1
|
Rodríguez-Goncer I, Ruiz-Arabi E, Herrera S, Sabé N, Los-Arcos I, Silva JT, Pérez-Nadales E, Machuca I, Álvarez R, Valerio M, Castón JJ, Aguilera V, Bodro M, Cano Á, Cantón R, Carmona P, Carratalà J, Cordero E, Cruzado JM, Fariñas MC, Fernández-Ruiz M, Fondevila C, Fortún J, García-Cosío MD, Gutiérrez-Dalmau A, Iturbe D, Justo I, Len O, López-Medrano F, López Oliva MO, Martín-Dávila P, Martínez-Martínez L, Mazuecos A, Mirabet S, Muñoz P, Oliver A, Pérez-Sáez MJ, Rodríguez-Gómez J, San-Juan R, Sánchez-Céspedes J, Solé A, Vidal Verdú E, Villa J, Torre-Cisneros J, Aguado JM. Management of multidrug-resistant gram-negative bacilli infections in adult solid organ transplant recipients: GESITRA-IC/SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2025; 39:100937. [PMID: 40414085 DOI: 10.1016/j.trre.2025.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Multidrug-resistant (MDR) Gram-negative bacilli (GNB) infections in solid organ transplant (SOT) recipients continue to pose a significant threat despite advances in diagnostics and treatments. The last international consensus guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the management of MDR GNB in adult solid organ transplant (SOT) recipients were published in 2018, underscoring the need for an update to incorporate recent advances, particularly the availability of new drugs that may improve the current standard of care. A working group consisting of members from the Study Group of Infection in Transplantation and Immunocompromised Hosts (GESITRA-IC) of SEIMC, the Center for Biomedical Research Network in Infectious Diseases (CIBERINFEC) and the Spanish Society of Transplantation (SET) developed consensus-based recommendations for managing MDR GNB infections during the transplant procedure. Recommendations were categorized based on evidence quality and strength, utilizing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| | - Elisa Ruiz-Arabi
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Sabina Herrera
- Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Nuria Sabé
- Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Ibai Los-Arcos
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - José Tiago Silva
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain
| | - Elena Pérez-Nadales
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| | - Isabel Machuca
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Rocío Álvarez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Maricela Valerio
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Juan José Castón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Victoria Aguilera
- Liver Transplantation and Hepatology Unit, Hospital Universitari i Politécnic La Fe, Valencia, Spain; Center for Biomedical Research in Liver and Digestive Diseases (CIBERehd). Instituto de Salud Carlos III, Spain
| | - Marta Bodro
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department. Transplant Coordination Service. Hospital Clínic, University of Barcelona, August Pi i Sunyer Biomedical Research Institute Barcelona (IDIBAPS), Spain
| | - Ángela Cano
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jordi Carratalà
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Bellvitge University Hospital, Bellvitge. Biomedical Research Institute (IDIBELL), University of Barcelona, L'Hospitalet de llobregat, Barcelona, Spain
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain; Department of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Josep María Cruzado
- Nephrology Department, Bellvitge Hospital. University of Barcelona. Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - María Carmen Fariñas
- Infectious Diseases Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Constantino Fondevila
- General and Digestive Surgery Department, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Jesús Fortún
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - M Dolores García-Cosío
- Cardiology Department. University Hospital "12 de Octubre". Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain
| | - Alex Gutiérrez-Dalmau
- Kidney Transplant Unit, Nephrology Service, Miguel Servet University Hospital, Aragón Institute for Health Research IIS-Aragón, Zaragoza, Spain
| | - David Iturbe
- Respiratory Medicine Department, Hospital Universitario Marqués de Valdecilla. Instituto de Investigación Marqués de Valdecilla (IDIVAL). Universidad de Cantabria. Santander, Cantabria, Spain
| | - Iago Justo
- Unit of Hepato-Pancreato-Biliary Surgery and Abdominal Organ Transplantation, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12). Department of Surgery, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Oscar Len
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Pilar Martín-Dávila
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Infectious Diseases Department, Ramón y Cajal University Hospital. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luis Martínez-Martínez
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain; Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain; Microbiology Unit, Reina Sofia University Hospital, Cordoba, Spain
| | - Auxiliadora Mazuecos
