1
|
Zafar A, Rahman Z, Mubeen H, Makhdoom J, Tariq J, Mahjabeen, Ali Z, Hamid A, Shafique E, Aftab MN. Heterologous expression, molecular studies and biochemical characterization of a novel alkaline esterase gene from Bacillus thuringiensis for detergent industry. RSC Adv 2022; 12:34482-34495. [PMID: 36545586 PMCID: PMC9709933 DOI: 10.1039/d2ra06138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Present study was aimed to clone and express the esterase encoding gene from Bacillus thuringiensis in E. coli BL21. Purification of recombinant esterase enzyme was achieved up to 48.6 purification folds by ion exchange chromatography with specific activity of 126.36 U mg-1. Molecular weight of esterase enzyme was 29 kDa as measured by SDS-PAGE. Purified esterase enzyme showed stability up to 90% at 90 °C and remained stable in a wide pH range (8-11). Molecular docking strengthens the experimental results by showing the higher binding energy with p-NP-butyrate. Enzyme activity was found to be reduced by EDTA but enhanced in the presence of other metal ions. Enzyme activity was reduced with 1% SDS, PMSF, and urea but organic solvents did not show considerable impact on it even at higher concentrations. Purified recombinant esterase was also found to be compatible with commercial laundry detergents and showed very good stability (up to 90%). All these properties proved the esterase enzyme from B. thuringensis a significant addition in detergent industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Ziaur Rahman
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Hira Mubeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | | - Javeria Tariq
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Mahjabeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Zulqurnain Ali
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahorePakistan
| | - Eeza Shafique
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | |
Collapse
|
2
|
Park JE, Jeong GS, Lee HW, Kim H. Molecular Characterization of Novel Family IV and VIII Esterases from a Compost Metagenomic Library. Microorganisms 2021; 9:microorganisms9081614. [PMID: 34442693 PMCID: PMC8399190 DOI: 10.3390/microorganisms9081614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Two novel esterase genes, est8L and est13L, were isolated and identified from a compost metagenomic library. The encoded Est8L and Est13L had molecular masses of 33,181 and 44,913 Da consisting of 314 and 411 amino acids, respectively, without signal peptides. Est8L showed the highest identity (32.9%) to a hyper-thermophilic carboxylesterase AFEST from Archaeoglobus fulgidus compared to other esterases reported and was classified to be a novel member of family IV esterases with conserved regions such as HGGG, DY, GXSXG, DPL, and GXIH. Est13L showed the highest identity (98.5%) to the family VIII esterase Est7K from the metagenome library. Est8L and Est13L had the highest activities for p-nitrophenyl butyrate (C4) and p-nitrophenyl caproate (C6), respectively, and Est13L showed a broad substrate specificity for p-nitrophenyl substrates. Est8L and Est13L effectively hydrolyzed glyceryl tributyrate. The optimum temperatures for activities of Est8L and Est13L were identical (40 °C), and the optimum pH values were 9.0 and 10.0, respectively. Est13L showed higher thermostability than Est8L. Sephacryl S-200 HR chromatography showed that the native form of Est8L was a dimer. Interestingly, Est13L was found to be a tetramer, contrary to other family VIII esterases reported. Est8L was inhibited by 30% isopropanol, methanol, and acetonitrile; however, Est13L was activated to 182.9% and 356.1%, respectively, by 30% isopropanol and methanol. Est8L showed enantioselectivity for the S-form, but Est13L showed no enantioselectivity. These results show that intracellular Est8L and/or Est13L are oligomeric in terms of native forms and can be used for pharmaceutical and industrial applications with organic solvents under alkaline conditions.
Collapse
Affiliation(s)
| | | | | | - Hoon Kim
- Correspondence: ; Tel.: +82-617503751
| |
Collapse
|
3
|
Genome mining reveals the genes of carboxypeptidase for OTA-detoxification in Bacillus subtilis CW14. Int J Biol Macromol 2021; 186:800-810. [PMID: 34284053 DOI: 10.1016/j.ijbiomac.2021.07.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023]
Abstract
Bacillus subtilis CW14, isolated from fresh elk droppings in Beijing Zoo, is a Gram-positive, conferred Generally Recognized as Safe (GRAS) bacterium with the capacity of ochratoxin A (OTA) detoxification. The genome sequence of the CW14 strain showed a size of 4,287,522 bp with 44.06% GC content. It was predicted many putative enzymes involved in degrading mycotoxin by analyzing the signal peptides and the transmembrane regions. Nine extracellular enzymes were predicted relating to OTA detoxification, including four D-Ala-D-Ala carboxypeptidases, two hydrolases, two amidases, and one lactamase. Indeed, two of the carboxypeptidase genes dacA and dacB, expressed in Escherichia coli, were verified contributing to OTA detoxification. DacA and OTA were mixed incubated for 24 h, and the degradation rate reached 71.3%. After purification, the concentration of recombinant DacA protein was 0.5 mg/mL. Bacillus subtilis CW14 and its carboxypeptidases may be used as OTA detoxification agents in food and feed industry production.
