1
|
Gupta J, Vaid PK, Priyadarshini E, Rajamani P. Nano-bio convergence unveiled: Systematic review on quantum dots-protein interaction, their implications, and applications. Biophys Chem 2024; 310:107238. [PMID: 38733645 DOI: 10.1016/j.bpc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals (2-10 nm) with unique optical and electronic properties due to quantum confinement effects. They offer high photostability, narrow emission spectra, broad absorption spectrum, and high quantum yields, making them versatile in various applications. Due to their highly reactive surfaces, QDs can conjugate with biomolecules while being used, produced, or unintentionally released into the environment. This systematic review delves into intricate relationship between QDs and proteins, examining their interactions that influence their physicochemical properties, enzymatic activity, ligand binding affinity, and stability. The research utilized electronic databases like PubMed, WOS, and Proquest, along with manual reviews from 2013 to 2023 using relevant keywords, to identify suitable literature. After screening titles and abstracts, only articles meeting inclusion criteria were selected for full text readings. This systematic review of 395 articles identifies 125 articles meeting the inclusion criteria, categorized into five overarching themes, encompassing various mechanisms of QDs and proteins interactions, including adsorption to covalent binding, contingent on physicochemical properties of QDs. Through a meticulous analysis of existing literature, it unravels intricate nature of interaction, significant influence on nanomaterials and biological entities, and potential for synergistic applications harnessing both specific and nonspecific interactions across various fields.
Collapse
Affiliation(s)
- Jagriti Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradeep Kumar Vaid
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Srinivasan MK, Premnath BJ, Parimelazhagan R, Namasivayam N. Synthesis, characterization, and evaluation of the anticancer properties of pH-responsive carvacrol-zinc oxide quantum dots on breast cancer cell line (MDA-MB-231). Cell Biochem Funct 2024; 42:e4062. [PMID: 38807490 DOI: 10.1002/cbf.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Ramya Parimelazhagan
- Department of Biochemistry, Faculty of Medicine, Sri Lakshmi Narayana Institute of Medical Sciences (SLIMS), Puducherry, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| |
Collapse
|
3
|
Yang L, Huang J, Qin S, Shao H, Li Y, Zhou Y, Zi C, Hu JM. "MD" method for the precise analysis of the O-acetyl-mannan structure and disclosure of the role in the conformational stability of insulin. Int J Biol Macromol 2024; 263:129944. [PMID: 38311142 DOI: 10.1016/j.ijbiomac.2024.129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Among the diversified glycan modifications, acylation is one of the most abundant. This modification could be responsible for many of the properties of glycans, such as structural stability and specificity for biological activity. To obtain better insight into the effects of acetylation of glycans on the structure and thermostability of insulin, it is critical to investigate glycans with a high degree of acetylation. An in-depth study of three functional glycans named acetyl-mannan from Dendrobium devonianum (DDAM) was conducted herein by efficient enzymatic depolymerization, and the effect of glycosidic bonds on acetylation modification sites was studied through a molecular dynamics (MD) method, as well as its positive effect on insulin secretion, glucose uptake, and the thermal stability of tertiary structures in vitro. Further study indicated that DDAMs play a hypoglycemic role by sparking the thermostability of the insulin conformation. The hypoglycemic activity displayed a positive correlation with the degree of acetylation in DDAMs. In this work, through the MD method, we confirmed the structure characteristics of DDAMs and provided accurate data support for the structure-activity relationship analysis. Thus, these findings demonstrated that DDAMs might be an exceptional leading compound for the stability of insulin drug.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shihui Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Huiyan Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yanlang Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Zhou
- Longling County Institute of Dendrobium, Baoshan, Yunnan 678300, China
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
4
|
Rahmani R, Lyubartsev AP. Biomolecular Adsorprion at ZnS Nanomaterials: A Molecular Dynamics Simulation Study of the Adsorption Preferences, Effects of the Surface Curvature and Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2239. [PMID: 37570556 PMCID: PMC10421200 DOI: 10.3390/nano13152239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023]
Abstract
The understanding of interactions between nanomaterials and biological molecules is of primary importance for biomedical applications of nanomaterials, as well as for the evaluation of their possible toxic effects. Here, we carried out extensive molecular dynamics simulations of the adsorption properties of about 30 small molecules representing biomolecular fragments at ZnS surfaces in aqueous media. We computed adsorption free energies and potentials of mean force of amino acid side chain analogs, lipids, and sugar fragments to ZnS (110) crystal surface and to a spherical ZnS nanoparticle. Furthermore, we investigated the effect of poly-methylmethacrylate (PMMA) coating on the adsorption preferences of biomolecules to ZnS. We found that only a few anionic molecules: aspartic and glutamic acids side chains, as well as the anionic form of cysteine show significant binding to pristine ZnS surface, while other molecules show weak or no binding. Spherical ZnS nanoparticles show stronger binding of these molecules due to binding at the edges between different surface facets. Coating of ZnS by PMMA changes binding preferences drastically: the molecules that adsorb to a pristine ZnS surface do not adsorb on PMMA-coated surfaces, while some others, particularly hydrophobic or aromatic amino-acids, show high binding affinity due to binding to the coating. We investigate further the hydration properties of the ZnS surface and relate them to the binding preferences of biomolecules.