- Kidney Transplant Unit. Department of Nephrology, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Sonia Mirabet
- Center for Biomedical Research in Cardiovascular Diseases (CIBERCV), Spain; Heart Transplantation Unit, Cardiology Department, Hospital Sant Pau, Barcelona, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department. Hospital Universitario Gregorio Marañón. Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spain
| | - Antonio Oliver
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Microbiology Department, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - María José Pérez-Sáez
- Kidney Transplant Unit, Nephrology Department, Hospital del Mar. Hospital del Mar Research Institute. RICORS 2040-Renal, Barcelona, Spain
| | | | - Rafael San-Juan
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Clinical Unit of Infectious Diseases, Microbiology and Parasitology. Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Amparo Solé
- Lung Transplant Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Elisa Vidal Verdú
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain
| | - Jennifer Villa
- School of Medicine, Universidad Complutense, Madrid, Spain; Microbiology Department, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain
| | - Julián Torre-Cisneros
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; Service of Infectious Diseases, Reina Sofia University Hospital, Spain; Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Unit of Infectious Diseases, University Hospital "12 de Octubre", Biomedical Research Institute Hospital "12 de Octubre" (i+12), Madrid, Spain; Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Spain; School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
2
|
Hioki Y, Hashimoto T, Hiramatsu K, Komiya K. The Possibility of Ceftolozane/Tazobactam-Resistant Pseudomonas aeruginosa Emergence After Two Days of Antibiotic Therapy: A Case Report. Cureus 2025; 17:e79207. [PMID: 40115721 PMCID: PMC11924138 DOI: 10.7759/cureus.79207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Although antibiotic use is known to induce antimicrobial resistance, the duration of exposure necessary for resistance development remains uncertain. In this case, a patient was initially treated with tazobactam/piperacillin (TAZ/PIPC) for bacterial pneumonia. When the treatment proved ineffective, the regimen was switched to tazobactam/ceftolozane (TAZ/CTLZ) after confirming that the Pseudomonas aeruginosa isolated at admission was susceptible to TAZ/CTLZ. Although the patient's symptoms initially improved, pneumonia exacerbation occurred 10 days after the initiation of TAZ/CTLZ. Drug susceptibility testing in P. aeruginosa isolated on the second day of TAZ/CTLZ treatment revealed resistance to the antibiotics. Genetic analysis using the polymerase chain reaction (PCR)-based open reading frame typing method demonstrated that the P. aeruginosa strains isolated before and after TAZ/CTLZ treatment were genetically identical. This case highlights the possibility of TAZ/CTLZ-resistant P. aeruginosa emerging after only two days of antibiotic exposure.
Collapse
Affiliation(s)
- Yoshihide Hioki
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, JPN
| | - Takehiro Hashimoto
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, JPN
| | - Kazufumi Hiramatsu
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, JPN
| | - Kosaku Komiya
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, JPN
| |
Collapse
|
3
|
Viscardi S, Topola E, Sobieraj J, Duda-Madej A. Novel Siderophore Cephalosporin and Combinations of Cephalosporins with β-Lactamase Inhibitors as an Advancement in Treatment of Ventilator-Associated Pneumonia. Antibiotics (Basel) 2024; 13:445. [PMID: 38786173 PMCID: PMC11117516 DOI: 10.3390/antibiotics13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In an era of increasing antibiotic resistance among pathogens, the treatment options for infectious diseases are diminishing. One of the clinical groups especially vulnerable to this threat are patients who are hospitalized in intensive care units due to ventilator-associated pneumonia caused by multidrug-resistant/extensively drug-resistant Gram-negative bacteria. In order to prevent the exhaustion of therapeutic options for this life-threatening condition, there is an urgent need for new pharmaceuticals. Novel β-lactam antibiotics, including combinations of cephalosporins with β-lactamase inhibitors, are proposed as a solution to this escalating problem. The unique mechanism of action, distinctive to this new group of siderophore cephalosporins, can overcome multidrug resistance, which is raising high expectations. In this review, we present the summarized results of clinical trials, in vitro studies, and case studies on the therapeutic efficacy of cefoperazone-sulbactam, ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol in the treatment of ventilator-associated pneumonia. We demonstrate that treatment strategies based on siderophore cephalosporins and combinations of β-lactams with β-lactamases inhibitors show comparable or higher clinical efficacy than those used with classic pharmaceuticals, like carbapenems, colistin, or tigecycline, and are often associated with a lower risk of adverse events.
