1
|
Yadav P, Rethinasabapathy M, Dhiman D, Choi YJ, Huh YS, Venkatesu P. Unravelling the Biomolecular Interactions Between Hemoglobin and 2D MXenes: A Breakthrough in Biomedical Approach. ACS APPLIED BIO MATERIALS 2025; 8:3279-3289. [PMID: 40200682 DOI: 10.1021/acsabm.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Taking the potential applications of two-dimensional transition metal carbides, such as MXenes, in biomedical fields, it is crucial to explore the impact of MXenes on various blood proteins. The study of the interaction of these 2D materials with proteins is scarce. Owing to the potential of absorbing proteins on the MXene surface, it is crucial to investigate the biocompatibility of these materials with proteins . In this regard, we successfully investigated the biomolecular interactions between hemoglobin (Hb) and single-layered titanium carbide (Ti3C2Tx-SL), multilayered titanium carbide (Ti3C2Tx-ML), and multilayered vanadium carbide (V2CTx-ML) MXenes for protein-MXene corona formation. The conformational, thermal, and colloidal stabilities of Hb were investigated after exposing MXenes to Hb for 30 min at Hb/MXene ratios of 12:1, 10:1, 8:1, and 6:1 using a combination of spectroscopic techniques, electron microscopy, and thermodynamic stability studies. Our results reveal that Hb adsorption onto MXene surfaces is primarily driven by electrostatic interactions and hydrogen bonding, leading to significant changes in the secondary and tertiary structures of the protein and further disruption in the colloidal stability of Hb. Explicitly, the hierarchy of interactions between Hb and MXenes follows the order: Ti3C2Tx-SL > V2CTx-ML > Ti3C2Tx-ML. The morphological study of Hb with MXenes was studied through transmission electron microscopy (TEM) and atomic force microscopy (AFM). Further, it was found that at high loading concentrations that is above 8:1, the protein-corona formation tendency of Hb-MXene also increases. The biological and toxicological behavior of nanomaterials (NMs) is based on the effect of their interaction with proteins, which induces conformational changes in proteins and subsequently alters their biological functions. In this regard, this article provides important insights for using these MXenes biomedically and for the rational design of nanoproducts based on MXenes in the near future.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Yu Jung Choi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | |
Collapse
|
2
|
Range K, Chiang TK, Pramanik A, Landa JF, Snyder SN, Zuo X, Tiede DM, Utschig LM, Hegg EL, Sutter M, Kerfeld CA, Ralston CY. Chaotrope-Based Approach for Rapid In Vitro Assembly and Loading of Bacterial Microcompartment Shells. ACS NANO 2025; 19:11913-11923. [PMID: 40113598 PMCID: PMC11966763 DOI: 10.1021/acsnano.4c15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles that self-assemble into selectively permeable shells that encapsulate enzymatic cargo. BMCs enhance catalytic pathways by reducing crosstalk among metabolites, preventing harmful intermediates from leaking into the cytosol and increasing reaction efficiency via enzyme colocalization. The intrinsic properties of BMCs make them attractive for biotechnological engineering. However, in vivo expression methods for shell synthesis have significant drawbacks that limit the potential design space for these nanocompartments. Here, we describe the development of an efficient and rapid method for the in vitro assembly of BMC shells from their protein building blocks. Our method enables large-scale construction of BMC shells by utilizing urea as a chaotropic agent to control self-assembly and provides an approach for encapsulation of both biotic and abiotic cargo under a broad range of reaction conditions. We demonstrate an enhanced level of control over the assembly of BMC shells in vitro and expand the design parameter space for engineering BMC systems with specialized and enhanced catalytic properties.
