1
|
Zhang X, Guo S, Niu W, Wei L, Liu Y, Wang H, Niu B, Li W. Carboxymethylcellulose hydrogel beads containing quercetin-embedded porous starch: An intestinal tract drug delivery system. Int J Biol Macromol 2025; 304:140927. [PMID: 39947567 DOI: 10.1016/j.ijbiomac.2025.140927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
In this study, we designed a novel and straightforward intestinal drug delivery system using porous starch (PS) and carboxymethyl cellulose (CMC). Initially, native starch (NS) was hydrolyzed into porous starch (PS) using α-amylase (AM) and amyloglucosidase (AMG), with scanning electron microscopy (SEM) confirming the successful formation of PS. The model drug quercetin (Que) was then adsorbed onto PS, achieving an adsorption efficiency of 86.48%. BET surface area analysis showed that PS had a surface area of 23.1243 m2/g, which decreased to 1.5703 m2/g for QPS, indicating that most of the pores in PS were occupied by Que, as further confirmed by SEM results. The QPS was encapsulated within a CMC matrix to form hydrogel beads (QPS/CMC), which demonstrated a drug loading capacity of 8.57±0.15% and an encapsulation efficiency of 89.73±1.20%. Swelling and in vitro release experiments revealed that the QPS/CMC hydrogel beads exhibited pH sensitivity, releasing the drug in a pH 7.4 environment. These findings suggest that the system holds potential for applications in intestinal drug delivery.
Collapse
Affiliation(s)
- Xueze Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Shuqi Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Wuyang Niu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Liuqing Wei
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yantong Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, PR China.
| |
Collapse
|
2
|
Kwon TE, Kim DM, Seo DH, Hamaker BR, Yoo SH. Increased survival rate of selected probiotics under environmental stresses through encapsulation in α-glucan-coated porous starch granules. Int J Biol Macromol 2025; 304:140754. [PMID: 39922356 DOI: 10.1016/j.ijbiomac.2025.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Porous starch granules (PSGs) produced by amylolytic enzymes show potential as an effective delivery system for various materials, including probiotics. This study developed α-glucan-coated PSGs (α-gcPSGs) to enhance probiotic viability under environmental stresses. Lactobacillus rhamnosus GG and Bifidobacterium longum were encapsulated in α-gcPSGs coated with amylosucrase-produced α-glucan. The protective effects were evaluated under acidic, bile, heat, and oxygen stress conditions. Results showed that α-gcPSGs significantly enhanced probiotic survival by reducing cell loss of L. rhamnosus GG to 1.41 log CFU/mL under acidic conditions (pH 2.0, 4 h), compared to 2.97 log CFU/mL for lyophilized cells. The thermal resistance of probiotics was improved with α-gcPSGs encapsulation. Encapsulation in α-gcPSGs significantly enhanced probiotic heat resistance, with L. rhamnosus GG demonstrating 96.5% cell viability after 1 h at 65 °C, compared to 42.5% for lyophilized L. rhamnosus GG. Additionally, α-gcPSGs-encapsulated B. longum maintained 63.9% survival after 48 h under oxygen stress, while lyophilized B. longum showed no survival. These findings demonstrate α-gcPSG's potential as a highly effective delivery system for probiotics.
Collapse
Affiliation(s)
- Tae-Eun Kwon
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Dong-Min Kim
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wang M, Jiang W, Li S, Liu S, Liu M, Lyu M, Wang S. Characteristics of Porous Starch from Lotus Seeds Using Dextranase: Protection and Sustained Release of Proanthocyanidins. Foods 2025; 14:1050. [PMID: 40232086 PMCID: PMC11942344 DOI: 10.3390/foods14061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Porous starch, known for its large specific surface area due to internal pores, exhibits excellent adsorption capabilities. In this study, we successfully produced porous starch from lotus seeds using dextranase and conducted a comprehensive analysis of its surface morphology, crystalline structure, pasting behavior, and adsorption characteristics. The enzymatic treatment resulted in the development of a pore structure on the lotus seed starch (LS) surface without altering its crystalline structure, as confirmed by Fourier transform infrared spectroscopy and X-ray diffraction. The oil and water absorption capacities of the porous starch increased by 14% and 27%, respectively. Differential scanning calorimetry indicated a higher pasting temperature for the porous starch. This starch exhibited remarkable drug-carrying capabilities, absorbing up to 18.23 mg/g of proanthocyanidins and significantly shielding them from UV damage. In vitro release tests in simulated intestinal fluid revealed that the encapsulated proanthocyanidins (PC) achieved nearly complete release. These results underscore the potential of LS as a drug carrier and provide valuable insights for developing innovative intestinal drug delivery systems.
Collapse
Affiliation(s)
- Yuying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ming’ao Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weihong Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Siyu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (Y.W.); (M.W.); (W.J.); (S.L.); (S.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Chen H, Liu X, Liu J, Fan H, Ren J, Liu H, Liu T. Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol. Food Chem 2025; 468:142321. [PMID: 39732095 DOI: 10.1016/j.foodchem.2024.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/30/2024]
Abstract
The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied. The results indicate that dietary fiber from modified Lentinus edodes stalks and tea polyphenols form a stable complex through non-covalent bonding. In addition, the thermal stability of the phenolic substances in the complex and the adsorption capacity of the complex to fats, cholesterol, and cholates is better than modified dietary fiber and the mixture of dietary fiber and tea polyphenols.
Collapse
Affiliation(s)
- Hong Chen
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Xiaolong Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Junyan Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Jiayao Ren
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Engineering Research Center of Grain Deep-processing and High-efficiency Utilization of Jilin Province, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China.
| |
Collapse
|
5
|
Sun S, Sun D, Guo L, Cui B, Zou F, Wang J, Sun C, Zhu Y, Li X. Structural and physicochemical properties of corn starch modified by phosphorylase b, hexokinase and alkaline phosphatase. Carbohydr Polym 2025; 349:122979. [PMID: 39643404 DOI: 10.1016/j.carbpol.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
To improve the functional properties of corn starch, phosphorylase b (PB), hexokinase (HK), and alkaline phosphatase (AP) were used to produce enzyme-modified starches (PBMS, HKMS, and APMS). The results showed that enzyme-modified starches had different phosphorus contents and degrees of substitution. The presence of PO bonds and P-O-C bonds further demonstrated that phosphate groups were grafted into starch. The proportions of monostarch phosphate in PBMS, HKMS, and APMS were 77.05 %, 79.33 % and 85.88 %, respectively. The introduction of phosphate groups affected the functional properties of starch. The swelling powers of PBMS, HKMS and APMS increased from 0.99 % to 12.86 %, 10.83 % and 5.95 %, respectively. Compared to native starch (1820 mPa·s), the peak viscosities of PBMS, HKMS and APMS increased to 2655, 2838, and 2021 mPa·s, respectively. Meanwhile, the introduction of phosphate groups endowed phosphorylated starch with better freeze-thaw stability, larger paste transparency, higher solubility, and slower retrogradation rate.
Collapse
Affiliation(s)
- Shuo Sun
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, College of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Li Guo
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Bo Cui
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Feixue Zou
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Jinpeng Wang
- Postdoctoral research work station, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Chunrui Sun
- Postdoctoral research work station, Shandong Zhucheng Xingmao corn developing Co. Ltd, Zhucheng, China.
| | - Yu Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Hefei, China.
| | - Xueling Li
- School of Food and Nutrition, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
6
|
Shao M, Ling J, Qiu C, Junejo SA, Zhang B, Huang Q. Helical structures modulate the complexation mode and release characteristics of starch-capsaicin complex. Int J Biol Macromol 2025; 286:138325. [PMID: 39643196 DOI: 10.1016/j.ijbiomac.2024.138325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Capsaicin (CA) is a bioactive compound, known for its physiological effects, though its high pungency limits its practical applications. This study investigated the effects of starches with amorphous structures (AS), single helical and amorphous structures (SAS), and a combination of double helical, single helical, and amorphous structures (DSAS) on the complexation mode and release characteristics of CA. The SAS-CA complex exhibited the highest CA content (60.1 mg/g) and improved stability. Structural analyses using nuclear magnetic resonance spectroscopy and X-ray diffraction verified that both SAS and DSAS formed V6I-type complexes with CA stabilized by hydrogen bonding and hydrophobic interactions. In contrast, AS and CA exhibited only physical entrapment determined by differential scanning calorimetry, Fourier transform infrared, and Raman spectroscopy. The DSAS-CA complex demonstrated the slowest CA release during simulated oral digestion, attributed to its double helical structure, which resisted water erosion (17.1 %) and enzyme hydrolysis (3.6 %). Pearson correlation analysis revealed a strong positive relationship of CA release with amorphous structure, hydrolysis rate, and erosion rate, but exhibited a negative correlation with single helical and double helical structures. These findings support the development of starch-based delivery systems tailored to control the release of highly pungent bioactives like capsaicin, broadening their potential uses in food and pharmaceutical formulations.
