1
|
Yang Z, Wang C, Zhang Z, Yu F, Wang Y, Ding J, Zhao Z, Liu Y. A pH responsive tannic acid/quaternized carboxymethyl chitosan/oxidized sodium alginate hydrogels for accelerated diabetic wound healing and real-time monitoring. Int J Biol Macromol 2024; 264:130741. [PMID: 38460649 DOI: 10.1016/j.ijbiomac.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Treatment of diabetic wounds is a major clinical issue. Diabetic wound dressings have higher requirements for anti-oxidant, antibacterial and wound monitoring properties compared to conventional wound dressings. In this study, a novel tannic acid (TA)/quaternized carboxymethyl chitosan (QCMCS)/oxidized sodium alginate (OSA)@carbon quantum dots (CQD) (TA/QCMCS/OSA@CQD) hydrogels for promoting diabetic wound healing and real-time monitoring have been developed. The TA/QCMCS/OSA@CQD hydrogels exhibited excellent self-healing, antibacterial and antioxidant properties. Besides, these hydrogels possessed good biocompatibility and effective hemostasis in a mouse liver injury model and significantly facilitated the healing process in a diabetic wound model. In addition, these hydrogels can reliable and timely measure the diabetic wound pH information by collecting image signals of hydrogels to monitor the healing status. Therefore, the pH responsive TA/QCMCS/OSA@CQD hydrogels could be utilized as wound dressing for promoting diabetic wound healing and real-time monitoring.
Collapse
Affiliation(s)
- Zhifei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zhiyuan Zhang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yu Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Jianqiang Ding
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
2
|
Chuu J, Lu J, Chang H, Chu Y, Peng Y, Ho Y, Shen P, Cheng Y, Cheng C, Liu Y, Wang C. Attenuative effects of collagen peptide from milkfish ( Chanos chanos) scales on ovariectomy-induced osteoporosis. Food Sci Nutr 2024; 12:116-130. [PMID: 38268910 PMCID: PMC10804110 DOI: 10.1002/fsn3.3746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 01/26/2024] Open
Abstract
Osteoporosis is characterized by low bone mass, bone microarchitecture disruption, and collagen loss, leading to increased fracture risk. In the current study, collagen peptides were extracted from milkfish scales (MS) to develop potential therapeutic candidates for osteoporosis. MS was used to synthesize a crude extract of fish scales (FS), collagen liquid (COL), and hydroxyapatite powder (HA). COL samples were further categorized according to the peptide size of total COL (0.1 mg/mL), COL < 1 kDa (0.1 mg/mL), COL: 1-10 kDa (0.1 mg/mL), and COL > 10 kDa (0.1 mg/mL) to determine it. Semi-quantitative reverse transcription polymerase chain reaction (sqRT-PCR) and immunofluorescence labeling were used to assess the expression levels of specific mRNA and proteins in vitro. For in vivo studies, mice ovariectomy (OVX)-induced postmenopausal osteoporosis were developed, while the sham surgery (Sham) group was treated as a control. Collagen peptides (CP) from MS inhibited osteoclast differentiation in RAW264.7 cells following an insult with nuclear factor kappa-B ligand (RANKL). CP also enhanced osteoblast proliferation in MG-63 cells, possibly through downregulating NFATc1 and TRAP mRNA expression and upregulating ALP and OPG mRNA levels. Furthermore, COL1 kDa also inhibited bone density loss in osteoporotic mice. Taken together, CP may reduce RANKL-induced osteoclast activity while promoting osteoblast synthesis, and therefore may act as a potential therapeutic agent for the prevention and control of osteoporosis.