Collapse
Affiliation(s)
- Kyleigh
L. Range
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Timothy K. Chiang
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Arinita Pramanik
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joel F. Landa
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Samuel N. Snyder
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Tiede
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Lisa M. Utschig
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Eric L. Hegg
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| |
Collapse
|
3
|
Yadav B, Yadav N, Venkatesu P. Unravelling the stabilization mechanism of mono-, di- and tri-cholinium citrate-ethylene glycol DESs towards α-chymotrypsin for preservation and activation of the enzyme. Phys Chem Chem Phys 2024; 26:28025-28036. [PMID: 39484836 DOI: 10.1039/d4cp03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Deep eutectic solvents (DESs) are considered as designer solvents that serve as alternatives to traditional solvents. Numerous favourable properties and advantageous characteristics promote their utility in bio-catalysis. Therefore, they have emerged as attractive sustainable media for different biomacromolecules. In the present work, we have synthesized cholinium-based DESs having a hydrogen bond acceptor (HBA) : hydrogen bond donor (HBD) molar ratio of 1 : 2 by varying the cationic ratio in the HBA, which led to the formation of the DESs such as monocholinium citrate ([Chn][Cit]), dicholinium citrate ([Chn]2[Cit]) and tricholinium citrate ([Chn]3[Cit]), keeping the HBD ethylene glycol (EG) constant to study their suitability for α-chymotrypsin (α-CT). Herein, we have systematically evaluated the influence of DES-1 ([Chn][Cit]-[EG]), DES-2 ([Chn]2[Cit]-[EG]) and DES-3 ([Chn]3[Cit]-[EG]) on the structural and thermal stability, thermodynamic profile, colloidal stability and enzymatic activity of α-CT using different spectroscopic techniques. The spectroscopic results explicitly show enhanced structural stability and activity of the enzyme as the cationic ratio in the HBA increases. Fascinatingly, temperature-dependent studies through both fluorescence and activity measurements showed that DES-2 and DES-3 have highly beneficial effects on α-CT stability. The transition temperature (Tm) of α-CT was augmented by 12.0 °C in DES-2, 10.0 °C in DES-3 and 9.1 °C in DES-1 when compared to the enzyme in buffer. Furthermore, transmission electron microscopy (TEM) analysis revealed that the morphology of α-CT in DES-2 and DES-3 closely mirrored the structure of α-CT, while DES-1 exhibited only minor structural deviations. These findings were corroborated by hydrodynamic size (dH) measurements and average decay time analysis, which confirmed the observed morphological similarities and perturbations. The long-term preservation ability and kinetics of DES-3 were eventually confirmed by Michaelis-Menten kinetics. Ultimately, these outcomes demonstrate that increasing the molar ratio of the cholinium cation in the HBA can enhance the ability of DESs to stabilize the α-CT structure. Our results also suggest that the effect imparted by DESs was due to DESs themselves rather than their constituent elements. Altogether, the present investigation provides a new insight into the dependence of protein's stability and conformational alterations on DES composition. Also, the biocompatibility of DESs towards enzymes can be varied by changing the molar ratios of the constituent components of DESs to facilitate the expansion of applicability of DESs in biocatalysis.
Collapse
Affiliation(s)
- Bindu Yadav
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | | |
Collapse
|
4
|
Fatima U, Deenadayalu N, Venkatesu P. An eminent approach towards next generation solvents for sustainable packaging and stability of enzymes: a comprehensive study of ionic liquid and deep eutectic solvent mixtures. Phys Chem Chem Phys 2024; 26:14766-14776. [PMID: 38716816 DOI: 10.1039/d4cp00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid ionic fluids (HIFs) are newly emerging and fascinating sustainable solvent media, which are attracting a great deal of scientific interest in protecting the native structure of proteins. For a few decades, there has been a demand to consider ionic liquids (ILs) and deep eutectic solvents (DESs) as biocompatible solvent media for enzymes; however, in some cases, these solvent media also show limitations. Therefore, this work focuses on synthesising novel HIFs to intensify the properties of existing ILs and DESs by mixing them. Herein, HIFs have been synthesised by the amalgamation of a deep eutectic solvent (DES) and an ionic liquid (IL) with a common cation or anion. Later on, the stability and activity of hen's egg white lysozyme (Lyz) in the presence of biocompatible solvent media and HIFs were studied by various techniques such as UV-vis, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) measurements. This work emphasises the effect of a DES (synthesised using 1 : 2 choline chloride and malonic acid) [Maline], ILs (1-butyl-3-methylimidazolium chloride [BMIM]Cl or choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moreover, we also studied the secondary structure, thermal stability, enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5 M) of [BMIM]Cl and [Chn][Ac] ILs, Maline as a DES, and Maline [BMIM]Cl (HIF1) and Maline [Chn][Ac] (HIF2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz. In contrast, the stability and activity are inhibited by DES and are enhanced by HIFs at all the studied concentrations. Overall, the experimental results studied explicitly elucidate that the structure and stability of Lyz are maintained in the presence of HIF1 while these properties are intensified in HIF2. This study shows various applications in biocompatible green solvents, particularly in the stability and functionality of proteins, due to their unique combination where the properties counteract the negative effect of either DESs or ILs in HIFs.