Collapse
Affiliation(s)
- Miao Shao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jianbin Ling
- Zhuhai Wuwei Health Food Company Ltd., Zhuhai 519110, China
| | - Chunhong Qiu
- Zhaoqing Huanfa Biotechnology Co. Ltd., Zhaoqing 526238, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Sun Z, Yan H, Bereka TY, Chen Y, Wang R, Jin Z, Zhou X. One-pot preparation of V-type porous starch by thermal-stable amylase hydrolysis of normal maize starch in hot aqueous ethanol solution. Carbohydr Polym 2025; 347:122706. [PMID: 39486947 DOI: 10.1016/j.carbpol.2024.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 11/04/2024]
Abstract
The V-type porous starch (VPS) displays remarkable adsorption capability, and has potential for encapsulating guest compounds within its unique single helical cavity. In this investigation, VPS was produced via a "one-pot method" utilizing thermostable α-amylase in a hot ethanol solution. The study demonstrates that the activity of thermostable α-amylase remains high, reaching up to 86 % when employing a 40-50 % ethanol concentration, and up to 74 % with ≤70 % ethanol concentration. Furthermore, the enzyme exhibits robust stability at 90 °C for up to 10 h of reaction time. The resultant VPS exhibits enhanced V-type crystallinity and superior adsorption capacity compared to conventional A-type porous starch (APS). Notably, the hydrolysis of normal maize starch (NMS) by thermostable α-amylase in a 50 % ethanol solution at 90 °C yields 49.36 % VPS, which manifests a densely porous distributed structure. Additionally, the VPS is characterized by superior oil adsorption capacity (253.11 %), specific surface area (38.89 m2/g), and total pore volume (0.147 cm3/g).
Collapse
Affiliation(s)
- Zhenye Sun
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haocong Yan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tizazu Yirga Bereka
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanxin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ren Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; China Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; China Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Gu F, Wen Y, Hu X, Liao H, He C, McClements DJ, Pan W, Niu F. Novel Porous Starch Granules Fabricated Using Controlled Lipase-Amylase Treatments: Application as Delivery Systems and Resistant Starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24762-24775. [PMID: 39454081 DOI: 10.1021/acs.jafc.4c07759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Porous starch granules (PSGs) are promising biomaterials for the encapsulation, protection, and delivery of bioactive ingredients. In this study, a lipase treatment was first used to generate pores in native starch granules, and then α-amylase was used to enlarge these pores. Electron and fluorescence microscopy analysis showed that the lipase treatment exposed the starch molecules located below the lipid-rich regions on the starch granule surfaces, which increased the swelling of the granules in aqueous solutions. Moreover, lipase treatment caused the surrounding areas to become more loosely packed, which facilitated subsequent starch hydrolysis and the formation of large internal cavities. Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analyses provided further insights, these methods showed that the short-range order, long-range order, and thermal stability of the PSGs was enhanced by the sequential lipase-amylase modification. PSGs were highly resistant to amylase digestion and had strong adsorption capacity to hydrophobic and hydrophilic substances. This study shows that a combined lipase-amylase treatment can be used to fabricate PSGs, which may have health benefits due to their low digestibility and ability to encapsulate bioactive agents. These PSGs may therefore be suitable for application in the functional food, supplement, personal care, and pharmaceutical industries.
Collapse
Affiliation(s)
- Feina Gu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Ya Wen
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Xinyu Hu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Chunfang He
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - David Julian McClements
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Weichun Pan
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
9
|
Zuo Y, Zou F, Yang M, Xu G, Wu J, Wang L, Wang H. Effects of plasma-activated water combined with ultrasonic treatment of corn starch on structural, thermal, physicochemical, functional, and pasting properties. ULTRASONICS SONOCHEMISTRY 2024; 108:106963. [PMID: 38936293 PMCID: PMC11259921 DOI: 10.1016/j.ultsonch.2024.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this study, corn starch was used as the raw material, and modified starch was prepared using a method combining plasma-activated water and ultrasound treatment (PUL). This method was compared with treatments using plasma-activated water (PAW) and ultrasound (UL) alone. The structure, thermal, physicochemical, pasting, and functional properties of the native and treated starches were evaluated. The results indicated that PAW and UL treatments did not alter the shape of the starch granules but caused some surface damage. The PUL treatment increased the starch gelatinization temperature and enthalpy (from 11.22 J/g to 13.13 J/g), as well as its relative crystallinity (increased by 0.51 %), gel hardness (increased by 16.19 %) compared to untreated starch, without inducing a crystalline transition. The PUL treatment resulted in a whitening of the samples. The dual treatment enhanced the thermal stability of the starch paste, which can be attributed to the synergistic effect between PAW and ultrasound (PAW can modify the starch structure at a molecular level, while ultrasound can further disrupt the granule weak crystalline structures, leading to improved thermal properties). Furthermore, FTIR results suggested significant changes in the functional groups related to the water-binding capacity of starch, and the order of the double-helical structure was disrupted. The findings of this study suggest that PUL treatment is a promising new green modification technique for improving the starch structure and enhancing starch properties. However, further research is needed to tailor the approach based on the specific properties of the raw material.
Collapse
Affiliation(s)
- Yongxuan Zuo
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangfei Xu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Wiącek AE, Sujka M. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods-Part 2: Potential Application as a Carrier of Gallic Acid. Molecules 2024; 29:3570. [PMID: 39124975 PMCID: PMC11314488 DOI: 10.3390/molecules29153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Wettability measurements were performed for aqueous dispersions of native and modified corn, potato, and pea starch granules deposited on glass plates by the thin layer method using test liquids of a different chemical nature (polar water and formamide or non-polar diiodomethane). High values of the determination coefficient R2 confirm that the linear regression model describes the relationship between the wetting time and the square of the penetration distance very well, indicating the linear nature of the Washburn relationship. A change in free energy (enthalpy) during the movement of the liquid in the porous layer was determined for all starches before and after modification in contact with test liquids. Wetting times for polar liquids increased significantly (from 3 to 4 fold), especially for corn starch. The lower the value of the adhesive tension, the easier the wetting process takes place, and consequently, the adsorption process is facilitated. Adhesive tension for polar substances applies to the adsorption of hydrophilic substances, while in the case of apolar substances, adhesive tension applies to the adsorption of hydrophobic substances. For the adsorption of gallic acid on starch, the relationships obtained for polar substances are crucial. The adsorption of gallic acid by forming hydrogen bonds or, more generally, donor-acceptor (acid-base) bonds is definitely higher for corn starch than other starches. Therefore, this starch has the most significant potential for use as a carrier of gallic acid or, more broadly, compounds from the polyphenol group.