Collapse
Affiliation(s)
- Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Jakub Sobieraj
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
4
|
Shuto H, Komiya K, Tone K, Matsumoto H, Moro H, Shime N. Carbapenem vs. non-carbapenem antibiotics for ventilator-associated pneumonia: A systematic review with meta-analysis. Respir Investig 2024; 62:200-205. [PMID: 38190794 DOI: 10.1016/j.resinv.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Carbapenem is recommended as one of the first-line regimens for ventilator-associated pneumonia (VAP), but no recent systematic review has fully investigated its efficacy. This systematic review aims to evaluate the efficacy of carbapenem compared with non-carbapenem for VAP treatment. METHODS We performed a systematic review and meta-analysis of studies comparing the efficacy and the safety between carbapenem and non-carbapenem with activity to Pseudomonas aeruginosa in the treatment for VAP. The main outcome was mortality, and the additional outcomes were the clinical cure of pneumonia, length of intensive care unit stay, recurrence, adverse effects, and the development of resistant bacteria. This study was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Of the initial 1,730 publications, 9 randomized control trials were enrolled. In the meta-analysis, no difference was observed between the carbapenem and non-carbapenem regimens in improving mortality (odds ratio, 0.83; 95 % confidence interval (CI) 0.67-1.02). While the carbapenem regimen was superior to the non-carbapenem regimen in studies reporting the resolution of pneumonia (odds ratio, 1.09; 95 % CI 1.01-1.17), the effectiveness of carbapenem treatment was not evident in studies assessing the other outcomes. CONCLUSIONS Carbapenem might have no superiority in survival when treating VAP. Moreover, non-carbapenem antibiotics with activities to P. aeruginosa have a potential option to avoid inducing carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Hisayuki Shuto
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan; Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan.
| | - Kazuya Tone
- Department of Respiratory Medicine, The Jikei University School of Medicine Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa, Chiba, 277-8567, Japan
| | - Hiroyuki Matsumoto
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hiroshi Moro
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Science, Niigata, Japan, 951-8510, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Farrington N, Dubey V, Johnson A, Horner I, Stevenson A, Unsworth J, Jimenez-Valverde A, Schwartz J, Das S, Hope W, Darlow CA. Molecular pharmacodynamics of meropenem for nosocomial pneumonia caused by Pseudomonas aeruginosa. mBio 2024; 15:e0316523. [PMID: 38236031 PMCID: PMC10865990 DOI: 10.1128/mbio.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is a leading cause of morbidity and mortality, commonly caused by Pseudomonas aeruginosa. Meropenem is a commonly used therapeutic agent, although emergent resistance occurs during treatment. We used a rabbit HAP infection model to assess the bacterial kill and resistance pharmacodynamics of meropenem. Meropenem 5 mg/kg administered subcutaneously (s.c.) q8h (±amikacin 3.33-5 mg/kg q8h administered intravenously[i.v.]) or meropenem 30 mg/kg s.c. q8h regimens were assessed in a rabbit lung infection model infected with P. aeruginosa, with bacterial quantification and phenotypic/genotypic characterization of emergent resistant isolates. The pharmacokinetic/pharmacodynamic output was fitted to a mathematical model, and human-like regimens were simulated to predict outcomes in a clinical context. Increasing meropenem monotherapy demonstrated a dose-response effect to bacterial kill and an inverted U relationship with emergent resistance. The addition of amikacin to meropenem suppressed the emergence of resistance. A network of porin loss, efflux upregulation, and increased expression of AmpC was identified as the mechanism of this emergent resistance. A bridging simulation using human pharmacokinetics identified meropenem 2 g i.v. q8h as the licensed clinical regimen most likely to suppress resistance. We demonstrate an innovative experimental platform to phenotypically and genotypically characterize bacterial emergent resistance pharmacodynamics in HAP. For meropenem, we have demonstrated the risk of resistance emergence during therapy and identified two mitigating strategies: (i) regimen intensification and (ii) use of combination therapy. This platform will allow pre-clinical assessment of emergent resistance risk during treatment of HAP for other antimicrobials, to allow construction of clinical regimens that mitigate this risk.IMPORTANCEThe emergence of antimicrobial resistance (AMR) during antimicrobial treatment for hospital-acquired pneumonia (HAP) is a well-documented problem (particularly in pneumonia caused by Pseudomonas aeruginosa) that contributes to the wider global antimicrobial resistance crisis. During drug development, regimens are typically determined by their sufficiency to achieve bactericidal effect. Prevention of the emergence of resistance pharmacodynamics is usually not characterized or used to determine the regimen. The innovative experimental platform described here allows characterization of the emergence of AMR during the treatment of HAP and the development of strategies to mitigate this. We have demonstrated this specifically for meropenem-a broad-spectrum antibiotic commonly used to treat HAP. We have characterized the antimicrobial resistance pharmacodynamics of meropenem when used to treat HAP, caused by initially meropenem-susceptible P. aeruginosa, phenotypically and genotypically. We have also shown that intensifying the regimen and using combination therapy are both strategies that can both treat HAP and suppress the emergence of resistance.