Collapse
|
4
|
Zhang Z, Liu P, Su W, Zhang H, Xu W, Chu X. Metabolic engineering strategy for synthetizing trans-4-hydroxy-L-proline in microorganisms. Microb Cell Fact 2021; 20:87. [PMID: 33882914 PMCID: PMC8061225 DOI: 10.1186/s12934-021-01579-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/13/2021] [Indexed: 11/14/2022] Open
Abstract
Trans-4-hydroxy-L-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-L-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-L-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-L-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-L-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-L-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Wenqian Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang People’s Republic of China
| |
Collapse
|
5
|
Qiu J, Yang H, Yan Z, Shi Y, Zou D, Ding L, Shao Y, Li L, Khan U, Sun S, Xin Z. Characterization of XtjR8: A novel esterase with phthalate-hydrolyzing activity from a metagenomic library of lotus pond sludge. Int J Biol Macromol 2020; 164:1510-1518. [PMID: 32755708 DOI: 10.1016/j.ijbiomac.2020.07.317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022]
Abstract
A fosmid metagenomic library containing 9.7 × 104 clones was constructed. A novel esterase, XtjR8, was isolated through functional screening. XtjR8 shared the maximum amino acid identity (44%) with acetyl-hydrolase from Streptomyces hygroscopicus, and was classified into family IV esterase. XtjR8 exhibited the highest hydrolytic activity for p-nitrophenyl acetate at 40 °C and pH 8.0, and presented more than 40% activity from 20 °C to 80 °C. More importantly, XtjR8 displayed the ability to hydrolyze both phthalate monoesters and diesters, this feature is extremely rare among previously reported esterases. Site-directed mutagenesis experiments revealed that the catalytic triad residues were Ser152, Glu246, and His276. Among them, Ser152 formed a hydrogen bond with dibutyl phthalate (DBP) by molecular docking, Gly84, Gly85, and Leu248 of conserved motifs formed hydrophobic interactions with DBP, respectively, which were important for the catalytic activity. Considering its wide range of temperature and hydrolytic potential toward phthalate esters, XtjR8 will be served as an interesting candidate for biodegradation and industrial applications.
Collapse
Affiliation(s)
- Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyan Yang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Zhenzhen Yan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaning Shi
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dandan Zou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liping Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Longxiang Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ummara Khan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Park JM, Kang CH, Won SM, Oh KH, Yoon JH. Characterization of a Novel Moderately Thermophilic Solvent-Tolerant Esterase Isolated From a Compost Metagenome Library. Front Microbiol 2020; 10:3069. [PMID: 32038535 PMCID: PMC6993047 DOI: 10.3389/fmicb.2019.03069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
A novel esterase, EstCS1, was isolated from a compost metagenomics library. The EstCS1 protein, which consists of 309 amino acid residues with an anticipated molecular mass of 34 kDa, showed high amino acid sequence identities to predicted esterases and alpha/beta hydrolases (59%) from some cultured bacteria and to predicted lipases/esterases from uncultured bacteria. The phylogenetic analysis suggested that the EstCS1 belongs to the hormone-sensitive lipase family of lipolytic enzyme classification and contains a catalytic triad including Ser155–Asp255–His285. The Ser155 residue of the catalytic triad in the EstCS1 was located in the consensus active-site motif, GXSXG. Besides, a conserved HGGG motif placed in an oxyanion hole of the hormone-sensitive lipase family was discovered, too. The EstCS1 demonstrated the highest activity toward p-nitrophenyl propionate (C3) and caproate (C6) and was normally stable up to 60°C with optimal activity at 50°C. In addition, an optimal activity was observed at pH 8, and the EstCS1 possessed its stability within the pH range between 5 and 10. Interestingly, EstCS1 had an outstanding stability in up to 30% (v/v) organic solvents and activity over 50% in the presence of 50% (v/v) acetone, ethanol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide. The EstCS1 hydrolyzed sterically hindered tertiary alcohol esters of t-butyl acetate and linalyl acetate. Considering the properties, such as the moderate thermostability, stability against organic solvents, and activity toward esters of tertiary alcohols, the EstCS1 will be worthwhile to be used for organic synthesis and related industrial applications.