Collapse
Affiliation(s)
- Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq.3, 20-031 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Food Quality Assessment, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
11
|
Wahab M, Janaswamy S. Porous corn starch granules as effective host matrices for encapsulation and sustained release of curcumin and resveratrol. Carbohydr Polym 2024; 333:121967. [PMID: 38494222 DOI: 10.1016/j.carbpol.2024.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a carbohydrate-rich diet-regulated ailment with carbohydrates digested and absorbed rapidly. Hence, modulating carbohydrate digestion is warranted; to this end, polyphenols from plant sources are handy. However, polyphenols' instability and low bioavailability limit their wholesome use, and thus, encapsulating them into an inexpensive and suitable wall material would be the best strategy. Herein, the potential of porous starch granules is demonstrated. Curcumin and resveratrol were chosen as the test polyphenols due to their proven health benefits, and porous corn starch granules were chosen as the wall material. Porous corn starch granules were prepared through enzymatic modification with 11, 22, and 33 units of amyloglucosidase at three reaction times of 2, 4, and 6 h. The polyphenols were loaded at 100, 200, and 500 mg concentrations in 1 g of starch for 21 days and were characterized through Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) analyses. The encapsulation efficiency was determined, the rate of starch digestion was calculated through the Englyst test, and polyphenols' in vitro release behavior in gastric and intestinal fluids was measured. Results suggest that 33 enzyme units for a 2 h reaction time were optimal for forming spherical-oval pores on corn starch granules with the maximum encapsulation efficiency of 80.16 % and 88.33 % for curcumin and resveratrol, respectively. The FTIR results suggest the entrapment of polyphenols inside the starch matrix. The inclusion significantly reduced starch digestion and increased the percentage of resistant starch up to 41.11 % and 66.36 % with curcumin and resveratrol, respectively. The in vitro release behavior demonstrated good stability in the simulated gastric fluids and sustained release in simulated intestinal fluids. The encapsulated polyphenols showed a complex Fickian type of diffusion mechanism. Overall, the results suggest that porous corn starch granules could be a potential delivery system for curcumin and resveratrol and will aid in developing novel functional foods to address the T2DM concerns.
Collapse
Affiliation(s)
- Maryam Wahab
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
12
|
Krysa M, Susniak K, Song CL, Szymanska-Chargot M, Zdunek A, Pieta IS, Podleśny J, Sroka-Bartnicka A, Kazarian SG. Multimodal Spectroscopic Studies to Evaluate the Effect of Nod-Factor-Based Fertilizer on the Maize ( Zea mays) Stem. APPLIED SPECTROSCOPY 2024; 78:591-604. [PMID: 38529584 DOI: 10.1177/00037028241239358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Maize (Zea mays) is one of the most cultivated plants in the world. Due to the large area, the scale of its production, and the demand to increase the yield, there is a need for new environmentally friendly fertilizers. One group of such candidates is bacteria-produced nodulation (or nod) factors. Limited research has explored the impact of nodulation, factors on maize within field conditions, with most studies restricted to greenhouse settings and early developmental stages. Additionally, there is a scarcity of investigations that elucidate the metabolic alterations in the maize stem due to nod-factor exposure. It was therefore the aim of this study. Maize stem's metabolites and fibers were analyzed with various imaging analytical techniques: matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI), Raman spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), and diffuse reflectance infrared Fourier transform spectroscopy. Moreover, the biochemical analyses were used to evaluate the proteins and soluble carbohydrates concentration and total phenolic content. These techniques were used to evaluate the influence of nod factor-based biofertilizer on the growth of a non-symbiotic plant, maize. The biofertilizer increased the grain yield and the stem mass. Moreover, the spectroscopic and biochemical investigation proved the appreciable biochemical changes in the stems of the maize in biofertilizer-treated plants. Noticeable changes were found in the spatial distribution and the increase in the concentration of flavonoids such as maysin, quercetin, and rutin. Moreover, the concentration of cell wall components (fibers) increased. Furthermore, it was shown that the use of untargeted analyses (such as Raman and ATR FT-IR, spectroscopic imaging, and MALDI-MSI) is useful for the investigation of the biochemical changes in plants.
Collapse
Affiliation(s)
- Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Susniak
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Lublin, Poland
| | - Cai Li Song
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Monika Szymanska-Chargot
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Artur Zdunek
- Department of Microstructure and Mechanics of Biomaterials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Izabela S Pieta
- Spectroscopic and Microscopic (STM/AFM) Studies of Intermolecular Interactions, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Podleśny
- Department of Forage Crop Production, Institute of Soil Science and Plant Cultivation, State Research Institute, Pulawy, Poland
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Lublin, Poland
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
13
|
Zhao Y, Qiao S, Zhu X, Guo J, Peng G, Zhu X, Gu R, Meng Z, Wu Z, Gan H, Guifang D, Jin Y, Liu S, Sun Y. Effect of different drying methods on the structure and properties of porous starch. Heliyon 2024; 10:e31143. [PMID: 38813237 PMCID: PMC11133660 DOI: 10.1016/j.heliyon.2024.e31143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
In order to investigate the effects of different drying methods on the properties of porous starch. The present study used four drying methods, namely hot air drying (HD), spray drying (SPD), vacuum freeze drying (FD) and supercritical carbon dioxide drying (SCD) to prepare maize and kudzu porous starch. Findings indicated that the physicochemical properties (e.g., morphology, crystallinity, enthalpy value, porosity, surface area and water absorption capacity as well as dye absorption capacity, particle size) of porous starch were significantly affected by the drying method. Compared with other samples, SCD-treated porous starch exhibited the highest surface areas of the starch (2.943 and 3.139 m2/g corresponding to kudzu and maize, respectively), amylose content (22.02 % and 16.85 % corresponding to kudzu and maize, respectively), MB and NR absorption capacity (90.63 %, 100.26 % and 90.63 %, 100.26 %, corresponding to kudzu ad maize, respectively), and thermal stability, whereas HD-treated porous starch showed the highest water-absorption capacity (123.8 % and 131.31 % corresponding to kudzu and maize, respectively). The dye absorption of the maize and kudzu porous starch was positively correlated with surface area, according to Pearson's correlation analysis. Therefore, in this study, our aim was to explore the effects of different drying methods on the Structure and properties of porous starch, and provide reference for selecting the best drying method for its application in different fields.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Simo Qiao
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiaohui Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jinnan Guo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guanqun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaoxia Zhu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dou Guifang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shuchen Liu
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yunbo Sun
- Anhui Medical University, Hefei, 230000, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
14
|
Kavya M, Krishnan R, Suvachan A, Sathyan S, Tozuka Y, Kadota K, Nisha P. The art and science of porous starch: understanding the preparation method and structure-function relationship. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38768041 DOI: 10.1080/10408398.2024.2352548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Porous starch (PS), a modified form of starch with unique properties, is attracting substantial attention for its diverse advantages and applications. Its intricate porous structure, crystalline and amorphous characteristics, and hydrophilic-hydrophobic properties stem from pore formation via physical, chemical, enzymatic, and combined synergistic methods. Porous starch offers benefits like improved gelatinization temperature, water absorption, increased surface area, tunable crystallinity, and enhanced functional properties, making it appealing for diverse food industry applications. To optimize its properties, determining the parameters governing porous structure formation is crucial. Factors such as processing conditions, starch source, and modification methods substantially impact porosity and the overall characteristics of the material. Understanding and controlling these parameters allows customization for specific applications, from pharmaceutical drug delivery systems to enhancing texture and moisture retention in food products. To date, studies shedding light on how porosity formation can be fine-tuned for specific applications are fewer. This review critically assesses the existing reports on porous starch, focusing on how preparation methods affect porosity formation, thereby influencing the product's crystallinity/hydrophilic-hydrophobic nature and overall applicability.