Collapse
Affiliation(s)
- Urooj Fatima
- Department of Chemistry, University of Delhi, Delhi-110 007, India.
| | - Nirmala Deenadayalu
- Department of Chemistry, Durban University of Technology, Durban - 4000, South Africa.
| | | |
Collapse
|
5
|
Fatima U, Yadav N, Venkatesu P. Sustainable combination of ionic liquid and deep eutectic solvent for protecting and preserving of the protein structure: The synergistic interaction of enzymes and eco-friendly hybrid ionic fluids. Int J Biol Macromol 2024; 268:131997. [PMID: 38697420 DOI: 10.1016/j.ijbiomac.2024.131997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Hybrid ionic fluids (HIFs) are one of the emerging and fascinating sustainable solvent media, a novel environment-friendly solvent for biomolecules. The HIFs have been synthesized by combining a deep eutectic solvent (DES), an ionic liquid (IL) having a common ion. The stability and activity of hen's egg white lysozyme (Lyz) in the presence of a recently designed new class of biocompatible solvents, HIFs have been explored by UV-visible, steady-state fluorescence, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) along with dynamic light scattering (DLS) measurements. This work emphasizes the effect of DES synthesized by using 1:2 choline chloride and glycerol [Glyn], ILs (1-butly-3-methylimidazolium chloride [BMIM]Cl and choline acetate [Chn][Ac]) and their corresponding HIFs on the structure and functionality of Lyz. Moving forward, we also studied the secondary structure, thermal stability and enzymatic activity and thermodynamic profile of Lyz at pH = 7 in the presence of varying concentrations (0.1 to 0.5) M of [BMIM]Cl, [Chn][Ac] ILs, [Glyn] DES and [Glyn][BMIM]Cl (hybrid ionic fluid1) as well as [Glyn][Chn][Ac] (hybrid ionic fluid2). Spectroscopic results elucidate that ILs affect the activity and structural stability of Lyz, whereas the stability and activity are increased by DES and are maintained by HIFs at all the studied concentrations. Overall, the experimental results studied elucidate expressly that the properties of Lyz are maintained in the presence of hybrid ionic fluid1 while these properties are intensified in hybrid ionic fluid2. This work has elucidated expressly biocompatible green solvents in protein stability and functionality due to the alluring properties of DES, which can counteract the negative effect of ILs in HIFs.
Collapse
Affiliation(s)
- Urooj Fatima
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
6
|
Liu H, Wang B, Xing M, Meng F, Zhang S, Yang G, Cheng A, Yan C, Xu B, Gao Y. Thermal stability of exenatide encapsulated in stratified dissolving microneedles during storage. Int J Pharm 2023; 636:122863. [PMID: 36934885 DOI: 10.1016/j.ijpharm.2023.122863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
As low-temperature storage and transportation of peptides require high costs, improving the dosage form of peptides can reduce costs. We developed a thermostable and fast-releasing stratified dissolving microneedle (SDMN) system for delivering exenatide (EXT) to patients with type 2 diabetes. Among the tested polymers, dextran and polyvinyl alcohol (PVA) were the best at stabilizing EXT under high-temperature storage for 9 weeks. The two polymers possess a relatively high glass transition temperature (Tg) and weak hydrogen bonding between PVA and EXT. Additionally, zinc sulfate (ZnSO4) had a stabilizing effect on EXT among the selected stabilizers, suggesting that EXT formed a dimer after coordination with zinc ions (Zn2+). In addition, the denaturation temperature (Tm) of EXT was increased by adding ZnSO4, thus stabilizing EXT. Accordingly, SDMNs consisting of a tip layer (dextran encapsulating the Zn2+-EXT complex) and a base layer (PVA) were fabricated. Within 2 min of implantation, the EXT loaded on the patch was quickly released into the skin. Transdermal pharmacokinetics studies showed that manufactured SDMNs generated comparable efficacy to subcutaneous injection. Significantly, the remaining EXT amount was not significantly different under storage at 40 °C and -20 °C for 3 months, supporting that the SDMN system had excellent delivery efficiency and stability, thus reducing the dependence on the cold chain.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Jinan 250355, China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan 250000, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd., Beijing 102609, China.