Collapse
Affiliation(s)
- Jiunn‐Jye Chuu
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Jeng‐Wei Lu
- Biotech Research and Innovation CentreUniversity of CopenhagenCopenhagenDenmark
- The Finsen LaboratoryRigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Hung‐Ju Chang
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - You‐Hsiang Chu
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jen Peng
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yi‐Jung Ho
- Graduate Institute of Life Sciences, National Defense Medical CenterTaipeiTaiwan
- School of Pharmacy, National Defense Medical CenterTaipeiTaiwan
| | - Pei‐Hung Shen
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Yu‐Shuan Cheng
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Chia‐Hui Cheng
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Yi‐Chien Liu
- Department of Biotechnology and Food TechnologyCollege of Engineering, Southern Taiwan University of ScienceTainanTaiwan
| | - Chih‐Chien Wang
- Department of OrthopedicsTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
3
|
Origin of critical nature and stability enhancement in collagen matrix based biomaterials: Comprehensive modification technologies. Int J Biol Macromol 2022; 216:741-756. [PMID: 35908679 DOI: 10.1016/j.ijbiomac.2022.07.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 02/08/2023]
Abstract
Collagen is the most abundant protein in animals and one of the most important extracellular matrices that chronically plays an important role in biomaterials. However, the major concern about native collagen is the lack of its thermal stability and weak resistance to proteolytic degradation. Currently, a series of modification technologies have been explored for critical nature and stability enhancement in collagen matrix-based biomaterials, and prosperously large-scale progress has been achieved. The establishment of covalent bonds among collagen noumenon has been verified assuringly to have pregnant influences on its physicochemical properties and biological properties, enlightening to discuss the disparate modification technologies on specific effects on the multihierarchical structures and pivotal performances of collagen. In this review, various existing modification methods were classified from a new perspective, scilicet whether to introduce exogenous substances, to reveal the basic scientific theories of collagen modification. Understanding the role of modification technologies in the enhancement of collagen performance is crucial for developing novel collagen-based biomaterials. Moreover, the different modification effects caused by the interaction sites between the modifier and collagen, and the structure-activity relationship between the structure of the modifier and the properties of collagen were reviewed.
Collapse
|
4
|
Umar AK, Luckanagul JA, Zothantluanga JH, Sriwidodo S. Complexed Polymer Film-Forming Spray: An Optimal Delivery System for Secretome of Mesenchymal Stem Cell as Diabetic Wound Dressing? Pharmaceuticals (Basel) 2022; 15:867. [PMID: 35890165 PMCID: PMC9324405 DOI: 10.3390/ph15070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes-related wounds have physiological factors that make healing more complicated. High sugar levels can increase microbial infection risk while limiting nutrition and oxygen transfer to the wound area. The secretome of mesenchymal stem cells has been widely known for its efficacy in regenerative therapy. However, applying the secretome directly to the wound can reduce its effectiveness. In this review, we examined the literature on synthesizing the combinations of carboxymethyl chitosan, hyaluronic acid, and collagen tripeptides, as well as the possibility of physicochemical properties enhancement of the hydrogel matrix, which could potentially be used as an optimal delivery system of stem cell's secretome for diabetic wound healing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Felim J, Chen CK, Tsou D, Kuo HP, Kong ZL. Effect of Different Collagen on Anterior Cruciate Ligament Transection and Medial Meniscectomy-Induced Osteoarthritis Male Rats. Front Bioeng Biotechnol 2022; 10:917474. [PMID: 35866033 PMCID: PMC9295145 DOI: 10.3389/fbioe.2022.917474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is a common type of arthritis characterized by degeneration of the articular cartilage and joint dysfunction. Various pharmacological and non-pharmacological techniques have been used to manage these diseases. Due to the diverse therapeutic properties of marine collagen, it has received considerable attention in its pharmacological application. Thus, the purpose of this study was to compare the efficacy of jellyfish collagen, collagen peptide, other sources of marine collagen, and glycine in treating OA. In the OA rat model, an anterior cruciate ligament transection combined with medial meniscectomy surgery (ACLT + MMx) was used to induce osteoarthritis in rats. Two weeks before surgery, male Sprague-Dawley rats were fed a chow-fat diet. After 6 weeks of treatment with collagen, collagen peptide, and glycine, the results show that they could inhibit the production of proinflammatory cytokines and their derivatives, such as COX-2, MMP-13, and CTX-II levels; therefore, it can attenuate cartilage degradation. Moreover, collagen peptides can promote the synthesis of collagen type II in cartilage. These results demonstrate that collagen and glycine have been shown to have protective properties against OA cartilage degradation. In contrast, collagen peptides have been shown to show cartilage regeneration but less protective properties. Jellyfish collagen peptide at a dose of 5 mg/kg b. w. has the most significant potential for treating OA because it protects and regenerates cartilage in the knee.
