1
|
Quiroga J, Vidal S, Siel D, Caruffo M, Valdés A, Cabrera G, Lapierre L, Sáenz L. Novel Proteoliposome-Based Vaccine against E. coli: A Potential New Tool for the Control of Bovine Mastitis. Animals (Basel) 2022; 12:ani12192533. [PMID: 36230275 PMCID: PMC9558995 DOI: 10.3390/ani12192533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Mastitis is a highly prevalent disease in dairy cattle, affecting animal welfare and generating economic losses for the dairy industry. Control measures for coliform mastitis are limited, due to the constant exposure of the teat to bacteria and the emergence of antimicrobial-resistant bacteria, making vaccination an important strategy for control of mastitis. However, currently available vaccines show limited efficacy, which could be attributed to inactivation processes that alter the antigenic preservation of the vaccines. The aim of this study was to assess the efficacy of a novel vaccine against mastitis using proteoliposomes obtained from E. coli in a murine model of coliform mastitis. We demonstrated that the proteoliposome vaccine was safe, immunogenic and effective against an experimental model of E. coli mastitis, decreasing bacterial count and tissue damage. This proteoliposome vaccine is a potential new tool for prevention of mastitis. Abstract Escherichia coli is an important causative agent of clinical mastitis in cattle. Current available vaccines have shown limited protection. We evaluated the efficacy of a novel vaccine based on bacterial proteoliposomes derived from an E. coli field strain. Female BALB/c mice were immunized subcutaneously with two doses of the vaccine, 3 weeks apart. Between days 5 and 8 after the first inoculation, the females were mated. At 5–8 days postpartum, the mice were intramammary challenged with the same E. coli strain. Two days after bacterial infection, mice were euthanized, and the mammary glands were examined and removed to evaluate the efficacy and safety of the vaccine as well as the immune response generated by the new formulation. The vaccinated mice showed mild clinical symptoms and a lower mammary bacterial load as compared to non-vaccinated animals. The vaccination induced an increase in levels of IgG, IgG1 and IgG2a against E. coli in blood and mammary glands that showed less inflammatory infiltration and tissue damage, as compared to the control group. In summary, the vaccine based on bacterial proteoliposomes is safe, immunogenic, and effective against E. coli, constituting a new potential tool for mastitis control.
Collapse
Affiliation(s)
- John Quiroga
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sonia Vidal
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Daniela Siel
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370035, Chile
| | - Mario Caruffo
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Andrea Valdés
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Gonzalo Cabrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Lissette Lapierre
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| | - Leonardo Sáenz
- Faculty of Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
- Correspondence: (L.L.); (L.S.); Tel.: +56-9229-785689 (L.S.)
| |
Collapse
|
2
|
Chadha J. In vitro effects of sub-inhibitory concentrations of amoxicillin on physiological responses and virulence determinants in a commensal strain of Escherichia coli. J Appl Microbiol 2021; 131:682-694. [PMID: 33387370 DOI: 10.1111/jam.14987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
AIMS The goal was to study the effects of sub-minimum inhibitory concentrations (sub-MICs) of amoxicillin (AMX) on various physiological responses and virulence determinants in a commensal strain of Escherichia coli. MATERIALS AND RESULTS The commensal strain was passaged under various sub-MICs of AMX and its effect on bacterial growth, motility, biofilm formation, expression of outer membrane proteins (OMPs) and cell adhesion was analysed. Bacterial growth was diminished at 1/2 and 1/4 MICs of AMX with significant reduction in growth rate. Using crystal violet (CV) assays and quantification of surface polysaccharides we observed strong biofilm formation, together with reduced swimming motility in E. coli at 1/2 MIC of AMX. Differential OMP expression upon AMX sub-MIC exposure coincided with enhanced cell adhesion to HT-29 cells in vitro. The results demonstrated that sub-MICs of AMX can stimulate unpredictable changes in commensal bacterial strains which can be a potent source for the propagation of antibiotic resistance. CONCLUSIONS The study reports that AMX at 1/2 MIC significantly compromised bacterial growth and swimming motility, alongside inducing biofilm formation. This was also accompanied by upregulation of a single OMP which subsequently increased cell adhesion capabilities in E. coli at 1/2 MIC, thereby enhancing its colonization and survival abilities within the gut microsphere. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time, the effects of AMX sub-MICs on a commensal E. coli strain were described. The results corroborate on how antibiotics can act as stimulatory molecules and determine the pathogenicity of commensal bacteria in vivo that can disseminate resistance to other intestinal pathogens or microbes.