| |
Collapse
|
7
|
Das N, Yadav S, Negi KS, Tariff E, Sen P. Microsecond Active-Site Dynamics Primarily control Proteolytic Activity of Bromelain: A Single Molecular Level Study with a Denaturant, a Stabilizer and a Macromolecular Crowder. BBA ADVANCES 2022; 2:100041. [PMID: 37082607 PMCID: PMC10074955 DOI: 10.1016/j.bbadva.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022] Open
Abstract
Proteins are dynamic entity with various molecular motions at different timescale and length scale. Molecular motions are crucial for the optimal function of an enzyme. It seems intuitive that these motions are crucial for optimal enzyme activity. However, it is not easy to directly correlate an enzyme's dynamics and activity due to biosystems' enormous complexity. amongst many factors, structure and dynamics are two prime aspects that combinedly control the activity. Therefore, having a direct correlation between protein dynamics and activity is not straightforward. Herein, we observed and correlated the structural, functional, and dynamical responses of an industrially crucial proteolytic enzyme, bromelain with three versatile classes of chemicals: GnHCl (protein denaturant), sucrose (protein stabilizer), and Ficoll-70 (macromolecular crowder). The only free cysteine (Cys-25 at the active-site) of bromelain has been tagged with a cysteine-specific dye to unveil the structural and dynamical changes through various spectroscopic studies both at bulk and at the single molecular level. Proteolytic activity is carried out using casein as the substrate. GnHCl and sucrose shows remarkable structure-dynamics-activity relationships. Interestingly, with Ficoll-70, structure and activity are not correlated. However, microsecond dynamics and activity are beautifully correlated in this case also. Overall, our result demonstrates that bromelain dynamics in the microsecond timescale around the active-site is probably a key factor in controlling its proteolytic activity.
Collapse
|
8
|
Das N, Khan T, Subba N, Sen P. Correlating Bromelain's activity with its structure and active-site dynamics and the medium's physical properties in a hydrated deep eutectic solvent. Phys Chem Chem Phys 2021; 23:9337-9346. [PMID: 33885064 DOI: 10.1039/d1cp00046b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Deep eutectic solvents (DESs) are emerging as new media of choice for biocatalysis due to their environmentally friendly nature, fine-tunability, and potential biocompatibility. This work deciphers the behaviour of bromelain in a ternary DES composed of acetamide, urea, and sorbitol at mole fractions of 0.5, 0.3, and 0.2, respectively (0.5Ac/0.3Ur/0.2Sor), with various degrees of hydration. Bromelain is an essential industrial proteolytic enzyme, and the chosen DES is non-ionic and liquid at room temperature. This provides us with a unique opportunity to contemplate protein behaviour in a non-ionic DES for the very first time. Our results infer that at a low DES concentration (up to 30% V/V DES), bromelain adopts a more compact structural conformation, whereas at higher DES concentrations, it becomes somewhat elongated. The microsecond conformational fluctuation time around the active site of bromelain gradually increases with increasing DES concentration, especially beyond 30% V/V. Interestingly, bromelain retains most of its enzymatic activity in the DES, and at some concentrations, the activity is even higher compared with its native state. Furthermore, we correlate the activity of bromelain with its structure, its active-site dynamics, and the physical properties of the medium. Our results demonstrate that the compact structural conformation and flexibility of the active site of bromelain favour its proteolytic activity. Similarly, a medium with increased polarity and decreased viscosity is favourable for its activity. The presented physical insights into how enzymatic activity depends on the protein structure and dynamics and the physical properties of the medium might provide useful guidelines for the rational design of DESs as biocatalytic media.