Collapse
Affiliation(s)
- Mohan Kavya
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Abhijith Suvachan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Sannya Sathyan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Yaowiwat N, Poomanee W, Leelapornpisid P, Sripatanakul W. Potential use of Thai mango (Mangifera indica Linn. cultivar Chok-Anan) seed porous starch for retention of aroma compounds from coffee extract. Int J Biol Macromol 2024; 265:131033. [PMID: 38518939 DOI: 10.1016/j.ijbiomac.2024.131033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This study aimed to extract and modify the properties of the starch from Thai mango seeds (cultivar Chok-Anan). The porous starch samples were obtained using enzymatic treatment and its potential to retain aroma compounds from coffee extract was evaluated. The physicochemical properties, structure characteristics, porosity characteristics and adsorption quantity of starches were also determined. The retention of coffee aroma compounds was investigated through combining starch or porous starch with odorants, and storing the mixtures at room temperature for 7 and 14 days, respectively. The chemical properties of aroma compounds as well as starch surface properties were observed to affect the retention of aroma compounds upon storage. Additionally, 2-furanmethanol, d-limonene and maltol were selected to be the primary target compounds to assess the retention of odorants. This study observed a noticeable decrease in d-limonene content throughout the storage period. On the contrary, after 14 days of storage, the porous starch exhibited high retention of hydroxy compounds including 2-furanmethanol and maltol. However, after prolonged storage their ability to retain 2-furanmethanol and maltol slightly decreased. Therefore, the porous starch derived from mango seeds exhibited the potential to retain coffee aroma compounds and could be a desirable green adsorbent for food and cosmetic industries.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | |
Collapse
|
16
|
Zhu J, Han L, Wang M, Yang J, Fang Y, Zheng Q, Zhang X, Cao J, Hu B. Formation, influencing factors, and applications of internal channels in starch: A review. Food Chem X 2024; 21:101196. [PMID: 38370305 PMCID: PMC10869744 DOI: 10.1016/j.fochx.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Starch, a natural polymer, has a complex internal structure. Some starches, such as corn and wheat starches, have well-developed surface pores and internal channels. These channel structures are considered crucial in connecting surface stomata and internal cavities and have adequate space for loading guest molecules. After processing or modification, the starch-containing channel structures can be used for food and drug encapsulation and delivery. This article reviews the formation and determination of starch internal channels, and the influence of different factors (such as starch species and processing conditions) on the channel structure. It also discusses relevant starch preparation methods (physical, chemical, enzymatic, and synergistic), and the encapsulation effect of starch containing internal channels on different substances. In addition, the role of internal channels in regulating the starch digestion rate and other aspects is also discussed here. This review highlights the significant multifunctional applications of starch with a channel structure.
Collapse
Affiliation(s)
- Junzhe Zhu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Lingyu Han
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Meini Wang
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, United Kingdom
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Wrexham, United Kingdom
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuyue Zheng
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Xiaobo Zhang
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Jijuan Cao
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| | - Bing Hu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China
| |
Collapse
|
17
|
Kim SR, Park JY, Park EY. Effect of ethanol, phytic acid and citric acid treatment on the physicochemical and heavy metal adsorption properties of corn starch. Food Chem 2024; 431:137167. [PMID: 37604005 DOI: 10.1016/j.foodchem.2023.137167] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
Corn starch dispersions were heated with ethanol (E) and reacted with phytic acid (E-PA), citric acid (E-CA), and a mixture of phytic and citric acid (E-PACA) under dry-heating to prepare heavy metal adsorbents. Microscopy images indicated that ethanol treatment induced the formation of porous structures on the surface; furthermore, treatment with phytic and citric acid induced indentations, pores, and irregular structures in E-PA, E-CA, and E-PACA starches. Phytic and citric acid were retained in the starch molecules through ester bonds with the phosphate and carboxyl groups, respectively. Starch esterification by phytic and citric acid induced a loss of crystallinity, high water absorption capacity, and low solubility. E-PACA starch exhibited more efficient Cu2+ adsorption (38.13 mg/g) than native, E, E-PA, and E-CA starches (0.11, 0.49, 2.05, and 36.23 mg/g, respectively). Thus, modification with ethanol, phytic acid and citric acid can be applied to prepare natural starch-based heavy metal adsorbents.
Collapse
Affiliation(s)
- Se-Rin Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eun Young Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Su F, Wu Y, Cao Y, Wang S. Differences in the Chromogenic Effect of Corn Starch and Potato Starch on Paprika Red Pigment and Structural Characterisation. Foods 2024; 13:191. [PMID: 38254492 PMCID: PMC10814249 DOI: 10.3390/foods13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
The present study aims to investigate the chromogenic effect and the interaction between starch-pigment complexes of corn starch (CS) and potato starch (PS) complexed with paprika red pigment. Compared to PS, CS showed 12.5 times higher adsorption capacity for paprika red pigment. Additionally, the a* value of CS-P (26.90 ± 0.23) was significantly higher than that of PS-P (22.45 ± 1.84), resulting in a corn starch-paprika red pigment complex (CS-P) with a more intense red colour. The addition of paprika red pigment significantly decreased the particle size and porosity of CS by 48.14 ± 5.29% and 17.01 ± 3.80%, respectively. Conversely, no significant impact on PS was observed. Additionally, the Fourier transform infrared (FT-IR) spectroscopy results revealed that the starch molecules and paprika red pigment were bound to each other through strong hydrogen bonds. X-diffraction (XRD) results indicated that the starch-paprika red pigment complexes have a V-shaped structure. Furthermore, the relative crystallinity of the complexes between starch and red pepper pigment showed an increasing trend, however, the relative crystallinity of CS increased significantly by 11.77 ± 0.99-49.21 ± 3.67%. Consequently, the CS-P colouring was good.
Collapse
Affiliation(s)
| | | | | | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China; (F.S.); (Y.W.); (Y.C.)
| |
Collapse
|
19
|
Zhang Z, He X, Zeng C, Li Q, Xia H. Preparation of cassava starch-gelatin yolk-shell microspheres by water-in-water emulsion method. Carbohydr Polym 2024; 323:121461. [PMID: 37940319 DOI: 10.1016/j.carbpol.2023.121461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
This paper reports the preparation and characterization of gelatin-cassava starch microspheres using the water-in-water emulsion technique. The effects of different weight ratios (10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5) of starch to gelatin on the morphology, structure, thermal properties, and stability of microspheres were investigated. The morphology results showed that most microspheres had spherical shapes and smooth surfaces. When the weight ratio of starch to gelatin was 5: 5, the prepared microspheres formed a stable yolk-shell structure. The swelling capacity of the microspheres increased with the proportion of gelatin, up to 682.3 %. The gelatin and starch in the microspheres were compatible but not miscible. Compared with the native starch, the crystalline structure of microspheres changed from A-type to a mixture of B-type and V-type, and the relative crystallinity decreased. Differential scanning calorimetry results showed that the melting of microspheres involved both gelatin dissolution and starch gelatinization. Due to the formation of composite microspheres, the starch content decreased, and the release of reducing sugars from the microspheres upon hydrolysis was reduced. The gelatin-cassava starch microspheres are simple to prepare, biocompatible, and can be used as a potential material for microencapsulation.
Collapse
Affiliation(s)
- Zhirenyong Zhang
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Xiaoxue He
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Chaoxi Zeng
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Qingming Li
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
20
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
21
|
Shao M, Li S, Huang S, Junejo SA, Jiang Y, Zhang B, Huang Q. Oil structuring from porous starch to powdered oil: Role of multi-scale structure in the oil adsorption and distribution. Int J Biol Macromol 2023; 253:126968. [PMID: 37730003 DOI: 10.1016/j.ijbiomac.2023.126968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Oil structuring from porous starch is a potential alternative for the industrial production of powdered oil, but their relationship between starch multi-scale structure and oil adsorption characteristics was not clear. This study compared the role of multi-scale structure of porous starch (PS) prepared by normal and waxy maize starch in the oil adsorption. Waxy maize porous starch exhibited higher oil adsorption capacity (32.43 %-98.71 %) and more oil distributed on the surface of granules than normal maize porous starch, resulting from the more pores, larger specific surface area (1.01-1.53 m2/g), and pore size (8.45-9.32 nm). The enzymolysis time of native starch dominated oil distribution, leading to different granule adhesion and aggregation state. Pearson correlation analysis further showed oil adsorption capacity was negatively correlated with particle size, but positively correlated with enzymolysis rate and specific surface area of PS. The formation of powdered oil was mainly through the physical adsorption, including surface adsorption and pore adsorption. These findings could provide a promising route for the preparation of powdered oil with controlled multi-scale structure of PS.