Collapse
Affiliation(s)
- Jerrell Felim
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Kai Chen
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - David Tsou
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | | | - Zwe-Ling Kong
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
6
|
Shan T, Huang L, Tay FR, Gu L. Retention of Intrafibrillar Minerals Improves Resin-Dentin Bond Durability. J Dent Res 2022; 101:1490-1498. [PMID: 35708474 DOI: 10.1177/00220345221103137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The concept of extrafibrillar demineralization involves selective removal of apatite crystallites from the extrafibrillar spaces of mineralized dentin without disturbing the intrafibrillar minerals within collagen. This helps avoiding activation of endogenous proteases and enables air-drying of partially demineralized dentin without causing collapse of completely demineralized collagen matrix that adversely affects resin infiltration. The objective of the present study was to evaluate the potential of quaternized carboxymethyl chitosan (QCMC)-based extrafibrillar demineralization in improving resin-dentin bond durability. Isothermal titration calorimetry indicated that QCMC synthesized by quaternization of O-carboxymethyl chitosan had moderate affinity for Ca2+ (binding constant: 8.9 × 104 M-1). Wet and dry bonding with the QCMC-based demineralization produced tensile bond strengths equivalent to the phosphoric acid (H3PO4)-based etch-and-rinse technique. Those bond strengths were maintained after thermocycling. Amide I and PO43- mappings of QCMC-conditioned dentin were performed with atomic force microscope-infrared spectroscopy (AFM-IR). Whereas H3PO4-etched dentin exhibited an extensive reduction in PO43- signals corresponding to apatite depletion, QCMC-conditioned dentin showed scattered dark areas and bright PO43- streak signals. The latter were consistent with areas identified as collagen fibrils in the amide I mapping and were suggestive of the presence of intrafibrillar minerals in QCMC-conditioned dentin. Young's modulus mapping of QCMC-demineralized dentin obtained by AFM-based amplitude modulation-frequency modulation recorded moduli that were the same order of magnitude as those in mineralized dentin and at least 1 order higher than H3PO4-etched dentin. In situ zymography of the gelatinolytic activity within hybrid layers created with QCMC conditioning revealed extremely low signals before and after thermocycling, compared with H3PO4-etched dentin for both wet and dry bonding. Confocal laser scanning microscopy identified the antibacterial potential of QCMC against Streptococcus mutans and Enterococcus faecalis biofilms. Taken together, the QCMC-based demineralization retains intrafibrillar minerals, preserves the elastic modulus of collagen fibrils, reduces endogenous proteolytic activity, and inhibits bacteria biofilms to extend dentin bond durability.
Collapse
Affiliation(s)
- T Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - L Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - F R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| |
Collapse
|
7
|
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Mater Today Bio 2022; 15:100330. [PMID: 35789634 PMCID: PMC9250043 DOI: 10.1016/j.mtbio.2022.100330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/08/2023] Open
Abstract
In clinical work, the main challenges for titanium (Ti) implantation are bacterial infection and aseptic loosening, which severely affect the survival rate of implants. The first 4 weeks post-operation is the infection peak phase of implants. Inhibiting implant infection caused by bacteria adhesion and proliferation during the early phase as well as promoting subsequent osteointegration is essential for implant success. Herein, we constructed a quaternary ammonium carboxymethyl chitosan (QCMC), collagen (COL Ⅰ) and hydroxyapatite (HAP) multilayers coating on Ti substrates via a modified layer-by-layer (LBL) technique and polymerization of dopamine. The QCMC/COL/HAP coating exhibited a multi-antibacterial property with a two-phase function: (1) At the first 4 weeks post-operation, the covalently bonded QCMC could be slowly degraded and demonstrated both contact-killing and release-killing properties during the infection peak phase; (2) At the second phase, osteogenesis and osseointegration-promotion capabilities were enhanced by HAP under the effective control of infection. The multifilm coating was degraded for more than 45 days under the action of collagenase Ⅰ, and displayed good biocompatibility in vivo and in vitro. Most importantly, the coating exhibited a long-lasting antibacterial activity for more than 3 months, against the main pathogenic bacteria of peri-implant infections. Both in vitro studies and in vivo animal models revealed a desirable osteogenic differentiation capacity of Ti-CCH. Therefore, our study reports a two-phase, long-lasting multi-antibacterial coating on Ti-CCH and indicates potential applications of the modified LBL strategy in orthopaedic fields, which is enlightening for developing practical implant and scaffold materials. Developing a QCMC/COL/HAP multifilm coating via modified layer-by-layer technique and self-polymerization of dopamine. The QCMC/COL/HAP coating exhibited desirable mechanical properties and excellent biocompatibility. The release kinetics endowed the QCMC/COL/HAP coating with multi-antibacterial activity at the first phase after operation. The QCMC/COL/HAP coating could improve osseointegration at the second phase of post-operation.