Collapse
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India.
| | | | | | | |
Collapse
|
9
|
Jiang Y, Tian M, Wang Y, Xu W, Guo X. Effect of sulfobetaine surfactant on the activities of bromelain and polyphenoloxidase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Insight into interactions between enzyme and biological buffers: Enhanced thermal stability of stem bromelain. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Tian M, Zhu J, Guo J, Guo X. Activity of Bromelain with Cationic Surfactants and the Correlation with the Change of
1
H NMR
Signals. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maozhang Tian
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC Beijing 100083 China
| | - Jiaxin Zhu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Jingjing Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| | - Xia Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China
| |
Collapse
|
12
|
Wang J, Liu D, Guo X, Yan C. Ammonium and imidazolium-based amphiphilic tetramethoxy resorcinarenes: Adsorption, micellization, and protein binding. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Das N, Sen P. Shape-Dependent Macromolecular Crowding on the Thermodynamics and Microsecond Conformational Dynamics of Protein Unfolding Revealed at the Single-Molecule Level. J Phys Chem B 2020; 124:5858-5871. [DOI: 10.1021/acs.jpcb.0c03897] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP India
| |
Collapse
|
14
|
The modifier action of NiO nanoparticles on the activity, structure, and stability of proteinase K. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02552-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Das N, Sen P. Size-dependent macromolecular crowding effect on the thermodynamics of protein unfolding revealed at the single molecular level. Int J Biol Macromol 2019; 141:843-854. [DOI: 10.1016/j.ijbiomac.2019.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/29/2022]
|
16
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
17
|
Kumar K, Reddicherla U, Rani GM, Pannuru V. How do biological stimuli modulate conformational changes of biomedical thermoresponsive polymer? Colloids Surf B Biointerfaces 2019; 178:479-487. [PMID: 30925371 DOI: 10.1016/j.colsurfb.2019.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022]
Abstract
Continuing efforts to develop stimuli-responsive polymers (SRPs) as novel smart materials/biomaterials are anticipated to upgrade the quality life of humans. The details of the molecular, physico chemical and biophysical interactions between SRPs and proteins are not fully understood. Indeed, protein - polymer interactions play a major role in a wide range of biomedical/biomaterial applications. In this regard, we have demonstrated the influence of proteins (β-lactoglobulin (BLG) and stem bromelain (BM) as biological stimuli) on the phase transition behavior of biomedical thermoresponsive poly(N-isopropylacrylamide) (PNIPAM). In order to predict these, we have used a set of biophysical techniques to unveil the influence of biological stimuli on the phase transition behavior of PNIPAM. Absorption spectroscopy, steady-state fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) were operated at room temperature to examine the changes in absorbance, fluorescence intensity, molecular interactions and surface morphologies, respectively. Furthermore, temperature dependent fluorescence spectroscopy and dynamic light scattering (DLS) studies were also performed to analyze conformational changes, agglomeration behavior, particle size, coil to globule transition and phase behavior. The significant variations obtained in the phase transition temperature values, conformational changes and agglomeration behavior clearly reflects the different molecular interplay induced in presence of biological stimuli. The results demonstrated that the added proteins act as biological stimuli via preferential interactions between the amide group of the polymer and water molecules. The present study can be useful for the design and development of the next generation smart responsive materials/biomaterials.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | | | | | - Venkatesu Pannuru
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
18
|
Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 2019; 131:527-535. [DOI: 10.1016/j.ijbiomac.2019.03.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023]