Collapse
Affiliation(s)
- Miao Shao
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Sixin Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Jiang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
22
|
Tang J, Tao H, Tan C, Yuan F, Guo L, Cui B, Gao S, Wu Z, Zou F, Wu Z, Liu P, Lu L. Adsorption properties of corn starch modified by malt amylases and crosslinking agents: A comparison between sodium trimetaphosphate and organic acids. Int J Biol Macromol 2023; 253:127140. [PMID: 37778579 DOI: 10.1016/j.ijbiomac.2023.127140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
In order to investigate the effects of different crosslinking agents on physicochemical properties and adsorption properties of porous starch. Native corn starch was hydrolyzed by maltase and crosslinked with different crosslinking agents. Sodium trimetaphosphate crosslinked porous starch (STMP-MPS), malic acid cross-linked porous starch (MA-MPS) and citric acid cross-linked porous starch (CA-MPS) were prepared. After crosslinking, MA-MPS and CA-MPS showed a new CO stretching absorption peak at 1738 cm-1, and the crosslinking degree was much higher than that of STMP-MPS. The surface area of MA-MPS was 36 % higher than that of STMP-MPS. Compared with the average pore size of 12.43 nm of STMP-MPS, CA-MPS (14.02 nm) and MA-MPS (14.79 nm) were increased more significantly. The degradation temperature of MA-MPS and CA-MPS was increased by the introduction of ester bond, which indicates that the organic acid cross-linking strengthens the starch granules and hence more energy is required for disruption. Compared with STMP-MPS, the water absorption of MA-MPS and CA-MPS increased by 64 % and 32 %, respectively. Furthermore, the adsorption capacity of MA-MPS to essential oil was the strongest, about 4 times that of STMP-MPS. Overall, it is feasible to modify porous starch by crosslinking reaction to improve its heat resistance and adsorption properties.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China.
| | - Shijun Gao
- Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, China.
| | - Zehua Wu
- Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, Shandong Shouguang Juneng Golden Corn Development Co., Shouguang, China; West of Xingyuan Road, North of Anshun Street, Gucheng District, Shouguang City, Shandong Province, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; No.3501, Daxue Rd., Changqing District, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lu Lu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
23
|
Sahraeian S, Niakousari M, Fazaeli M, Hosseini SMH. Fabrication and study on dually modified starch embedded in alginate hydrogel as an encapsulation system for Satureja essential oil. Carbohydr Polym 2023; 322:121331. [PMID: 37839843 DOI: 10.1016/j.carbpol.2023.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to investigate how the types and order of modifications influence the structure and physicochemical characteristics of modified porous starch. The work focuses on the encapsulation of essential oil in hydrophobic microcapsules embedded in sodium alginate hydrogels. FTIR spectra indicated successful esterification of starch with OSA. 1047:1022 cm-1 and 1022:995 cm-1 band ratios of FTIR spectra revealed increased crystallinity due to enzymatic modification, supported by XRD patterns. Porous-OSA (PO) starch had 1.5 times higher degree of substitution (DS) than OSA-porous (OP) starch, confirmed by the intense peak at 0.85 ppm in 1H NMR spectra. SEM images displayed larger particles and smaller pore diameter in OP compared to PO and porous starch, indicating amylolytic enzyme inhibition by OSA. Loading efficiency (LE) showed no significant difference between OP and PO microcapsules (≈70 %), both significantly higher other starch microcapsules. OP and PO microcapsules exhibited sustained release, with enhanced antibacterial activity. Alginate hydrogels preserved about 60 % antioxidant and 90 % antibacterial activities of SEO against 2 h of UV radiation. These findings suggest that the order of modification could not affect the functional properties of final microcapsules. Additionally, the importance of alginate hydrogels as the protective and second wall material was disclosed.
Collapse
Affiliation(s)
- Shahriyar Sahraeian
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mahboubeh Fazaeli
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
24
|
Boualis H, Wu X, Wang B, Li Q, Liu M, Zhang L, Lyu M, Wang S. Dextranase Production Using Marine Microbacterium sp. XD05 and Its Application. Mar Drugs 2023; 21:528. [PMID: 37888463 PMCID: PMC10607964 DOI: 10.3390/md21100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Dextranase, also known as glucanase, is a hydrolase enzyme that cleaves α-1,6 glycosidic bonds. In this study, a dextranase-producing strain was isolated from water samples of the Qingdao Sea and identified as Microbacterium sp. This strain was further evaluated for growth conditions, enzyme-producing conditions, enzymatic properties, and hydrolysates. Yeast extract and sodium chloride were found to be the most suitable carbon and nitrogen sources for strain growth, while sucrose and ammonium sodium were found to be suitable carbon and nitrogen sources for fermentation. The optimal pH was 7.5, with a culture temperature of 40 °C and a culture time of 48 h. Dextranase produced by strain XD05 showed good thermal stability at 40 °C by retaining more than 70% relative enzyme activity. The pH stability of the enzyme was better under a weak alkaline condition (pH 6.0-8.0). The addition of NH4+ increased dextranase activity, while Co2+ and Mn2+ had slight inhibitory effects on dextranase activity. In addition, high-performance liquid chromatography showed that dextran is mainly hydrolyzed to maltoheptanose, maltohexanose, maltopentose, and maltootriose. Moreover, it can form corn porous starch. Dextranase can be used in various fields, such as food, medicine, chemical industry, cosmetics, and agriculture.
Collapse
Affiliation(s)
- Hind Boualis
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Boyan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; (H.B.); (X.W.); (B.W.); (Q.L.); (M.L.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
25
|
Lei H, Liao Z, Wang L, Zeng X, Han Z. Pulsed Electric Field-Assisted Enzymatic and Alcoholic-Alkaline Production of Porous Granular Cold-Water-Soluble Starch: A Carrier with Efficient Zeaxanthin-Loading Capacity. Foods 2023; 12:3189. [PMID: 37685122 PMCID: PMC10487166 DOI: 10.3390/foods12173189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, porous starch was modified using pulsed electric field (PEF) pretreatment and alcoholic-alkaline treatment to prepare porous granular cold-water-soluble starch (P-GCWSS). The soluble porous starch has high adsorption capability and high cold water solubility, allowing effective encapsulation of zeaxanthin and improving zeaxanthin's water solubility, stability, and bioavailability. The physical and chemical properties of GCWSS and complex were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results showed that the cold water solubility of the pulsed electric field-treated porous granular cold-water-soluble starch (PEF-P-GCWSS) increased by 12.81% compared to granular cold-water-soluble starch (GCWSS). The pulsed electric field treatment also increased the oil absorption of PEF-P-GCWSS was improved by 15.32% compared to porous granular cold-water-soluble starch (P-GCWSS). PEF-P-GCWSS was effective in encapsulating zeaxanthin, which provided a good protection for zeaxanthin. The zeaxanthin-saturated solubility in water of PPG-Z was increased by 56.72% compared with free zeaxanthin. The zeaxanthin embedded in PEF-P-GCWSS was able to be released slowly during gastric digestion and released rapidly during intestinal digestion.
Collapse
Affiliation(s)
- Huanqing Lei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Zhongjuan Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
| | - Langhong Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
| | - Xinan Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Preparatory Office of Yangjiang Applied Undergraduate College, Yangjiang 529500, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (H.L.); (Z.L.)
