Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, Johns L, Holbrook MR. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model.
NPJ Vaccines 2017;
2:21. [PMID:
29263876 PMCID:
PMC5627259 DOI:
10.1038/s41541-017-0023-7]
[Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
Nipah virus is a highly lethal zoonotic paramyxovirus that was first recognized in Malaysia during an outbreak in 1998. During this outbreak, Nipah virus infection caused a severe febrile neurological disease in humans who worked in close contact with infected pigs. The case fatality rate in humans was approximately 40%. Since 2001, NiV has re-emerged in Bangladesh and India where fruit bats (Pteropus spp.) have been identified as the principal reservoir of the virus. Transmission to humans is considered to be bat-to-human via food contaminated with bat saliva, or consumption of contaminated raw date palm sap, although human-to-human transmission of Nipah virus has also been documented. To date, there are no approved prophylactic options or treatment for NiV infection. In this study, we produced mammalian cell-derived native Nipah virus-like particles composed of Nipah virus G, F and M proteins for use as a novel Nipah virus vaccine. Previous studies demonstrated that the virus-like particles were structurally similar to authentic virus, functionally assembled and immunoreactive. In the studies reported here, purified Nipah virus-like particles were utilized either alone or with adjuvant to vaccinate golden Syrian hamsters with either three-dose or one-dose vaccination regimens followed by virus challenge. These studies found that Nipah virus-like particle immunization of hamsters induced significant neutralizing antibody titers and provided complete protection to all vaccinated animals following either single or three-dose vaccine schedules. These studies prove the feasibility of a virus-like particle-based vaccine for protection against Nipah virus infection.
Collapse