Collapse
Affiliation(s)
| | - Alexander P. Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
6
|
Kunachowicz D, Ściskalska M, Jakubek M, Kizek R, Kepinska M. Structural changes in selected human proteins induced by exposure to quantum dots, their biological relevance and possible biomedical applications. NANOIMPACT 2022; 26:100405. [PMID: 35560289 DOI: 10.1016/j.impact.2022.100405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) are semi-conductor luminescent nanocrystals usually of 2-10 nm diameter, attracting the significant attention in biomedical studies since emerged. Due to their unique optical and electronic properties, i.e. wide absorption spectra, narrow tunable emission bands or stable, bright photoluminescence, QDs seem to be ideally suited for multi-colour, simultaneous bioimaging and cellular labeling at the molecular level as new-generation probes. A highly reactive surface of QDs allows for conjugating them to biomolecules, what enables their direct binding to areas of interest inside or outside the cell for biosensing or targeted delivery. Particularly protein-QDs conjugates are current subjects of research, as features of QDs can be combined with protein specific functionalities and therefore used as a complex in variety of biomedical applications. It is known that QDs are able to interact with cells, organelles and macromolecules of the human body after administration. QDs are reported to cause changes at proteins level, including unfolding and three-dimensional structure alterations which might hamper proteins from performing their physiological functions and thereby limit the use of QD-protein conjugates in vivo. Moreover, these changes may trigger unwanted cellular outcomes as the effect of different signaling pathways activation. In this review, characteristics of QDs interactions with certain human proteins are presented and discussed. Besides that, the following manuscript provides an overview on structural changes of specific proteins exposed to QDs and their biological and biomedical relevance.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Rene Kizek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland.
| |
Collapse
|
7
|
Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron 2019; 141:111417. [PMID: 31202187 DOI: 10.1016/j.bios.2019.111417] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023]
Abstract
Fascinating properties of ZnO nanostructures have created much interest due to their importance in health care and environmental monitoring. Current worldwide production and their wide range of applications signify ZnO to be a representative of multi-functional oxide material. Recent nanotechnological developments have stimulated the production of various forms of ZnO nanostructures such as nano-layers, nanoparticles, nanowires, etc. Due to their enhanced sensing properties, improved binding ability with biomolecules as well as biological activities have enabled them as suitable candidates for the fabrication of biosensor devices in the biomedical arena. In this review, the synthesis of ZnO nanostructures, mechanism of their interaction with biomolecules and their applications as sensors in health care area are discussed considering the biosensors for molecules with small molecular weight, infectious diseases, and pharmaceutical compounds.
Collapse
Affiliation(s)
- Nagaraj P Shetti
- Electrochemistry and Materials Group, Department of Chemistry, K. L. E. Institute of Technology, Affiliated to Visvesvaraya Technological University, Gokul, Hubballi, 580030, Karnataka, India.
| | - Shikandar D Bukkitgar
- Electrochemistry and Materials Group, Department of Chemistry, K. L. E. Institute of Technology, Affiliated to Visvesvaraya Technological University, Gokul, Hubballi, 580030, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Tejraj M Aminabhavi
- Department of Pharmaceuticals, Soniya College of Pharmacy, Dharwad, 580 002, Karnataka, India
| |
Collapse
|
8
|
Roshini A, Jagadeesan S, Arivazhagan L, Cho YJ, Lim JH, Doh YH, Kim SJ, Na J, Choi KH. pH-sensitive tangeretin-ZnO quantum dots exert apoptotic and anti-metastatic effects in metastatic lung cancer cell line. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:477-488. [PMID: 30184773 DOI: 10.1016/j.msec.2018.06.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 06/03/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Abstract
Most cancer patients die as a consequence of distant metastases, which are frequently unresponsive to cancer therapy. This study focuses on the anti-tumorigenic and anti-metastatic properties of tangeretin-zinc oxide quantum dots (Tan-ZnO QDs) against the NCI-H358 cell line. Tan-ZnO QDs are pH-sensitive and capitalize on the acidic pH maintained in the tumor microenvironment; therefore, targeted drug delivery is directed specifically to cancer cells, leaving the normal cells less affected. Tan was loaded into synthesized ZnO QDs, and drug loading was analyzed using Fourier transform infrared (FTIR) spectroscopy and ultraviolet-visible (UV-Vis) spectrometry. Crystalline phase and particle size were measured using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Drug release was evaluated in buffered solutions with differing pH for up to 15 h. The results confirmed stable drug release (80%) in an acidic pH. Tan-ZnO QDs induced significant cytotoxicity in NCI-H358 metastatic cells, while not markedly affecting HK-2 human normal cells. Morphology of treated H358 cells analyzed via atomic force microscopy (AFM) showed an increased surface roughness and pores. Further, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells increased after treatment with Tan-ZnO QDs. DNA fragmentation was also induced after treatment with increasing concentrations of Tan-ZnO QDs in H358 cells. We also confirmed regulation of apoptosis via expression levels of Bax and Bcl-2 proteins; G2/M phase cell cycle arrest was observed. Additionally, cell proliferation and migration drastically decreased, and cell invasion and migration, hallmarks of metastasis, were significantly inhibited in H358 cells. Matrix metalloproteinase (MMP)2 and MMP9, markers of metastasis, as well as vascular endothelial growth factor (VEGF), a marker of angiogenesis, were significantly downregulated upon treatment with Tan-ZnO QDs. In conclusion, our novel formulation destabilized H358 cells by using its acidic tumor microenvironment, thereby regulating cell apoptosis, proliferation, and metastatic properties.