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; (L.W.); (X.Z.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| |
Collapse
|
26
|
Jorge FF, Edith CC, Eduardo RS, Jairo SM, Héctor CV. Hydrothermal processes and simultaneous enzymatic hydrolysis in the production of modified cassava starches with porous-surfaces. Heliyon 2023; 9:e17742. [PMID: 37539223 PMCID: PMC10395141 DOI: 10.1016/j.heliyon.2023.e17742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
The amylolytic action of α-amylase and amyloglucosidase has been directly implemented in native cassava starches for the formation of cassava microporous granules with unsatisfactory results, however, its incidence in hydrothermally treated granules has never been evaluated. The effect of hydrothermal processes and simultaneous enzymatic hydrolysis on the physicochemical, morphological and structural properties of native cassava starch was evaluated. Native cassava starch presented a rigid, smooth surface, and was exempt from porosities, whereas hydrothermal processes altered the semicrystalline order and increasing the size and number of pores and increasing the size (4.11 ± 0.09 nm) and volume of pores (0.82 ± 0.00 cm3/g × 10-3). The hydrothermal action followed by enzymatic processes with α-amylase and amyloglucosidase, augmented the processes of internal degradation (endo-erosion) and pore widening (exo-erosion), improving the hydrophilic properties compared to the hydrothermal treatment. Likewise, the hydrothermally process followed by enzymatic hydrolysis for 24 h (HPS + EMS-24) increased the degradation of the amorphous lamellae, consistent with a significant decrease in amylose content. This same dual treatment increased the pore size at 17.68 ± 0.13 nm relative to the native counterpart; therefore, they are considered an effective method in the development of modified cassava starches with porous surfaces.
Collapse
|
27
|
Yaowiwat N, Madmusa N, Yimsuwan K. Potential of Thai aromatic fruit (Artocarpus species) seed as an alternative natural starch for compact powder. Int J Biol Macromol 2023; 242:124940. [PMID: 37210058 DOI: 10.1016/j.ijbiomac.2023.124940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
This study aims to extract the starch from seeds of the Thai aromatic fruit (Artocarpus species), champedak (Artocarpus integer) and jackfruit (Artocarpus heterophyllus L.) and evaluate its potential use as a raw material to develop compact powder as substitute for talcum in powder formulations. The chemical and physical characteristics as well as the physicochemical properties of the starch were also determined. Moreover, compact powder formulations using the extracted starch as an ingredient were developed and investigated. This study found that champedak (CS) and jackfruit starch (JS) provided a maximum average granule size of 10 μm. The bell or semi-oval shape and smooth surface of the starch granules was perfectly suited to compact powder development under the cosmetic powder pressing machine, which could reduce the opportunity of fracture during the process. CS and JS presented low swelling power and solubility but high water and oil absorption capacities, which could potentially increase the absorbency of the compact powder. Finally, the developed compact powder formulations provided a smooth surface with a homogeneous and intense colour. All formulations presented a highly adhesive property and were resistant to transport and normal handling by users.
Collapse
Affiliation(s)
- Nara Yaowiwat
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Natacha Madmusa
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kittreevara Yimsuwan
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
28
|
Geng C, Lin R, Yang P, Liu P, Guo L, Cui B, Fang Y. Highly selective adsorption of Hg (II) from aqueous solution by three-dimensional porous N-doped starch-based carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52107-52123. [PMID: 36826770 DOI: 10.1007/s11356-023-26002-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
For the first time, N-doped carbon materials with 3D porous-layered skeleton structure was synthesized through a one-step co-pyrolysis method, which was fabricated by co-pyrolysis of natural corn starch and melamine using metal catalysts (Ni (II) and Mn (II)). The 3D-NC possessed a heterogeneously meso-macroporous surface with a hierarchically connected sheet structure inside. Batch adsorption experiments suggested that highly selective adsorption of Hg (II) by the 3D-NC could be completed within 90 min and had maximum adsorption capacities as high as 403.24 mg/g at 293 K, pH = 5. The adsorption mechanism for Hg (II) was carefully evaluated and followed the physical adsorption, electrostatic attraction, chelation, and ion exchange. Besides, thermodynamic study demonstrated that the Hg (II) adsorption procedure was spontaneous, endothermic, and randomness. More importantly, the 3D-NC could be regenerated and recovered well after adsorption-desorption cycles, showing a promising prospect in the remediation of Hg (II)-contaminated wastewater.
Collapse
Affiliation(s)
- Chao Geng
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ruikang Lin
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Peilin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| |
Collapse
|
29
|
Ultrasound-assisted activation amylase in the presence of calcium ion and effect on liquefaction process of dual frequency ultrasonicated potato starch. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
30
|
Wu A, Fang Z, Qin J, Huang Z, Wu Z. Characterization and adsorption-release property of fermented porous starch as well as its bioactivity protection for guava leaf polyphenols. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
31
|
Li Q, Wang L, Zheng M, Lu H, Liu Y, Wang Y, Lu S. Microencapsulation with Different Starch-Based Polymers for Improving Oxidative Stability of Cold-Pressed Hickory ( Carya cathayensis Sarg.) Oil. Foods 2023; 12:foods12050953. [PMID: 36900470 PMCID: PMC10000867 DOI: 10.3390/foods12050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Hickory (Carya cathayensis Sarg.) oil is a nutrient-dense edible woody oil, with its unsaturated fatty acids accounting for more than 90% of total ones, and liable to oxidation spoilage. To efficiently improve its stability and expand its application fields, the microencapsulation of cold-pressed hickory oil (CHO) by the molecular embedding method and freeze-drying technique was performed using malt dextrin (MD), hydroxylpropyl-β-cyclodextrin (HP-β-CD), β-cyclodextrin (β-CD), or porous starch (PS) as a wall material. Two wall materials and/or their CHO microcapsulates (CHOM) with higher encapsulation efficiencies (EE) were selected to carry out physical and chemical characterizations using laser particle size diffractometer, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, derivative thermogravimetry, and oxidative stability tests. Results indicated β-CDCHOM and PSCHOM had significantly higher EE values (80.40% and 75.52%) than MDCHOM and HP-β-CDCHOM (39.36% and 48.32%). The particle sizes of the two microcapsules selected were both widely distributed with their spans being more than 1 µm and a certain degree of polydispersity. Microstructural and chemical characterizations indicated that β-CDCHOM had comparatively stable structure and good thermal stability compared with PSCHOM. Storage performances under light, oxygen, and temperature showed that β-CDCHOM was superior to PSCHOM, especially in terms of thermal and oxidative stability. This study demonstrates that β-CD embedding can be applied to improve the oxidative stability of vegetable oils such as hickory oil and act as a means of preparing functional supplementary material.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hanyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinying Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yangguang Wang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (Y.W.); (S.L.); Tel./Fax: +86-571-86417306 (S.L.)
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Y.W.); (S.L.); Tel./Fax: +86-571-86417306 (S.L.)
| |
Collapse
|
32
|
Davoudi Z, Azizi MH, Barzegar M. Porous corn starch obtained from combined cold plasma and enzymatic hydrolysis: Microstructure and physicochemical properties. Int J Biol Macromol 2022; 223:790-797. [PMID: 36370859 DOI: 10.1016/j.ijbiomac.2022.11.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
The combined effect of cold plasma treatment and enzymatic hydrolysis was investigated on the physicochemical and microstructural properties of porous corn starch. Scanning electron microscopy (SEM) images depicted that the combined treatment led to the creation of deeper pores on the surface of starch granules. The combined treatment indicated the highest swelling power (19.49 g/g), solubility (10.08 %), specific surface area (2.97 m2/g) and total pore volume (10.47 cm3/g). According to the X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC), the combined treatment, compared with the enzymatic hydrolysis, decreased the starch crystallinity, the order of the double-helix structure, and the starch gelatinization enthalpy. The rapid visco analyzer (RVA) pasting profile revealed that the combined treatment elevated the breakdown and setback viscosities. This study indicated that cold plasma pretreatment, as a green non-thermal technology, facilitated the performance of enzymes, resulting in the production of a porous starch with a higher absorption capacity.