Collapse
|
8
|
Al-Akayleh F, Jaber N, Al-Remawi M, Al Odwan G, Qinna N. Chitosan-biotin topical film: Preparation and evaluation of burn wound healing activity. Pharm Dev Technol 2022; 27:479-489. [DOI: 10.1080/10837450.2022.2079132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Nisrein Jaber
- Faculty of Pharmacy, Al-Zaytoonah University, Amman, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Ghazi Al Odwan
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| | - Nidal Qinna
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan.
| |
Collapse
|
9
|
Acylated carboxymethyl chitosan grafted with MPEG-1900 as a high-efficiency demulsifier for O/W crude oil emulsions. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
10
|
Tripathi D, Sharma A, Tyagi P, Beniwal CS, Mittal G, Jamini A, Singh H, Tyagi A. Fabrication of Three-Dimensional Bioactive Composite Scaffolds for Hemostasis and Wound Healing. AAPS PharmSciTech 2021; 22:138. [PMID: 33880661 DOI: 10.1208/s12249-021-02010-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022] Open
Abstract
Fabrication of 3D composite scaffolds was carried out by lyophilization of variable concentrations of collagen and chitosan gel solutions. Fibrinogen and thrombin aerosol were deposited over the surface of scaffolds to enhance hemostasis and wound healing. Composite scaffolds were characterized using differential scanning calorimetry, thermogravimetric analysis, and Fourier-transform infrared spectrophotometer to ascertain the aerosol deposition and stability. Scanning electron microscope showed multilayered porosity with pore size of ~30 μm and mushroom-like fibril growth of aerosol. A detailed investigation by surface plasmon resonance confirmed higher binding affinity of collagen toward the human blood platelets and erythrocytes in comparison to chitosan and was found to increase with the increase in blood cell concentration from 480.8 to 886.4 RU for erythrocytes. Scaffolds showed higher binding response for platelets than erythrocytes, while fibrinogen and thrombin showed no or limited interaction. Highest blood sorption of 83 ± 4% was observed in case of aerosol deposited scaffolds. Aerosol deposited scaffolds showed minimum clotting time of 20 ± 3 s and bleeding time of 38 ± 4 s, which was significantly lower compared to the scaffolds without aerosol treatment. Aerosol deposited composite scaffolds with 2:1 concentration of chitosan/collagen showed complete wound contraction by day 14, while 50% was observed in case of the control group. In vivo studies revealed that chitosan had a crucial role in the inflammatory phase, while collagen played an important role in the proliferation and maturation phase. The present study suggests that the fabricated 3D composite scaffolds with bioactive moieties may be a potential candidate for enhanced hemostasis and wound healing applications.
Collapse
|
11
|
Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021; 32:448-465. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptides are signaling epitopes that control many vital biological events. Increased specificity, synthetic feasibility with concomitant lack of toxicity, and immunogenicity make this emerging class of biomolecules suitable for different applications including therapeutics, diagnostics, and biomedical engineering. Further, chitosan, a naturally occurring linear polymer composed of d-glucosamine and N-acetyl-d-glucosamine units, possesses anti-microbial, muco-adhesive, and hemostatic properties along with excellent biocompatibility. As a result, chitosan finds application in drug/gene delivery, tissue engineering, and bioimaging. Despite these applications, chitosan demonstrates limited cell adhesion and lacks biosignaling. Therefore, peptide-chitosan hybrids have emerged as a new class of biomaterial with improved biosignaling properties and cell adhesion properties. As a result, recent studies encompass increased application of peptide-chitosan hybrids as composites or conjugates in drug delivery, cell therapy, and tissue engineering and as anti-microbial material. This review discusses the recent investigations involving chitosan-peptide materials and uncovers various aspects of these interesting hybrid materials for biomedical applications.