Collapse
Affiliation(s)
- Nicola Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Vineet Dubey
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Iona Horner
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Stevenson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | | | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Christopher A. Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| |
Collapse
|
6
|
Timsit JF, Mootien J, Akrich B, Bourge X, Brassac I, Castan B, Mackosso C, Tavares LM, Ruiz F, Boutoille D, Ruimy R. Ceftolozane/Tazobactam for the Treatment of Complicated Infections in Hospital Settings-A French Real-world Study. Open Forum Infect Dis 2024; 11:ofae037. [PMID: 38390458 PMCID: PMC10883286 DOI: 10.1093/ofid/ofae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Indexed: 02/24/2024] Open
Abstract
Background This study describes the conditions of use of ceftolozane/tazobactam (C/T) and associated outcomes in French hospital settings. Methods This was a prospective, multicenter, French observational study. Patients who received at least 1 dose of C/T were included and followed up as per routine clinical practice, until stop of C/T. Results A total of 260 patients were enrolled between October 2018 and December 2019 in 30 centers across France. Of these, 177 (68.0%) received C/T as per indication of usage following the results of the antibiogram (documented cases). Among documented patients, the mean age was 61.8 years, 73.4% were males, and 93.8% presented with multidrug-resistant (MDR) bacteria at inclusion. C/T was most frequently prescribed for pneumonia (48.6%), bacteremia (14.7%), complicated intra-abdominal infections (13.0%), or complicated urinary tract infections (9.6%). Pseudomonas aeruginosa was the species most frequently isolated with 212 strains from 155 patients, and 96.2% of these strains were susceptible to C/T. The median duration of C/T treatment was 16.1 days (1-115, n = 176). Complete or partial cure was achieved in 71.7% of patients, C/T was discontinued upon adaptation to microbiology results in 11.3% of patients for the following reasons: treatment failure in 2.8%, death in 4.0%, adverse events in 1.7%, and other in 8.5%. Conclusions This is the first prospective observational study of C/T utilization in a health care setting enrolling many patients in France. C/T demonstrated a high rate of clinical effectiveness in MDR infections, confirming it as an effective treatment option for complicated infections in a high-risk population.
Collapse
Affiliation(s)
| | - Joy Mootien
- Unité Fonctionnelle de Conseil en Antibiothérapie, CHU Mulhouse, Mulhouse, France
| | | | | | | | - Bernard Castan
- Service de Médecine Interne et Maladies Infectieuses, CH Périgueux, Périgueux, France
| | | | | | | | - David Boutoille
- Service des Maladies Infectieuses, Nantes Université, CIC 1413, Inserm, Nantes, France
| | | |
Collapse
|
7
|
Martin-Loeches I, Bruno CJ, DeRyke CA. Perspectives on the use of ceftolozane/tazobactam: a review of clinical trial data and real-world evidence. Future Microbiol 2024; 19:465-480. [PMID: 38252038 PMCID: PMC11216532 DOI: 10.2217/fmb-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) are common healthcare-associated infections linked to high morbidity and mortality. Gram-negative pathogens, such as Pseudomonas aeruginosa, exhibit multidrug resistance and are recognized as major public health concerns, particularly among critically ill patients with HABP/VABP. Ceftolozane/tazobactam is a novel combination antibacterial agent comprising ceftolozane (a potent antipseudomonal cephalosporin) and tazobactam (a β-lactamase inhibitor). Phase III trials have demonstrated non-inferiority of ceftolozane/tazobactam to comparators, leading to the approval of ceftolozane/tazobactam for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and nosocomial pneumonia. In this article, we review the clinical trial evidence and key real-world effectiveness data of ceftolozane/tazobactam for the treatment of serious healthcare-associated Gram-negative infections, focusing on patients with HABP/VABP.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, D08 NHY1, Ireland
| | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review focuses on the management of severe Pseudomonas aeruginosa infections in critically ill patients. RECENT FINDINGS Pseudomonas aeruginosa is the most common pathogen in intensive care; the main related infections are nosocomial pneumonias, then bloodstream infections. Antimicrobial resistance is common; despite new antibiotics, it is associated with increased mortality, and can lead to a therapeutic deadlock. SUMMARY Carbapenem resistance in difficult-to-treat P. aeruginosa (DTR-PA) strains is primarily mediated by loss or reduction of the OprD porin, overexpression of the cephalosporinase AmpC, and/or overexpression of efflux pumps. However, the role of carbapenemases, particularly metallo-β-lactamases, has become more important. Ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam are useful against DTR phenotypes (noncarbapenemase producers). Other new agents, such as aztreonam-ceftazidime-avibactam or cefiderocol, or colistin, might be effective for carbapenemase producers. Regarding nonantibiotic agents, only phages might be considered, pending further clinical trials. Combination therapy does not reduce mortality, but may be necessary for empirical treatment. Short-term treatment of severe P. aeruginosa infections should be preferred when it is expected that the clinical situation resolves rapidly.
Collapse
Affiliation(s)
- Hermann Do Rego
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
- IAME Université Paris Cité, UMR 1137, Paris
- Meta-network PROMISE, Inserm, Limoges Universit, Limoges University hospital (CHU), UMR1092, Limoges, France
| |
Collapse
|
9
|
Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, Roux D, Zahar JR. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann Intensive Care 2023; 13:65. [PMID: 37462830 DOI: 10.1186/s13613-023-01153-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Healthcare-associated infections involving Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) phenotype are associated with impaired patient-centered outcomes and poses daily therapeutic challenges in most of intensive care units worldwide. Over the recent years, four innovative β-lactam/β-lactamase inhibitor (BL/BLI) combinations (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam) and a new siderophore cephalosporin (cefiderocol) have been approved for the treatment of certain DTR-GNB infections. The literature addressing their microbiological spectrum, pharmacokinetics, clinical efficacy and safety was exhaustively audited by our group to support the recent guidelines of the French Intensive Care Society on their utilization in critically ill patients. This narrative review summarizes the available evidence and unanswered questions on these issues. METHODS A systematic search for English-language publications in PUBMED and the Cochrane Library database from inception to November 15, 2022. RESULTS These drugs have demonstrated relevant clinical success rates and a reduced renal risk in most of severe infections for whom polymyxin- and/or aminoglycoside-based regimen were historically used as last-resort strategies-namely, ceftazidime-avibactam for infections due to Klebsiella pneumoniae carbapenemase (KPC)- or OXA-48-like-producing Enterobacterales, meropenem-vaborbactam for KPC-producing Enterobacterales, ceftazidime-avibactam/aztreonam combination or cefiderocol for metallo-β-lactamase (MBL)-producing Enterobacterales, and ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam for non-MBL-producing DTR Pseudomonas aeruginosa. However, limited clinical evidence exists in critically ill patients. Extended-infusion scheme (except for imipenem-relebactam) may be indicated for DTR-GNB with high minimal inhibitory concentrations and/or in case of augmented renal clearance. The potential benefit of combining these agents with other antimicrobials remains under-investigated, notably for the most severe presentations. Other important knowledge gaps include pharmacokinetic information in particular situations (e.g., pneumonia, other deep-seated infections, and renal replacement therapy), the hazard of treatment-emergent resistance and possible preventive measures, the safety of high-dose regimen, the potential usefulness of rapid molecular diagnostic tools to rationalize their empirical utilization, and optimal treatment durations. Comparative clinical, ecological, and medico-economic data are needed for infections in whom two or more of these agents exhibit in vitro activity against the causative pathogen. CONCLUSIONS New BL/BLI combinations and cefiderocol represent long-awaited options for improving the management of DTR-GNB infections. Several research axes must be explored to better define the positioning and appropriate administration scheme of these drugs in critically ill patients.