Collapse
Affiliation(s)
- Zahra Davoudi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hossein Azizi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
33
|
Piloni RV, Bordón MG, Barrera GN, Martínez ML, Ribotta PD. Porous Microparticles of Corn Starch as Bio-Carriers for Chia Oil. Foods 2022; 11:4022. [PMID: 36553764 PMCID: PMC9778643 DOI: 10.3390/foods11244022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 12/09/2022] [Indexed: 12/16/2022] Open
Abstract
Native corn starch and pretreated corn starch were treated with α-amylase, glucoamylase and mixtures of both to generate starches with high porosity with conserved granular structure. Porous starches were characterized; particle size distribution analysis, nitrogen adsorption-desorption analysis, scanning electron microscopy, water and oil adsorption capacity, differential scanning calorimeter, X-ray diffraction and damaged starch techniques were used. The α-amylase/glucoamylase mixture at the highest dose was the best treatment to generate porous starches with interesting adsorption capacity and granular structure conservation. Selected starches were impregnated with chia oil using a vacuum. Pretreated corn starch modified with the α-amylase/glucoamylase mixture showed no significant differences on impregnation capacity compared with native starch with a similar enzyme treatment. The highest oxidative stability was achieved with pretreated porous starch impregnated with 10 to 25% chia oil, compared with the bulk oil (5.37 to 4.72 and 2.58 h, respectively). Results have demonstrated that vacuum impregnation could be a potential technique for the incorporation of oil in porous structures based on starch and porous starches obtained by enzymatic hydrolysis are a promising material for the incorporation and protection of oils susceptible to oxidation.
Collapse
Affiliation(s)
- Roxana V. Piloni
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - M. Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Gabriela N. Barrera
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
| | - Marcela L. Martínez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Pablo D. Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Juan Filloy S/N, Córdoba X5000HUA, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA-FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
- Departamento de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Av. Vélez Sarsfield 1611, Córdoba X5016GCA, Argentina
| |
Collapse
|
34
|
Jiang K, Wang W, Ma Q, Wang J, Sun J. Microwave-assisted enzymatic hydrolysis as a novel efficient way to prepare porous starch. Carbohydr Polym 2022; 301:120306. [DOI: 10.1016/j.carbpol.2022.120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
35
|
Xu Y, Rashwan AK, Osman AI, Abd El-Monaem EM, Elgarahy AM, Eltaweil AS, Omar M, Li Y, Mehanni AHE, Chen W, Rooney DW. Synthesis and potential applications of cyclodextrin-based metal-organic frameworks: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 21:447-477. [PMID: 36161092 PMCID: PMC9484721 DOI: 10.1007/s10311-022-01509-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 μm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.
Collapse
Affiliation(s)
- Yang Xu
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, 83523 Egypt
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| | | | - Ahmed M. Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | | | - Mirna Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yuting Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang China
| | - Abul-Hamd E. Mehanni
- Department of Food Science and Nutrition, Faculty of Agriculture, Sohag University, Sohag, 82524 Egypt
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang-Egypt Joint Laboratory for Comprehensive Utilization of Agricultural Biological Resources and Development of Functional Foods, Zhejiang University, Hangzhou, 310058 China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100 China
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, BT9 5AG Northern Ireland UK
| |
Collapse
|
36
|
Freeze Moisture Treatment and Ozonation of Adlay Starch (Coix lacryma-jobi): Effect on Functional, Pasting, and Physicochemical Properties. Polymers (Basel) 2022; 14:polym14183854. [PMID: 36146001 PMCID: PMC9504366 DOI: 10.3390/polym14183854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Adlay starch has great potential as a cereal starch, but it has several weaknesses, namely a low swelling volume, low solubility, and low stability. The purpose of this study was to improve the characteristics of adlay starch, such as porosity, functional properties, and pasting properties, through starch modification using freeze moisture treatment (FMT) and ozonation. This study consisted of several treatments, namely FMT, ozonation, and a combination of FMT + ozonation. The results show that the FMT and ozonation generally increased water absorption capacity, swelling volume, solubility, and number of pores of the starch granule. The pasting properties showed an increase in the viscosity of the hot paste and caused a decrease in the gelatinization temperature, breakdown, and setback viscosity. FMT 70% + ozonation produced modified adlay starch with a porous granular surface, swelling volume value of 21.10 mL/g, water absorption capacity of 1.54 g/g, a solubility of 9.20%, and an increase in the amorphous structure but did not cause the emergence of new functional groups. The combination of FMT + ozonation was effective in improving the functional, pasting, and physicochemical properties of adlay starch.
Collapse
|
37
|
Effects of Enzymatic Modification and Cross-Linking with Sodium Phytate on the Structure and Physicochemical Properties of Cyperus esculentus Starch. Foods 2022; 11:foods11172583. [PMID: 36076768 PMCID: PMC9455607 DOI: 10.3390/foods11172583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, C. esculentus porous starch (PS) and C. esculentus cross-linked porous starch (CPS) were prepared by enzymatic modification and sodium phytate cross-linking, and their physicochemical and structural properties were determined. The results showed that the adsorption and emulsification capacities of PS were 1.3606 g/g and 22.6 mL/g, respectively, which were significantly higher than 0.5419 g/g and 4.2 mL/g of C. esculentus starch (NS). The retrogradation curves of starch paste showed that the stability of PS was inferior to that of NS. In addition, the results of texture analysis showed that the gel strength of PS was also significantly reduced relative to NS. The PS exhibited a rough surface with pores and low molecular order and crystallinity according to scanning electron microscope (SEM), fourier infrared spectroscopy (FTIR), and X ray diffractometer (XRD) analyses. As compared to PS, CPS still presented a high adsorption capacity of 1.2744 g/g and the steadiness of starch paste was significantly better. XPS demonstrated the occurrence of the cross-linking reaction. Our results show that enzyme modification and dual modification by combining enzymatic treatment with sodium phytate cross-linking can impart different structures and functions to starch, creating reference material for the application of modified starch from C. esculentus.
Collapse
|
38
|
Enzymatically modified quinoa starch-based Pickering emulsion: Effect of enzymolysis and emulsifying conditions. Int J Biol Macromol 2022; 219:824-834. [PMID: 35963347 DOI: 10.1016/j.ijbiomac.2022.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 11/20/2022]
Abstract
Both the effects of enzymolysis condition on the microstructures and emulsifying property of enzymatic modified quinoa starch (EMQS) and the effects of emulsion formulation on the EMQS based emulsions were investigated. The emulsifying capacity (EC) and stability (ES) of EMQS were positive correlated with enzyme amount (0-2.4 % w/wstarch). The particle sizes of EMQS decreased and its hydrophobicity increased with increasing enzyme amount (0-2.4 % w/wstarch), which were the main reasons for the increasing emulsifying performance of EMQS. With the increasing starch concentration, the EC of the EMQS increased, the oil droplet size of the emulsion decreased. With the oil/water ratios ranging from 1:9 to 6:4, the emulsification index (EI) and oil droplet size of the emulsion increased. EMQS based emulsion had a relatively good stability in the pH range of 2-10. This study lays the foundation for the application of EMQS as a stable clean-label Pickering emulsifier.
Collapse
|
39
|
Preparation, Characterization, and Application of Modified Starch/Chitosan/Sweet Orange Oil Microcapsules. Foods 2022; 11:foods11152306. [PMID: 35954073 PMCID: PMC9368646 DOI: 10.3390/foods11152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Aquatic products have an important role in global agriculture, but the challenges associated with preservation have limited their marketability. Essential oil (EO), such as sweet orange oil (SOEO), has been widely used for preservation due to its excellent antibacterial ability. However, the volatilization of EO limits its application in food preservation. In this study, SOEO was extracted from sweet orange peel by steam distillation and then stored in microcapsules. The components of the microcapsules were as follows: the porous starch was chosen as an adsorbed substrate to store SOEO (PS/SOEO), and sodium alginate (SA) and chitosan (CMCS) were used as shell material to delay the volatilization of SOEO using the sharp pore coagulation method. Our results showed that the main antibacterial ingredients in SOEO were aldehydes (33.93%) and d-limonene (15.38%). The microcapsules were of an irregular shape (oval), and the size of the microcapsules was 1.2 ± 0.1 cm as measured by a digital micrometer. Scanning electron microscopy (SEM) results showed that there were a lot of pores on the surface of the starch after modification, but sodium alginate and chitosan could well encapsulate these pores. The results of Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis also showed that SOEO was successful encapsulated into the porous starch. The results of compression test and releasing kinetics studies suggested that CMCS and SA improved the mechanical and slow-releasing ability of SOEO microcapsules. The best antibacterial performance was obtained when 0.8 g of SOEO microcapsules was added. Finally, the shelf life of crawfish could be extended to 6 days by SOEO microcapsule (1/10 g, SOEO microcapsule/crawfish) under room temperature. These results provide a systematic understanding of the antibacterial capabilities of sweet orange essential oil microcapsules, which can contribute to the development of preservation methods for aquatic products.