Collapse
Affiliation(s)
- J Chadha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Li D, Qian X, Liu X, Sun Y, Ren J, Xue F, Liu Q, Tang F, Dai J. orf6 and orf10 in Prophage phiv142-3 Enhance the Iron-Acquisition Ability and Resistance of Avian Pathogenic Escherichia coli Strain DE142 to Serum. Front Vet Sci 2020; 7:588708. [PMID: 33324701 PMCID: PMC7724020 DOI: 10.3389/fvets.2020.588708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), is the causative agent of avian colibacillosis, a disease that causes huge economic losses in the poultry industry and is characterized by infection through respiratory tract colonization followed by bacteraemia. A previous study in our lab demonstrated that phiv142-3 enhanced the survival ability of APEC strain DE142 in chickens serum. However, the mechanism of this affect has not been completely revealed. Here, we analyzed the transcriptional level of the prophage phiv142-3 region in DE142 when grown in chicken serum. Several upregulated genes attracted our attention, and a series of mutants were constructed. Deletion of orf6 or orf10 from phiv142-3 led to lower yields compared with WT after cultivation in serum for 10 h (P < 0.05). Furthermore, avian infection assays showed that compared with WT, the bacterial loads in blood and heart tissue of chickens challenged with DE142Δorf6 were decreased to 3.9 and 13%, while the bacterial burden in blood and heart from chickens infected with DE142Δorf10 was decreased to 7.2 and 8%, respectively (P < 0.05). DE142Δorf6 showed an obviously attenuated growth rate in the logarithmic phase when cultured in iron-deficient medium, and the transcription level of the iutA gene decreased to 43% (P < 0.05). The bactericidal assays showed that the survival of the mutant DE142Δorf10 was ~60% compared with WT in 50% chicken serum. The K1 capsule-related genes (kpsF, kpsE, kpsC, and kpsM) were down-regulated nearly 2-fold in DE142Δorf10 (P < 0.01). Together, these results suggested that orf6 affects growth by contributing to the uptake ability of iron, while orf10 increases resistance to serum by upregulating K1 capsule-related genes.
Collapse
Affiliation(s)
- Dezhi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Qian
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyuan Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fang Tang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Alterations of growth rate and gene expression levels of UPEC by antibiotics at sub-MIC. Folia Microbiol (Praha) 2018; 63:451-457. [PMID: 29327292 DOI: 10.1007/s12223-017-0582-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
The host is the main environment for bacteria, and they also expose to many antibiotics during the treatment of infectious diseases in host body. In this study, it was aimed to investigate possible changes in growth rate and expression levels of three virulence genes (foc/foc, cnf1, and usp) in a uropathogenic E. coli standard strain within the presence of ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole. The UPEC C7 strain was grown on tryptic soy broth-TSB (control), TSB + ciprofloxacin, TSB + nitrofurantoin, and TSB + trimethoprim-sulfamethoxazole for determination of both growth rate and gene expression level. Antibiotics were added according to their sub-minimal inhibition concentrations. E-test was used to determine MIC values of antibiotics. Growth changes were measured in absorbance 600 nm during 24-h period. Total RNA isolations were performed after incubation for 24 h at 37 °C. Gene expression levels were determined by quantitative PCR. Tukey's post hoc test was used for statistical analysis. According to absorbance values, it has been shown that only ciprofloxacin and trimethoprim-sulfamethoxazole have lead significant decrease on growth rate. We also detected statistically significant differences in each gene expression levels for all antibiotics via relative quantification analysis. Fold changes in gene expression was found 0.65, 1.42, 0.23 for foc/foc gene; 0.01, 0.01, 2.84 for cnf1 gene; and 0.1, 0.01, 0.01 for usp gene in the presence of ciprofloxacin, nitrofurantoin, and trimethoprim/sulfamethoxazole, respectively. This investigation has shown that antibiotics can play a role as an environmental factor which may determine the pathogenicity of bacteria in vivo.