Collapse
Affiliation(s)
- François Barbier
- Médecine Intensive Réanimation, Centre Hospitalier Régional d'Orléans, 14, Avenue de l'Hôpital, 45000, Orléans, France.
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France.
| | - Sami Hraiech
- Médecine Intensive Réanimation, Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, and Centre d'Études et de Recherche sur les Services de Santé et la Qualité de Vie, Université Aix-Marseille, Marseille, France
| | - Solen Kernéis
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Nathanaël Veluppillai
- Équipe de Prévention du Risque Infectieux, Hôpital Bichat-Claude Bernard, Assistance Publique - Hôpitaux de Paris, and INSERM/IAME, Université Paris Cité, Paris, France
| | - Olivier Pajot
- Réanimation Polyvalente, Hôpital Victor Dupouy, Argenteuil, France
| | - Julien Poissy
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Lille, Inserm U1285, Université de Lille, and CNRS/UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Damien Roux
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- DMU ESPRIT, Médecine Intensive Réanimation, Hôpital Louis Mourier, Assistance Publique - Hôpitaux de Paris, Colombes, and INSERM/CNRS, Institut Necker Enfants Malades, Université Paris Cité, Paris, France
| | - Jean-Ralph Zahar
- Institut Maurice Rapin, Hôpital Henri Mondor, Créteil, France
- Département de Microbiologie Clinique, Hôpital Avicenne, Assistance Publique - Hôpitaux de Paris, Bobigny and INSERM/IAME, Université de Paris, Paris, France
| |
Collapse
|
10
|
Dequin PF, Aubron C, Faure H, Garot D, Guillot M, Hamzaoui O, Lemiale V, Maizel J, Mootien JY, Osman D, Simon M, Thille AW, Vinsonneau C, Kuteifan K. The place of new antibiotics for Gram-negative bacterial infections in intensive care: report of a consensus conference. Ann Intensive Care 2023; 13:59. [PMID: 37400647 DOI: 10.1186/s13613-023-01155-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
INTRODUCTION New beta-lactams, associated or not with beta-lactamase inhibitors (NBs/BIs), can respond to the spread of carbapenemase-producing enterobacteriales and nonfermenting carbapenem-resistant bacteria. The risk of emergence of resistance to these NBs/BIs makes guidelines necessary. The SRLF organized a consensus conference in December 2022. METHODS An ad hoc committee without any conflict of interest (CoI) with the subject identified the molecules (ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, meropenem-vaborbactam and cefiderocol); defined 6 generic questions; drew up a list of subquestions according to the population, intervention, comparison and outcomes (PICO) model; and reviewed the literature using predefined keywords. The quality of the data was assessed using the GRADE methodology. Seven experts in the field proposed their own answers to the questions in a public session and answered questions from the jury (a panel of 10 critical-care physicians without any CoI) and the public. The jury then met alone for 48 h to write its recommendations. Due to the frequent lack of powerful studies that have used clinically important criteria of judgment, the recommendations were formulated as expert opinions as often as necessary. RESULTS The jury provided 17 statements answering 6 questions: (1) Is there a place in the ICU for the probabilistic use of new NBs/IBs active against Gram-negative bacteria? (2) In the context of documented infections with sensitivity to several of these molecules, are there pharmacokinetic, pharmacodynamic, ecological or medico-economic elements for prioritization? (3) What are the possible combinations with these molecules and in what context? (4) Should we integrate these new molecules into a carbapenem-sparing strategy? (5) What pharmacokinetic and pharmacodynamic data are available to optimize their mode of administration in critically ill patients? (6) What are the dosage adaptations in cases of renal insufficiency, hepatocellular insufficiency or obesity? CONCLUSION These recommendations should optimize the use of NBs/BIs in ICU patients.
Collapse
Affiliation(s)
- Pierre-François Dequin
- Inserm UMR 1100, Centre d'Etudes des Pathologies Respiratoires, Université, Tours, France.
