AS. Defects in 3D/4D food printing and their possible solutions: A comprehensive review. Compr Rev Food Sci Food Saf 2022; 21:3455-3479. [PMID: 35678036 DOI: 10.1111/1541-4337.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
3D food printing has recently attracted significant attention, both from academic and industrial researchers, due to its ability to manufacture customized products in such terms as size, shape, texture, color, and nutrition to meet demands of individual consumers. 4D printing, which is a technique that allows evolution of various characteristics/properties of 3D printed objects over time through external stimulation, has also been gaining more attention. In order to produce defect-free printed objects via both 3D and 4D printing, it is necessary to first identify the causes of defects and then their mitigation strategies. Comprehensive review on these important issues is nevertheless missing. The purpose of this review is to investigate causes and characteristics of defects occurring during and/or after 3D food printing, with a focus on how different factors affect the printing accuracy. Various techniques that can potentially minimize or eliminate printing defects and produce high-quality 3D/4D printed food products without the need for time-consuming trial and error printing experiments are critically discussed. Guidelines to avoid defects to improve the efficiency of future 3D/4D printed food production are given.
Collapse
Affiliation(s)
- Pattarapon Phuhongsung
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Arun S Mujumdar
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioresource Engineering, McGill University, Quebec, Canada
| |
Collapse
|
12
|
Demei K, Zhang M, Phuhongsung P, Mujumdar AS. 3D food printing: Controlling characteristics and improving technological effect during food processing. Food Res Int 2022; 156:111120. [DOI: 10.1016/j.foodres.2022.111120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
|