Collapse
Affiliation(s)
- Ji-Min Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Chul-Hyung Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea.,Green Chemistry and Environmental Biotechnology Program, School of Science, University of Science and Technology, Daejeon, South Korea
| | - Sung-Min Won
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ki-Hoon Oh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Adıgüzel AO. Production and characterization of thermo-, halo- and solvent-stable esterase from Bacillus mojavensis TH309. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1715370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ali Osman Adıgüzel
- Department of Molecular Biology and Genetics, Science and Letter Faculty, University of Ondokuz Mayıs, Samsun, Turkey
| |
Collapse
|
8
|
Jayanath G, Mohandas SP, Kachiprath B, Solomon S, Sajeevan T, Bright Singh I, Philip R. A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 2018; 119:393-401. [DOI: 10.1016/j.ijbiomac.2018.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
|
9
|
Wang XC, Liu J, Zhao J, Ni XM, Zheng P, Guo X, Sun CM, Sun JB, Ma YH. Efficient production of trans-4-hydroxy-l-proline from glucose using a new trans-proline 4-hydroxylase in Escherichia coli. J Biosci Bioeng 2018; 126:470-477. [PMID: 29805115 DOI: 10.1016/j.jbiosc.2018.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 01/22/2023]
Abstract
trans-4-Hydroxy-l-proline (trans-4Hyp) is widely used as a valuable building block for the organic synthesis of many pharmaceuticals such as carbapenem antibiotics. The major limitation for industrial bioproduction of trans-4Hyp is the low titer and productivity by using the existing trans-proline 4-hydroxylases (trans-P4Hs). Herein, three new trans-P4Hs from Alteromonas mediterranea (AlP4H), Micromonospora sp. CNB394 (MiP4H) and Sorangium cellulosum (ScP4H) were discovered through genome mining and enzymatic determination. These trans-P4Hs were introduced into an l-proline-producing chassis cell, and the recombinant strain overexpressing AlP4H produced the highest concentration of trans-4Hyp (3.57 g/L) from glucose in a shake flask. In a fed-batch fermentation with a 5 L bioreactor, the best strain SEcH (pTc-B74A-alp4h) accumulated 45.83 g/L of trans-4Hyp within 36 h, with the highest productivity (1.27 g/L/h) in trans-4Hyp fermentation from glucose, to the best of our knowledge. This study provides a promising hydroxylase candidate for efficient industrial production of trans-4Hyp.
Collapse
Affiliation(s)
- Xing-Chu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Xiao-Meng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Cun-Min Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Ji-Bin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| | - Yan-He Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
10
|
Villamil C, Del Portillo P, Monguí A. Clonación, expresión y caracterización de una nueva esterasa derivada de metagenomas de suelos agrícolas colombianos. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n2.61520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El presente trabajo tuvo como objetivo la bioprospección de ADN metagenómico derivado de comunidades microbianas asociadas a un agroecosistema de importancia nacional. Este análisis permitió realizar la producción, expresión, purificación y caracterización de una enzima novedosa con actividad esterasa. Esta enzima, denominada LipM, había sido previamente identificada en clones metagenómicos derivados de suelos dedicados al cultivo de papa criolla (Solanum pureja), mediante secuencia de nueva generación y análisis bioinformáticos. La secuencia codificante de la enzima fue clonada en el vector pBADgiii y expresada en E. coli como sistema de expresión, lo que permitió optimizar el proceso de producción recombinante y su posterior purificación.Funcionalmente la enzima presentó una mayor afinidad por sustratos de p-nitrofenil con ácidos grasos de cadena corta (<C8). LipM mostró completa funcionalidad a temperaturas entre 30 – 37 ºC y en valores de pH cercanos al fisiológico (entre 7.0 y 8.0). Igualmente, esta enzima exhibió buena estabilidad en presencia de varios iones metálicos, inhibidores y 0.1% (p/v) de SDS. Su alto nivel de estabilidad en presencia de iones metálicos e inhibidores, así como su particular especificidad en cuanto a sustratos, la hacen una enzima óptima para utilización en diferentes aplicaciones biotecnológicas.Palabras clave: metagenómica, enzima esterasa, caracterización, suelos, Lipasa/esterasa
Collapse
|
11
|
Lopes JLS, Yoneda JS, Martins JM, DeMarco R, Jameson DM, Castro AM, Bossolan NRS, Wallace BA, Araujo APU. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst). PLoS One 2016; 11:e0158146. [PMID: 27351338 PMCID: PMC4924860 DOI: 10.1371/journal.pone.0158146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/11/2016] [Indexed: 01/20/2023] Open
Abstract
Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.
Collapse
Affiliation(s)
- Jose L. S. Lopes
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana S. Yoneda
- Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Julia M. Martins
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - David M. Jameson
- Department of Cell and Molecular Biology, University of Hawai’i at Manoa, Hawaii, United States of America
| | - Aline M. Castro
- Biotechnology Division, Research and Development Center, Petrobras, Brazil
| | - Nelma R. S. Bossolan
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - B. A. Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Ana P. U. Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| |
Collapse
|
12
|
Functional Characterization of a Novel Dactylosporangium Esterase and Its Utilization in the Asymmetric Synthesis of (R)-Methyl Mandelate. Appl Biochem Biotechnol 2016; 180:228-47. [PMID: 27118549 DOI: 10.1007/s12010-016-2095-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
One novel esterase DAEst6 was identified from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. DAEst6 was further characterized to be an esterase which exhibited high resistance to high pH values. Esterase DAEst6 could resolve racemic methyl mandelate and generate (R)-methyl mandelate, one key drug intermediate, with an enantiomeric excess and a conversion of 99 and 49 %, respectively, after process optimization. The optimal working condition for the preparation of (R)-methyl mandelate through DAEst6 was found to be 10-mM racemic methyl mandelate, no organic co-solvents, pH 7.5, and 40 °C, for 5 h. Our work was the first report about the functional characterization of one novel Dactylosporangium esterase and the utilization of one Dactylosporangium esterase in kinetic resolution. Dactylosporangium esterases represented by DAEst6 possess great potential in the generation of valuable chiral drug intermediates and chemicals.
Collapse
|