Collapse
|
12
|
Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr Polym 2021; 252:117210. [DOI: 10.1016/j.carbpol.2020.117210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
|
13
|
Cheng Y, Lu S, Hu Z, Zhang B, Li S, Hong P. Marine collagen peptide grafted carboxymethyl chitosan: Optimization preparation and coagulation evaluation. Int J Biol Macromol 2020; 164:3953-3964. [DOI: 10.1016/j.ijbiomac.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022]
|
14
|
Hu W, Liu M, Yang X, Zhang C, Zhou H, Xie W, Fan L, Nie M. Modification of chitosan grafted with collagen peptide by enzyme crosslinking. Carbohydr Polym 2019; 206:468-475. [DOI: 10.1016/j.carbpol.2018.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/30/2022]
|
15
|
Hu Z, Lu S, Cheng Y, Kong S, Li S, Li C, Yang L. Investigation of the Effects of Molecular Parameters on the Hemostatic Properties of Chitosan. Molecules 2018; 23:E3147. [PMID: 30513622 PMCID: PMC6321099 DOI: 10.3390/molecules23123147] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/19/2023] Open
Abstract
Hemorrhea is one of the major problems in war, trauma care, and surgical operation that threaten the life of the injured and patients. As a novel polymeric hemostatic agent, biodegradable chitosan can stop bleeding through a variety of approaches. In this paper, chitosan with various molecular parameters was prepared from chitin as raw material through deacetylation, oxidative degradation, hydrophilic modification, and salt formation reactions. The influence of different polymer parameters on the hemostatic effects of chitosan was investigated by in vitro coagulation time and dynamic coagulation assay. The results showed that when the molecular weights were high (10⁵⁻10⁶) and approximate, the coagulation effect of chitosan improved with a decrease of the deacetylation degree and achieved a prominent level in a moderate degree of deacetylation (68.36%). With the same degree of deacetylation, the higher the molecular weight of chitosan, the better the procoagulant effect. The substituent derivatives and acid salts of chitosan showed significant procoagulant effects, especially the acid salts of chitosan. In addition, the hemostasis mechanism of chitosan with various parameters was preliminarily explored by analyzing the plasma recalcification time (PRT). The efforts in this paper laid a basis for further study of the structure⁻activity relationship and the mechanism of chitosan hemostasis.
Collapse
Affiliation(s)
- Zhang Hu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Sitong Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yu Cheng
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Songzhi Kong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Sidong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengpeng Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Lei Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
16
|
Qiao J, Liu Y, Jiang Z, Yang Y, Liu W, Han B. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy. Carbohydr Polym 2018; 201:347-356. [PMID: 30241828 DOI: 10.1016/j.carbpol.2018.06.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
Abstract
Carboxymethyl chitosan oligosaccharide (CMCOS), the hydrolytic product of carboxymethyl chitosan, is nontoxic, easily absorbable and good antioxidant. In this study, CMCOS was prepared and its properties in adriamycin nephropathy therapy were investigated. Our results showed that CMCOS had good curative effects on renal function and parenchymal injury induced by adriamycin. CMCOS administration significantly relieved symptoms of proteinuria, hypoalbuminemia, hyperlipidemia, renal hyperplasia and histological lesions in rats (P < 0.01). Further exploration for the underlying mechanisms indicated that CMCOS treatment reduced macrophage accumulation, myofibroblast transdifferentiation and podocyte apoptosis. CMCOS treatment could regulate secretions of cytokines (IL-1β, TNF-ɑ and TGF-β1) and improve activities of antioxidative enzymes (SOD, GSH-Px) (P < 0.01). In conclusion, therapeutic effects of CMCOS on renal injury mediated by inflammation, fibrosis and oxidative stress made it a good kidney health product and a promising candidate in clinical treatment of human chronic kidney disease.