- Médecine Intensive Réanimation, Hôpital Bretonneau, 37044 Tours cedex 9, Tours, CHU, France.
| | - Cécile Aubron
- Médecine Intensive Réanimation CHU de Brest, Université de Bretagne Occidentale, Brest, France
| | - Henri Faure
- Médecine Intensive Réanimation, Centre Hospitalier Intercommunal Robert Ballanger, Aulnay Sous-Bois, France
| | - Denis Garot
- Médecine Intensive Réanimation, Hôpital Bretonneau, 37044 Tours cedex 9, Tours, CHU, France
| | - Max Guillot
- Médecine Intensive Réanimation CHU, Hôpital de Hautepierre, Strasbourg, France
| | - Olfa Hamzaoui
- Médecine Intensive Réanimation CHU de Reims, Reims, France
| | - Virginie Lemiale
- Medical ICU, Saint Louis Hospital, APHP, 1 Avenue Claude Vellefaux, Paris, France
| | - Julien Maizel
- Medical Intensive Care Unit, Amiens University Hospital, Amiens, France
| | - Joy Y Mootien
- Medical Intensive Care Unit, GHRMSA, Mulhouse, France
| | - David Osman
- Service de Médecine Intensive-Réanimation, AP-HP, Hôpital de Bicêtre, DMU CORREVE, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Simon
- Maladies Infectieuses Et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Arnaud W Thille
- Médecine Intensive Réanimation, Centre Hospitalier Universitaire de Poitiers, Université de Poitiers, Poitiers, France
| | - Christophe Vinsonneau
- Service de Médecine Intensive Réanimation Centre Hospitalier de Bethune, Bethune, France
| | | |
Collapse
|
11
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Chaïbi K, Jaureguy F, Do Rego H, Ruiz P, Mory C, El Helali N, Mrabet S, Mizrahi A, Zahar JR, Pilmis B. What to Do with the New Antibiotics? Antibiotics (Basel) 2023; 12:antibiotics12040654. [PMID: 37107016 PMCID: PMC10135159 DOI: 10.3390/antibiotics12040654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria-related infections have become a real public health problem and have exposed the risk of a therapeutic impasse. In recent years, many new antibiotics have been introduced to enrich the therapeutic armamentarium. Among these new molecules, some are mainly of interest for the treatment of the multidrug-resistant infections associated with Pseudomonas aeruginosa (ceftolozane/tazobactam and imipenem/relebactam); others are for carbapenem-resistant infections associated with Enterobacterales (ceftazidime/avibactam, meropenem/vaborbactam); and finally, there are others that are effective on the majority of multidrug-resistant Gram-negative bacilli (cefiderocol). Most international guidelines recommend these new antibiotics in the treatment of microbiologically documented infections. However, given the significant morbidity and mortality of these infections, particularly in the case of inadequate therapy, it is important to consider the place of these antibiotics in probabilistic treatment. Knowledge of the risk factors for multidrug-resistant Gram-negative bacilli (local ecology, prior colonization, failure of prior antibiotic therapy, and source of infection) seems necessary in order to optimize antibiotic prescriptions. In this review, we will assess these different antibiotics according to the epidemiological data.
Collapse
|
13
|
Socioeconomic burden of pneumonia due to multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in Korea. Sci Rep 2022; 12:13934. [PMID: 35978016 PMCID: PMC9385716 DOI: 10.1038/s41598-022-18189-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
We aimed to estimate the socioeconomic burden of pneumonia due to multidrug-resistant Acinetobacter baumannii (MRAB) and Pseudomonas aeruginosa (MRPA). We prospectively searched for MRAB and MRPA pneumonia cases and matched them with susceptible-organism pneumonia and non-infected patients from 10 hospitals. The matching criteria were: same principal diagnosis, same surgery or intervention during hospitalisation, age, sex, and admission date within 60 days. We calculated the economic burden by using the difference in hospital costs, the difference in caregiver costs, and the sum of productivity loss from an unexpected death. We identified 108 MRAB pneumonia [MRAB-P] and 28 MRPA pneumonia [MRPA-P] cases. The estimated number of annual MRAB-P and MRPA-P cases in South Korea were 1309–2483 and 339–644, with 485–920 and 133–253 deaths, respectively. The annual socioeconomic burden of MRAB-P and MRPA-P in South Korea was $64,549,723–122,533,585 and $15,241,883–28,994,008, respectively. The results revealed that MRAB-P and MRPA-P occurred in 1648–3127 patients, resulted in 618–1173 deaths, and caused a nationwide socioeconomic burden of $79,791,606–151,527,593. Multidrug-resistant organisms (MDRO) impose a great clinical and economic burden at a national level. Therefore, controlling the spread of MDRO will be an effective measure to reduce this burden.