|
19
|
Kumar PK, Bisht M, Venkatesu P, Bahadur I, Ebenso EE. Exploring the Effect of Choline-Based Ionic Liquids on the Stability and Activity of Stem Bromelain. J Phys Chem B 2018; 122:10435-10444. [DOI: 10.1021/acs.jpcb.8b08173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Meena Bisht
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|
20
|
Chen H, Chen W, Hong B, Zhang Y, Hong Z, Yi R. Determination of trehalose by ion chromatography and its application to a pharmacokinetic study in rats after intramuscular injection. Biomed Chromatogr 2018; 32:e4355. [DOI: 10.1002/bmc.4355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Chen
- State Key Laboratory of Marine Environmental Science, College of The Environment and Ecology; Xiamen University; Xiamen Fujian China
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| | - Weizhu Chen
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| | - Bihong Hong
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| | - Yiping Zhang
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| | - Zhuan Hong
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| | - Ruizao Yi
- Third Institute of Oceanography; State Oceanic Administration; Xiamen Fujian China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources; Third Institute of Oceanography, State Oceanic Administration; Xiamen Fujian China
| |
Collapse
|
21
|
Jha I, Bisht M, Mogha NK, Venkatesu P. Effect of Imidazolium-Based Ionic Liquids on the Structure and Stability of Stem Bromelain: Concentration and Alkyl Chain Length Effect. J Phys Chem B 2018; 122:7522-7529. [DOI: 10.1021/acs.jpcb.8b04661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Indrani Jha
- Department of Chemistry, University of Delhi, Delhi 110021, India
| | - Meena Bisht
- Department of Chemistry, University of Delhi, Delhi 110021, India
| | | | - P. Venkatesu
- Department of Chemistry, University of Delhi, Delhi 110021, India
| |
Collapse
|
22
|
Rani A, Jha I, Venkatesu P. Undesirable impact on structure and stability of insulin on addition of (+)-catechin hydrate with sugar. Arch Biochem Biophys 2018; 646:64-71. [DOI: 10.1016/j.abb.2018.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022]
|
23
|
Crowded milieu tuning the stability and activity of stem bromelain. Int J Biol Macromol 2018; 109:114-123. [DOI: 10.1016/j.ijbiomac.2017.12.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
|
24
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
25
|
Narang P, Vepuri SB, Venkatesu P, Soliman ME. An unexplored remarkable PNIPAM-osmolyte interaction study: An integrated experimental and simulation approach. J Colloid Interface Sci 2017; 504:417-428. [DOI: 10.1016/j.jcis.2017.05.109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 11/26/2022]
|
26
|
Rani A, Taha M, Venkatesu P, Lee MJ. Coherent Experimental and Simulation Approach To Explore the Underlying Mechanism of Denaturation of Stem Bromelain in Osmolytes. J Phys Chem B 2017; 121:6456-6470. [DOI: 10.1021/acs.jpcb.7b01776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjeeta Rani
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Mohamed Taha
- Department
of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Muscat, Oman
| | | | - Ming- Jer Lee
- Department of Chemical Engineering, National Taiwan University of Science & Technology, Taipei 10607, Taiwan
| |
Collapse
|
27
|
The functional and structural stabilization of trypsin by sucrose. Int J Biol Macromol 2017; 99:343-349. [DOI: 10.1016/j.ijbiomac.2017.02.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/16/2017] [Accepted: 02/25/2017] [Indexed: 11/18/2022]
|
28
|
Hosseini-Koupaei M, Shareghi B, Saboury AA. Conjugation of biogenic polyamine (putrescine) with proteinase K: Spectroscopic and theoretical insights. Int J Biol Macromol 2017; 98:150-158. [DOI: 10.1016/j.ijbiomac.2017.01.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 11/27/2022]
|
29
|
Hosseini-Koupaei M, Shareghi B, Saboury AA, Davar F. Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int J Biol Macromol 2017; 94:406-414. [DOI: 10.1016/j.ijbiomac.2016.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022]
|
30
|
Zaman M, Ehtram A, Chaturvedi SK, Nusrat S, Khan RH. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight. Int J Biol Macromol 2016; 91:477-85. [DOI: 10.1016/j.ijbiomac.2016.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022]