Collapse
Affiliation(s)
- Jing Qiao
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yuying Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
17
|
Chen YP, Liang CH, Wu HT, Pang HY, Chen C, Wang GH, Chan LP. Antioxidant and anti-inflammatory capacities of collagen peptides from milkfish ( Chanos chanos) scales. Journal of Food Science and Technology 2018; 55:2310-2317. [PMID: 29892131 DOI: 10.1007/s13197-018-3148-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 11/24/2022]
Abstract
Milkfish (Chanos chanos), which is resistant to water quality changes is the fourth largest aquaculture commodity. Abandoned wastes of fish scale and bones aggravate environmental pollution. In this study, the effect of collagen peptides isolated from milkfish scales (MSCP) by pepsin-soluble collagen method on cell viability was investigated. The antioxidant, anti-inflammatory, and DNA-protective activities of MSCP were also evaluated. Results revealed that more than 95% of viable cells were retained in human keratinocytes after addition of 100 mg/mL MSCP. Measurement of DPPH· and ABTS· + radical scavenging activities and cellular reactive oxygen species revealed the high antioxidant activities of MSCP. MSCP demonstrated anti-inflammatory activities by reducing lipoxygenase activity and nitric oxide (NO·) radicals. Moreover, DNA electrophoresis assay indicated that MSCP treatment can directly protect against cyclobutane di-pyrimidine production and DNA single-strand breaks, which are harmful effects of UV radiation and H2O2. Given its antioxidant, anti-inflammatory, and DNA-protective activities, MSCP has potential applications in cosmeceuticals and supplementary health food.
Collapse
Affiliation(s)
- Yu-Pei Chen
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361023 Fujian China
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Chia-Hua Liang
- 3Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Hong-Tan Wu
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361023 Fujian China
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Hai-Yue Pang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361023 Fujian China
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Chuan Chen
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361023 Fujian China
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fuijan Province, Xiamen Medical College, Xiamen, 361023 Fujian China
| | - Leong-Perng Chan
- 5Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Min L, Liu M, Liu L, Rao Z, Zhu C, Fan L. Enzymatic synthesis of quaternary ammonium chitosan-silk fibroin peptide copolymer and its characterization. Int J Biol Macromol 2018; 109:1125-1131. [DOI: 10.1016/j.ijbiomac.2017.11.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
|
19
|
Fan G, Lyu R, Gao X, Liang C, Wang C. MPEG grafted quaternized carboxymethyl chitosan for demulsification of crude oil emulsions. J Appl Polym Sci 2017. [DOI: 10.1002/app.45867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guangtan Fan
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Renliang Lyu
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Xiao Gao
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Cheng Liang
- Key Laboratory of Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| | - Cunwen Wang
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; Wuhan 430205 China
| |
Collapse
|
20
|
Wang XN, Qin M, Feng YY, Chen JK, Song YS. Enzymatic hydrolysis of Grass Carp fish skin hydrolysates able to promote the proliferation of Streptococcus thermophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4235-4241. [PMID: 28251668 DOI: 10.1002/jsfa.8299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 01/16/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The promotion effect on proliferation of Streptococcus thermophilus by enzymatic hydrolysates of aquatic products was firstly studied. The effect of influencing factors of the hydrolysis on the growth of S. thermophilus was investigated. RESULT Grass Carp fish skin was hydrolysed to peptides by enzymatic hydrolysis using protease ProteAX, and for the S. thermophilus growth, the optimal enzymatic hydrolysis conditions were temperature of 60 °C, initial pH of 9.0, enzyme concentration of 10 g kg-1 , hydrolysis time of 80 min, and ratio of material to liquid of 1:2. The Grass Carp fish skin hydrolysate (GCFSH) prepared under the optimum conditions was fractionated to five fragments (GCFSH 1, GCFSH 2, GCFSH 3, GCFSH 4, GCFSH 5) according to molecular weight sizes, in which the fragments GCFSH 4 and GCFSH 5, with molecular weights of less than 1000 Da, significantly promoted the growth of S. thermophilus. CONCLUSION The hydrolysis process of Grass Carp fish skin can be simplified, and the peptides with molecular weights below 1000 Da in the hydrolysates are the best nitrogen source for proliferation of S. thermophilus. This work can provide a fundamental theoretical basis for the production of multi-component functional foods, especially in milk drinks or yogurt. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Mei Qin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yu-Ying Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Jian-Kang Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Yi-Shan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| |