Collapse
|
14
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
15
|
Martin-Loeches I, Timsit JF, Kollef MH, Wunderink RG, Shime N, Nováček M, Kivistik Ü, Réa-Neto Á, Bruno CJ, Huntington JA, Lin G, Jensen EH, Motyl M, Yu B, Gates D, Butterton JR, Rhee EG. Clinical and microbiological outcomes, by causative pathogen, in the ASPECT-NP randomized, controlled, Phase 3 trial comparing ceftolozane/tazobactam and meropenem for treatment of hospital-acquired/ventilator-associated bacterial pneumonia. J Antimicrob Chemother 2022; 77:1166-1177. [PMID: 35022730 DOI: 10.1093/jac/dkab494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES In the ASPECT-NP trial, ceftolozane/tazobactam was non-inferior to meropenem for treating nosocomial pneumonia; efficacy outcomes by causative pathogen were to be evaluated. METHODS Mechanically ventilated participants with hospital-acquired/ventilator-associated bacterial pneumonia were randomized to 3 g ceftolozane/tazobactam (2 g ceftolozane/1 g tazobactam) q8h or 1 g meropenem q8h. Lower respiratory tract (LRT) cultures were obtained ≤36 h before first dose; pathogen identification and susceptibility were confirmed at a central laboratory. Prospective secondary per-pathogen endpoints included 28 day all-cause mortality (ACM), and clinical and microbiological response at test of cure (7-14 days after the end of therapy) in the microbiological ITT (mITT) population. RESULTS The mITT population comprised 511 participants (264 ceftolozane/tazobactam, 247 meropenem). Baseline LRT pathogens included Klebsiella pneumoniae (34.6%), Pseudomonas aeruginosa (25.0%) and Escherichia coli (18.2%). Among baseline Enterobacterales isolates, 171/456 (37.5%) were ESBL positive. For Gram-negative baseline LRT pathogens, susceptibility rates were 87.0% for ceftolozane/tazobactam and 93.3% for meropenem. For Gram-negative pathogens, 28 day ACM [52/259 (20.1%) and 62/240 (25.8%)], clinical cure rates [157/259 (60.6%) and 137/240 (57.1%)] and microbiological eradication rates [189/259 (73.0%) and 163/240 (67.9%)] were comparable with ceftolozane/tazobactam and meropenem, respectively. Per-pathogen microbiological eradication for Enterobacterales [145/195 (74.4%) and 129/185 (69.7%); 95% CI: -4.37 to 13.58], ESBL-producing Enterobacterales [56/84 (66.7%) and 52/73 (71.2%); 95% CI: -18.56 to 9.93] and P. aeruginosa [47/63 (74.6%) and 41/65 (63.1%); 95% CI: -4.51 to 19.38], respectively, were also comparable. CONCLUSIONS In mechanically ventilated participants with nosocomial pneumonia owing to Gram-negative pathogens, ceftolozane/tazobactam was comparable with meropenem for per-pathogen 28 day ACM and clinical and microbiological response.
Collapse
Affiliation(s)
- Ignacio Martin-Loeches
- St James's Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.,Universitat de Barcelona, IDIBAPS, CIBERes, Barcelona, Spain
| | | | - Marin H Kollef
- Washington University School of Medicine, 4523 Clayton Ave, Campus Box 8052, St. Louis, MO 63110, USA
| | - Richard G Wunderink
- Northwestern University Feinberg School of Medicine, 303 East Superior St, Simpson Querrey 5th Floor, Suite 5-301, Chicago, IL 60611, USA
| | - Nobuaki Shime
- Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Martin Nováček
- General Hospital of Kolin, Zizkova 146, Kolin 3, 280 00, Czech Republic
| | - Ülo Kivistik
- North Estonia Medical Centre Foundation, Sütiste tee 19, Tallinn, Harjumaa 13419, Estonia
| | - Álvaro Réa-Neto
- Universidade Federal do Paraná, Rua XV de Novembro, 1299 - Centro, Curitiba - PR, 80060-000, Brazil
| | | | | | - Gina Lin
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Erin H Jensen
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Mary Motyl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Brian Yu
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Davis Gates
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Joan R Butterton
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Elizabeth G Rhee
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| |
Collapse
|