|
31
|
Bisht M, Jha I, Venkatesu P. Comprehensive Evaluation of Biomolecular Interactions between Protein and Amino Acid Based-Ionic Liquids: A Comparable Study between [Bmim][Br] and [Bmim][Gly] Ionic Liquids. ChemistrySelect 2016. [DOI: 10.1002/slct.201600524] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meena Bisht
- Department of Chemistry; University of Delhi; Delhi- 110007 India, Tel:+91-11-27666646-142, Fax: +91-11-2766 6605
| | - Indrani Jha
- Department of Chemistry; University of Delhi; Delhi- 110007 India, Tel:+91-11-27666646-142, Fax: +91-11-2766 6605
| | - Pannuru Venkatesu
- Department of Chemistry; University of Delhi; Delhi- 110007 India, Tel:+91-11-27666646-142, Fax: +91-11-2766 6605
| |
Collapse
|
32
|
Rani A, Venkatesu P. A Distinct Proof on Interplay between Trehalose and Guanidinium Chloride for the Stability of Stem Bromelain. J Phys Chem B 2016; 120:8863-72. [DOI: 10.1021/acs.jpcb.6b05766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
33
|
Rani A, Pannuru V. Unanticipated behaviour of sorbitol towards the stability and activity of stem bromelain: An outlook through biophysical techniques. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Jha I, Bisht M, Venkatesu P. Does 1-Allyl-3-methylimidazolium chloride Act as a Biocompatible Solvent for Stem Bromelain? J Phys Chem B 2016; 120:5625-33. [DOI: 10.1021/acs.jpcb.6b03912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Indrani Jha
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Meena Bisht
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | | |
Collapse
|
35
|
Rani A, Jayaraj A, Jayaram B, Pannuru V. Trimethylamine-N-oxide switches from stabilizing nature: A mechanistic outlook through experimental techniques and molecular dynamics simulation. Sci Rep 2016; 6:23656. [PMID: 27025561 PMCID: PMC4812290 DOI: 10.1038/srep23656] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
In adaptation biology of the discovery of the intracellular osmolytes, the osmolytes are found to play a central role in cellular homeostasis and stress response. A number of models using these molecules are now poised to address a wide range of problems in biology. Here, a combination of biophysical measurements and molecular dynamics (MD) simulation method is used to examine the effect of trimethylamine-N-oxide (TMAO) on stem bromelain (BM) structure, stability and function. From the analysis of our results, we found that TMAO destabilizes BM hydrophobic pockets and active site as a result of concerted polar and non-polar interactions which is strongly evidenced by MD simulation carried out for 250 ns. This destabilization is enthalpically favourable at higher concentrations of TMAO while entropically unfavourable. However, to the best of our knowledge, the results constitute first detailed unambiguous proof of destabilizing effect of most commonly addressed TMAO on the interactions governing stability of BM and present plausible mechanism of protein unfolding by TMAO.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Abhilash Jayaraj
- Department of Chemistry, Indian Institute of Technology, New Delhi-110 016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology, New Delhi-110 016, India.,Supercomputing Facility for Bioinformatics &Computational Biology, Indian Institute of Technology, New Delhi-110 016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi-110 016, India
| | | |
Collapse
|
36
|
Oliveira IP, Martínez L. Molecular basis for competitive solvation of the Burkholderia cepacia lipase by sorbitol and urea. Phys Chem Chem Phys 2016; 18:21797-808. [DOI: 10.1039/c6cp01789d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular scale diversity of protein–solvent interactions.
Collapse
|
37
|
Reddy PM, Taha M, Sharma YVRK, Venkatesu P, Lee MJ. Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Adv 2015. [DOI: 10.1039/c5ra01302j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urea molecules locate within 0.5 nm of the surface of trypsin.
Collapse
Affiliation(s)
- P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
- Department of Chemical Engineering
| | - M. Taha
- CICECO
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | | | | | - Ming-Jer Lee
- Department of Chemical Engineering
- National Taiwan University of Science & Technology
- Taipei 10607
- Taiwan
| |
Collapse
|