1
|
Xu Q, Hou J, Schwarz S, Chai J, Lin L, Ma C, Zhu Y, Zhang W. Emergence of a novel high-level tigecycline resistance gene tet(X6) variant coexisting with tet(X2) and two tet(X) copies in a Sphingobacterium sp. Antimicrob Agents Chemother 2025; 69:e0175824. [PMID: 40062858 PMCID: PMC11963530 DOI: 10.1128/aac.01758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Affiliation(s)
- Qiu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jie Hou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jiyun Chai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Longhua Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caiping Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Chen C, Lv Y, Wu T, Liu J, Guo Y, Huang J. Concurrence of Inactivation Enzyme-Encoding Genes tet(X), blaEBR, and estT in Empedobacter Species from Chickens and Surrounding Environments. Foods 2024; 13:3201. [PMID: 39410235 PMCID: PMC11475475 DOI: 10.3390/foods13193201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The emergence of inactivation enzyme-encoding genes tet(X), blaEBR, and estT challenges the effectiveness of tetracyclines, β-lactams, and macrolides. This study aims to explore the concurrence and polymorphism of their variants in Empedobacter sp. strains from food-producing animals and surrounding environments. A total of eight tet(X) variants, seven blaEBR variants, and seven estT variants were detected in tet(X)-positive Empedobacter sp. strains (6.7%) from chickens, sewage, and soil, including 31 Empedobacter stercoris and 6 novel species of Taxon 1. All of them were resistant to tigecycline, tetracycline, colistin, and ciprofloxacin, and 16.2% were resistant to meropenem, florfenicol, and cefotaxime. The MIC90 of tylosin, tilmicosin, and tildipirosin was 128 mg/L, 16 mg/L, and 8 mg/L, respectively. Cloning expression confirmed that tet(X6) and the novel variants tet(X23), tet(X24), tet(X25), tet(X26), and tet(X26.2) conferred high-level tigecycline resistance, while all of the others exhibited relatively low-level activities or were inactivated. The bacterial relationship was diverse, but the genetic environments of tet(X) and blaEBR were more conserved than estT. An ISCR2-mediated tet(X6) transposition structure, homologous to those of Acinetobacter sp., Proteus sp., and Providencia sp., was also identified in Taxon 1. Therefore, the tet(X)-positive Empedobacter sp. strains may be ignored and pose a serious threat to food safety and public health.
Collapse
Affiliation(s)
- Chong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yilin Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Taotao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Jing Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| | - Yanan Guo
- Animal Science Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Jinlin Huang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; (C.C.); (Y.L.); (T.W.); (J.L.)
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Lei L, Xiong P, Yan Z, Zhang Y, Wu Y, Chen G, Song H, Zhang R. Emergence of plasmid-mediated tigecycline resistance tet(X4) gene in Enterobacterales isolated from wild animals in captivity. SCIENCE IN ONE HEALTH 2024; 3:100069. [PMID: 39077391 PMCID: PMC11262279 DOI: 10.1016/j.soh.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
Background Over the past few decades, antimicrobial resistance (AMR) has emerged as a global health challenge in human and veterinary medicine. Research on AMR genes in captive wild animals has increased. However, the presence and molecular characteristics of tet(X)-carrying bacteria in these animals remain unknown. Methods Eighty-four samples were collected from captive wild animals. tet(X) variants were detected using polymerase chain reaction and the isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. All isolated strains were subjected to antimicrobial susceptibility testing and whole-genome sequencing. The virulence of an Escherichia coli strain carrying enterotoxin genes was assessed using a Galleria mellonella larval model. Results We isolated two tet(X4)-positive E. coli strains and one tet(X4)-positive Raoultella ornithinolytica strain. Antimicrobial susceptibility tests revealed that all three tet(X4)-carrying bacteria were sensitive to the 13 tested antimicrobial agents, but exhibited resistance to tigecycline. Notably, one tet(X4)-carrying E. coli strain producing an enterotoxin had a toxic effect on G. mellonella larvae. Whole-genome sequencing analysis showed that the two tet(X4)-carrying E. coli strains had more than 95% similarity to tet(X4)-containing E. coli strains isolated from pigs and humans in China. Conclusion The genetic environment of tet(X4) closely resembled that of the plasmid described in previous studies. Our study identified tet(X4)-positive strains in wildlife and provided valuable epidemiological data for monitoring drug resistance. The identification of enterotoxin-producing E. coli strains also highlights the potential risks posed by virulence genes.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Panfeng Xiong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zelin Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuchen Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Gongxiang Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Rong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
4
|
Zhao Y, Qian C, Ye J, Li Q, Zhao R, Qin L, Mao Q. Convergence of plasmid-mediated Colistin and Tigecycline resistance in Klebsiella pneumoniae. Front Microbiol 2024; 14:1221428. [PMID: 38282729 PMCID: PMC10813211 DOI: 10.3389/fmicb.2023.1221428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/15/2023] [Indexed: 01/30/2024] Open
Abstract
Objective The co-occurrence of colistin and tigecycline resistance genes in Klebsiella pneumoniae poses a serious public health problem. This study aimed to characterize a K. pneumoniae strain, K82, co-harboring a colistin resistance gene (CoRG) and tigecycline resistance gene (TRG), and, importantly, investigate the genetic characteristics of the plasmid with CoRG or TRG in GenBank. Methods K. pneumoniae strain K82 was subjected to antimicrobial susceptibility testing, conjugation assay, and whole-genome sequencing (WGS). In addition, comparative genomic analysis of CoRG or TRG-harboring plasmids from K82 and GenBank was conducted. K. pneumoniae strain K82 was resistant to all the tested antimicrobials including colistin and tigecycline, except for carbapenems. Results WGS and bioinformatic analysis showed that K82 belonged to the ST656 sequence type and carried multiple drug resistance genes, including mcr-1 and tmexCD1-toprJ1, which located on IncFIA/IncHI2/IncHI2A/IncN/IncR-type plasmid pK82-mcr-1 and IncFIB/IncFII-type plasmid pK82-tmexCD-toprJ, respectively. The pK82-mcr-1 plasmid was capable of conjugation. Analysis of the CoRG/TRG-harboring plasmid showed that mcr-8 and tmexCD1-toprJ1 were the most common CoRG and TRG of Klebsiella spp., respectively. These TRG/CoRG-harboring plasmids could be divided into two categories based on mash distance. Moreover, we found an IncFIB/IncHI1B-type plasmid, pSYCC1_tmex_287k, co-harboring mcr-1 and tmexCD1-toprJ1. To the best of our knowledge, this is the first report on the co-occurrence of mcr-1 and tmexCD1-toprJ1 on a single plasmid. Conclusion Our research expands the known diversity of CoRG and TRG-harboring plasmids in K. pneumoniae. Effective surveillance should be implemented to assess the prevalence of co-harboring CoRG and TRG in a single K. pneumoniae isolate or even a single plasmid.
Collapse
Affiliation(s)
- Yujie Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Rongqing Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Ling Qin
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, China
| | - Qifeng Mao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|