Collapse
|
21
|
Min L, Liu M, Zhu C, Liu L, Rao Z, Fan L. Synthesis and in vitro antimicrobial and antioxidant activities of quaternary ammonium chitosan modified with nisin. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:2034-2052. [PMID: 28816602 DOI: 10.1080/09205063.2017.1368615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nisin had been grafted onto quaternary ammonium chitosan (QCS) through an enzyme-catalyzed reaction to enhance its limited antimicrobial activity. QCS was synthesized by incorporating N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHPTAC) onto chitosan's primary amine group. The modification had been confirmed by FT-IR and 1H NMR spectroscopy. Degree of substitution (DS) of QCS-nisin could be controlled by adjusting the reaction conditions. The synthesized compounds were screened in vitro to evaluate their antimicrobial and antioxidant activities. The results suggested that QCS-nisin significantly suppressed the growth of both gram-positive bacteria and gram-negative bacteria; The antioxidant effects on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, hydroxyl radical and hydrogen peroxide (H2O2) proved to be enhanced with increasing DS and concentration. In addition, QCS-nisin showed excellent moisture absorption and retention properties; MTT assay exhibited that QCS-nisin revealed low cytotoxicity effects on cultured NIH-3T3 fibroblasts. These results suggest that QCS-nisin would appear to be a promising candidate for wound dressing application.
Collapse
Affiliation(s)
- Lian Min
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Meng Liu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Chen Zhu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Liangling Liu
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Zhiqie Rao
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| | - Lihong Fan
- a School of Chemistry, Chemical Engineering and Life Sciences , Wuhan University of Technology , Wuhan , China
| |
Collapse
|
22
|
Chen Y, Dan N, Wang L, Liu X, Dan W. Study on the cross-linking effect of a natural derived oxidized chitosan oligosaccharide on the porcine acellular dermal matrix. RSC Adv 2016. [DOI: 10.1039/c6ra03434a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to investigate the cross-linking interaction between a natural derived oxidized chitosan oligosaccharide (OCOS) and the porcine acellular dermal matrix (pADM), and further evaluate the varying properties of the pADM after cross-linked.
Collapse
Affiliation(s)
- Yining Chen
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Nianhua Dan
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Lei Wang
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Xinhua Liu
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Weihua Dan
- Department of Biomass Chemistry and Engineering
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| |
Collapse
|
23
|
Guo H, Hong Z, Yi R. Core-Shell Collagen Peptide Chelated Calcium/Calcium Alginate Nanoparticles from Fish Scales for Calcium Supplementation. J Food Sci 2015; 80:N1595-601. [PMID: 25990921 DOI: 10.1111/1750-3841.12912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED We report simple methods for preparing collagen peptide chelated calcium (cpcc) and a novel cpcc-loaded nanoparticle from marine fish scales for calcium supplementation. Cpcc nanoparticles have an average diameter of approximately 150 nm and a calcium content of up to 130.4 g/kg. Calcium alginate was selected to encapsulate cpcc for the preparation of core-shell cpcc/calcium alginate nanoparticles. The core-shell nanoparticles were mainly 200 to 500 nm in diameter. The ratio of calcium to sulfur was approximately 1.6:1. In vivo experiments indicated both cpcc and core-shell cpcc were able to improve calcium absorption and prevent calcium deficiency. Especially core-shell cpcc worked well to increase femur bone mineral density and femur calcium content in rats significantly. The study demonstrated that cpcc and core-shell cpcc nanoparticles were ideal for calcium supplementation. PRACTICAL APPLICATION Calcium deficiency has become an increasingly relevant health concern in the food industry. There is an urgent need for new effective calcium supplements. This study consisted of preparing and characterizing alginate nanoparticles loaded with collagen peptide chelated calcium. These nanoparticles can enhance calcium absorption significantly and prevent calcium deficiency. The data presented in this study can aid the food industry in developing a new ideal calcium supplement.