Collapse
|
40
|
|
41
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
42
|
Sathyan S, Nisha P. Optimization and Characterization of Porous Starch from Corn Starch and Application Studies in Emulsion Stabilization. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Castro‐García PG, Vasquez‐Garcia SR, Flores‐Ramirez N, Rico JL, Abdel‐Gawwad HA, García‐González L, Domratcheva‐Lvova L, Fernández‐Quiroz D. Polymeric films prepared from starch and a crosslinker extracted from avocado seeds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Nelly Flores‐Ramirez
- Department of Wood Engineering and Technology Universidad Michoacana de San Nicolás de Hidalgo Morelia Mexico
| | - Jose Luis Rico
- Department of Chemical Engineering Universidad Michoacana de San Nicolás de Hidalgo Morelia Mexico
| | - Hamdy Ahmed Abdel‐Gawwad
- Raw Building Materials Research and Processing Technology Institute Housing and Building National Research Center (HBRC) Cairo Egypt
| | | | - Lada Domratcheva‐Lvova
- Department of Wood Engineering and Technology Universidad Michoacana de San Nicolás de Hidalgo Morelia Mexico
| | | |
Collapse
|
44
|
Vonnie JM, Rovina K, Azhar RA, Huda N, Erna KH, Felicia WXL, Nur’Aqilah MN, Halid NFA. Development and Characterization of the Biodegradable Film Derived from Eggshell and Cornstarch. J Funct Biomater 2022; 13:jfb13020067. [PMID: 35735922 PMCID: PMC9224871 DOI: 10.3390/jfb13020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
In the current study, cornstarch (CS) and eggshell powder (ESP) were combined using a casting technique to develop a biodegradable film that was further morphologically and physicochemically characterized using standard methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology of the ESP/CS film, and the surface of the film was found to have a smooth structure with no cracks, a spherical and porous irregular shape, and visible phase separation, which explains their large surface area. In addition, the energy dispersive X-ray (EDX) analysis indicated that the ESP particles were made of calcium carbonate and the ESP contained carbon in the graphite form. Fourier Transform Infrared Spectroscopy indicated the presence of carbonated minerals in the ESP/CS film which shows that ESP/CS film might serve as a promising adsorbent. Due to the inductive effect of the O–C–O bond on calcium carbonate in the eggshell, it was discovered that the ESP/CS film significantly improves physical properties, moisture content, swelling power, water solubility, and water absorption compared to the control CS film. The enhancement of the physicochemical properties of the ESP/CS film was principally due to the intra and intermolecular interactions between ESP and CS molecules. As a result, this film can potentially be used as a synergistic adsorbent for various target analytes.
Collapse
Affiliation(s)
- Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
- Correspondence: ; Tel.: +60-88-320000 (ext. 8713); Fax: +60-88-320993
| | - Rasnarisa Awatif Azhar
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Md Nasir Nur’Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (R.A.A.); (N.H.); (K.H.E.); (W.X.L.F.); (M.N.N.)
| | - Nur Fatihah Abdul Halid
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| |
Collapse
|
45
|
Wasserman LA, Papakhin AA, Krivandin AV, Filatova AG, Borodina ZM, Plashchina IG. Changes in the Structure, Thermodynamic, and Functional Properties of Maize Starch During Mechanical Processing. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Qian J, Yang H, Mo C, Chen Y, Zhao C. Preparation of porous starch from native starch by using fungal amylase and evaluation of its adsorption property on natural pharmacodynamic compounds. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junqing Qian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Haiyan Yang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Chenghong Mo
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Yan Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| | - Changyan Zhao
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou China
| |
Collapse
|
47
|
Critical melting assisted freeze-thawing treatment as a novel clean-label way to prepare porous starch: Synergistic effect of melting and ice recrystallization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Structure and Menthone Encapsulation of Corn Starch Modified by Octenyl Succinic Anhydride and Enzymatic Treatment. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4556827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In order to improve the ability of starch to absorb menthone, corn starch was modified by enzymatic treatment (amyloglucosidase and α-amylase) combined with octenyl succinic anhydride (OSA) esterification. The oil absorption rate of starch modified by enzymatic treatment followed by OSA (P-OSA) reached 101.33%, whereas that of samples with reverse action sequences (OSA-P) was only 59.67%. The degree of substitution of OSA-P was also generally lower than that of P-OSA. At high OSA addition, OSA-P had a smaller specific surface area with fewer pores because octenyl succinic (OS) groups impeded the enzymatic treatment. Compared with OSA-P, the lamellar structure of P-OSA is sparser and less ordered. Owing to its pores, P-OSA was beneficial for the reaction to occur inside the granules, which was observed by Raman spectroscopy and laser confocal microscopy. At high OSA addition, the loading of P-OSA to menthone could reach 64.34 mg/g.
Collapse
|
49
|
Zhao X, Sun Y, Meng Z, Yang Z, Fan S, Ye T, Yang L, Li T, Gu R, Wu Z, Gan H, Dou G, Qi Y, Liu S. Preparation and characterization of tranexamic acid modified porous starch and its application as a hemostatic agent. Int J Biol Macromol 2022; 200:273-284. [PMID: 35007632 DOI: 10.1016/j.ijbiomac.2021.12.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/05/2022]
Abstract
Effective bleeding control is essential for the reduction of traumatic deaths among civilians and military personnel, particularly for physical visceral and arteriovenous injuries. Materials with good hemostatic properties have recently attracted significant scientific attention. In this study, a novel material of tranexamic acid modified porous starch (TAMPS) was produced through esterification. The structure of the final product was characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The hemostatic effect of TAMPS was preliminarily analyzed via in vitro clotting time, mouse tail amputation model and liver injury model experiments. Hemostatic effect of TAMPS was found to be significantly better than that of the positive control Quickclean. Through the exploration of related hemostatic mechanisms, TAMPS can promote coagulation via rapid fluid absorption and high erythrocyte aggregation capacity. The in vitro cytotoxicity, acute toxicity, and hemolysis tests revealed that TAMPS is safe and nontoxic and has perfect blood compatibility. Therefore, the TAMPS has a great potential for future clinical application as a rapid and multitarget hemostatic material.
Collapse
Affiliation(s)
- Xinhong Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Shandong First Medical University, Taian 271000, China
| | - Yunbo Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhiyuan Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shan Fan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tong Ye
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lei Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruolan Gu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhuona Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Gan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Guifang Dou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongxiu Qi
- Shandong First Medical University, Taian 271000, China.
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
50
|
Ma Y, Wang Z, Wang Y, Zhang S. Molecular insight into the interactions between starch and cuminaldehyde using relaxation and 2D solid-state NMR spectroscopy. Carbohydr Polym 2022; 278:118932. [PMID: 34973750 DOI: 10.1016/j.carbpol.2021.118932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
The interaction between cuminaldehyde and starch mainly governed the effect of further handling on food applications of cuminaldehyde. However, little information is available about the interactions of these components. We utilized relaxation and heteronuclear correlation (HETCOR) solid-state NMR spectroscopy to investigate the interaction between cuminaldehyde and porous starch at molecular level. We found that the interactions occurred mainly through hydrogen bonds. Cuminaldehyde molecules were restricted by starch, which resulted in the limitation of their movements and the longer 1H T1 relaxation time. Furthermore, the well resolved correlated peaks in 2D 1H-13C HETCOR spectrum confirmed the formation of hydrogen bonds. The oxygen atoms at hydroxyl-2,3 of starch were the binding sites, which combined with hydrogens of cuminaldehyde. This present work not only afford a new approach to obtain a molecular understanding of interactions, but also expanded the application of solid-state NMR to investigation of the interaction on functional components.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yuxia Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|