Collapse
|
5
|
Kwiecińska-Piróg J, Bogiel T, Gospodarek E. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods. J Antibiot (Tokyo) 2013; 66:593-7. [PMID: 23801185 DOI: 10.1038/ja.2013.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 11/09/2022]
Abstract
Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.
Collapse
Affiliation(s)
- Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Collegium Medicum, Bydgoszcz, Poland
| | | | | |
Collapse
|
6
|
Wojnicz D, Tichaczek-Goska D. Effect of sub-minimum inhibitory concentrations of ciprofloxacin, amikacin and colistin on biofilm formation and virulence factors of Escherichia coli planktonic and biofilm forms isolated from human urine. Braz J Microbiol 2013; 44:259-65. [PMID: 24159313 PMCID: PMC3804207 DOI: 10.1590/s1517-83822013000100037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/02/2012] [Indexed: 10/31/2022] Open
Abstract
The aim of this study was to determine the effect of subinhibitory concentrations (sub-MICs) of ciprofloxacin, amikacin and colistin on biofilm formation, motility, curli fimbriae formation by planktonic and biofilm cells of E. coli strains isolated from the urine of patients with various urinary system infections. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. Bacterial enumeration was used to assess the viability of bacteria in the biofilm. Curli expression was determined by using YESCA agar supplemented with congo red. Using motility agar the ability to move was examined. All the antibiotics used at sub-MICs reduced biofilm formation in vitro, decreased the survival of bacteria, but had no effect on the motility of planktonic as well as biofilm cells. The inhibitory effect of sub-MICs of antimicrobial agents on curli fimbriae formation was dependent on the form in which the bacteria occurred, incubation time and antibiotic used. Our results clearly show that all the three antibiotics tested reduce biofilm production, interfere with curli expression but do not influence motility. This study suggests that ciprofloxacin, amikacin and colistin may be useful in the treatment of biofilm-associated infections caused by E. coli strains.
Collapse
Affiliation(s)
- Dorota Wojnicz
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
7
|
Eumkeb G, Siriwong S, Thumanu K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 117:247-53. [PMID: 23159507 DOI: 10.1016/j.jphotobiol.2012.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/17/2012] [Accepted: 10/13/2012] [Indexed: 11/26/2022]
Abstract
The purpose of this research was to investigate whether luteolin has antibacterial and synergistic activity against amoxicillin-resistant Escherichia coli (AREC) when use singly and in combination with amoxicillin. The primarily mode of action is also investigated. The susceptibility assay (minimum inhibitory concentration and checkerboard determination) was carried out by the broth macrodilution method's in Müeller-Hinton medium. MIC and checkerboard determination were carried out after 20 h of incubation at 35°C by observing turbidity. The MICs of amoxicillin and luteolin against all AREC strains were >1000 and ≥ 200 μg/ml respectively. Synergistic activity were observed on amoxicillin plus luteolin against these strains. Viable count of this combination showed synergistic effect by reducing AREC cell numbers. The results indicated that this combination altered both outer and inner membrane permeabilisation. Enzyme assay showed that luteolin had an inhibitory activity against penicillinase. Fourier Transform-Infrared (FT-IR) spectroscopy exhibited that luteolin alone and when combined with amoxicillin caused increase in fatty acid and nucleic acid, but decrease in amide I of proteins in bacterial envelops compared with control. These results indicated that luteolin has the potential to reverse bacterial resistance to amoxicillin in AREC and may operate via three mechanisms: inhibition of proteins and peptidoglycan synthesis, inhibition of the activity of certain extended-spectrum β-lactamases and alteration of outer and inner membrane permeability. These findings offer the potential to develop a new generation of phytopharmaceuticals to treat AREC.
Collapse
Affiliation(s)
- G Eumkeb
- School of Pharmacology, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhonratchasima 30000, Thailand.
| | | | | |
Collapse
|
8
|
Chen Z, Qian S, Chen J, Cai J, Wu S, Cai Z. Protein-templated gold nanoclusters based sensor for off–on detection of ciprofloxacin with a high selectivity. Talanta 2012; 94:240-5. [DOI: 10.1016/j.talanta.2012.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
9
|
Hu YJ, Ou-Yang Y, Zhang Y, Liu Y. Affinity and Specificity of Ciprofloxacin-Bovine Serum Albumin Interactions: Spectroscopic Approach. Protein J 2010; 29:234-41. [DOI: 10.1007/s10930-010-9244-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|