Collapse
Affiliation(s)
- Honghui Guo
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Inst. of Oceanography, State Oceanic Administration, No.184 Daxue Road, Xiamen, Fujian Province, 361005, China
| | - Zhuan Hong
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Inst. of Oceanography, State Oceanic Administration, No.184 Daxue Road, Xiamen, Fujian Province, 361005, China
| | - Ruizao Yi
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Inst. of Oceanography, State Oceanic Administration, No.184 Daxue Road, Xiamen, Fujian Province, 361005, China
| |
Collapse
|
24
|
Shevtsov MA, Smagina LV, Kudriavtceva TA, Petlenko SV, Voronkina IV. Glu-Trp-ONa or its acylated analogue (R-Glu-Trp-ONa) administration enhances the wound healing in the model of chronic skin wounds in rabbits. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1717-27. [PMID: 25848208 PMCID: PMC4374713 DOI: 10.2147/dddt.s79665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The management of chronic skin wounds represents a major therapeutic challenge. The synthesized dipeptide (Glu-Trp-ONa) and its acylated analogue (R-Glu-Trp-ONa) were assessed in the model of nonhealing dermal wounds in rabbits in relation to their healing properties in wound closure. Following wound modeling, the rabbits received a course of intraperitoneal injections of Glu-Trp-ONa or R-Glu-Trp-ONa. Phosphate-buffered saline and Solcoseryl® were applied as negative and positive control agents, respectively. An injection of Glu-Trp-ONa and R-Glu-Trp-ONa decreased the period of wound healing in animals in comparison to the control and Solcoseryl-treated groups. Acylation of Glu-Trp-ONa proved to be beneficial as related to the healing properties of the dipeptide. Subsequent zymography analyses showed that the applied peptides decreased the proteolytic activity of matrix metalloproteinases MMP-9, MMP-8, and MMP-2 in the early inflammatory phase and reversely increased the activity of MMP-9, MMP-8, and MMP-1 in the remodeling phase. Histological analyses of the wound sections (hematoxylin-eosin, Mallory's staining) confirmed the enhanced formation of granulation tissue and re-epithelialization in the experimental groups. By administering the peptides, wound closures increased significantly through the modulation of the MMPs' activity, indicating their role in wound healing.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia ; IP Pavlov State Medical University of St Petersburg, St Petersburg, Russia
| | - Larisa V Smagina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| | - Tatiana A Kudriavtceva
- Institute of Experimental Medicine of the North-West Branch of the Russian Academy of Medical Sciences (IEM NWB RAMS), St Petersburg, Russia
| | | | - Irina V Voronkina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St Petersburg, Russia
| |
Collapse
|
25
|
Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T, Di Stefano R. Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol 2015; 76:236-41. [PMID: 25748846 DOI: 10.1016/j.ijbiomac.2015.02.041] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
Different strategies have been developed to make the wound-healing process faster and less painful. Recently, numerous studies demonstrated the ability of chitosan to accelerate wound healing. Aim of the present study has been to evaluate the effect of different chitosan derivatives to improve wound healing process. Quaternary ammonium-chitosan conjugates with low or high molecular weight (MW) and their thiolated derivatives effect were studied on human skin fibroblasts in terms of viability and migration (scratch wound assay). Results were compared both with basal medium (untreated cells) and with a positive control (chitosan chlorhydrate). After 24h both high and low MW chitosan derivatives were non-toxic up to 10 μg/ml. The concentration of 10 μg/ml was used for wound healing experiments. High-MW quaternary ammonium-chitosan conjugates bearing thiol groups on their chains were more effective in promoting cell migration than the non-thiolated conjugates and the chitosan chlorhydrate. Moreover, they significantly improve wound healing process compared to untreated cells. According to the present in vitro preliminary results, high MW thiolated quaternary ammonium-chitosan conjugates can be considered good candidates for the management of wounds.
Collapse
Affiliation(s)
- Francesca Felice
- Cardiovascular Research Laboratory, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Paradisa, 2, 56124 Pisa, Italy.
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56100 Pisa, Italy
| | - Ester Belardinelli
- Cardiovascular Research Laboratory, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Paradisa, 2, 56124 Pisa, Italy
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, via Bonanno, 6, 56100 Pisa, Italy
| | - Tatiana Santoni
- Cardiovascular Research Laboratory, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Paradisa, 2, 56124 Pisa, Italy
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Paradisa, 2, 56124 Pisa, Italy
| |
Collapse
|