Collapse
Affiliation(s)
- A Roshini
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea
| | - Srikanth Jagadeesan
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea
| | - Lakshmi Arivazhagan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, 13620, South Korea
| | - Jong-Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea.
| | - Yang-Hoi Doh
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea.
| | - Sang-Jae Kim
- Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National University, 63243, South Korea.
| | - Jinhee Na
- Biophilic Ltd., 152, Juggunro, Youngin-si, Gyunggi-do, South Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 63243, South Korea; Department of Advanced Convergence Technology and Science, Jeju National University, 63243, South Korea.
| |
Collapse
|
9
|
Hosseinzadeh G, Maghari A, Farnia SMF, Moosavi-Movahedi AA. Interaction mechanism of insulin with ZnO nanoparticles by replica exchange molecular dynamics simulation. J Biomol Struct Dyn 2017; 36:3623-3635. [DOI: 10.1080/07391102.2017.1396254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ghader Hosseinzadeh
- School of Chemistry, University of Tehran, Tehran, Iran
- Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran
| | - Ali Maghari
- School of Chemistry, University of Tehran, Tehran, Iran
| | | | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Dekel Y, Machluf Y, Gefen T, Eidelshtein G, Kotlyar A, Bram Y, Shahar E, Reslane F, Aizenshtein E, Pitcovski J. Formation of multimeric antibodies for self-delivery of active monomers. Drug Deliv 2017; 24:199-208. [PMID: 28156181 PMCID: PMC8241139 DOI: 10.1080/10717544.2016.1242179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022] Open
Abstract
Proteins and peptides have been used as drugs for almost a century. Technological advances in the past 30 years have enabled the production of pure, stable proteins in vast amounts. In contrast, administration of proteins based on their native active conformation (and thus necessitating the use of subcutaneous injections) has remained solely unchanged. The therapeutic anti-HER2 humanized monoclonal immunoglobulin (IgG) Trastuzumab (Herceptin) is a first line of the treatment for breast cancer. Chicken IgY is a commercially important polyclonal antibody (Ab). These Abs were examined for their ability to self-assemble and form ordered aggregates, by several biophysical methods. Atomic force microscopy analyses revealed the formation of multimeric nanostructures. The biological activity of multimeric IgG or IgY particles was retained and restored, in a dilution/time-dependent manner. IgG activity was confirmed by a binding assay using HER2 + human breast cancer cell line, SKBR3, while IgY activity was confirmed by ELISA assay using the VP2 antigen. Competition assay with native Herceptin antibodies demonstrated that the binding availability of the multimer formulation remained unaffected. Under long incubation periods, IgG multimers retained five times more activity than native IgG. In conclusion, the multimeric antibody formulations can serve as a storage depositories and sustained-release particles. These two important characteristics make this formulation promising for future novel administration protocols and altogether bring to light a different conceptual approach for the future use of therapeutic proteins as self-delivery entities rather than conjugated/encapsulated to other bio-compounds.
Collapse
Affiliation(s)
- Yaron Dekel
- Shamir Research Institute, University of Haifa, Kazrin, Israel
- Department of Clinical Laboratory, Zefat Academic College, Zefat, Israel
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
| | - Yossy Machluf
- Consultant, specialist in the fields of biochemistry, molecular biology and genetics
| | - Tal Gefen
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Gennady Eidelshtein
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel, and
| | - Alexander Kotlyar
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel, and
| | - Yaron Bram
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Shahar
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Farah Reslane
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Elina Aizenshtein
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| | - Jacob Pitcovski
- Department of Life Sciences, Tel Hai College, Upper Galilee, Israel
- MIGAL – Galilee Technology Center, Kiryat Shmona, Israel
| |
Collapse
|
11
|
Ji N, Hong Y, Gu Z, Cheng L, Li Z, Li C. Binary and Tertiary Complex Based on Short-Chain Glucan and Proanthocyanidins for Oral Insulin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8866-8874. [PMID: 28925252 DOI: 10.1021/acs.jafc.7b03465] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The present study was performed to investigate binary and tertiary nanocomposites between short-chain glucan (SCG) and proanthocyanidins (PAC) for the oral delivery of insulin. There was a large decrease in fluorescence intensity of insulin in the presence of SCG or the combination of SCG with PAC. Fourier transform infrared spectroscopy revealed that the binary and tertiary nanocomposites were synthesized due to the hydrogen bonding and hydrophobic interactions. The insulin entrapped in the nanocomposites was in an amorphous state confirmed by X-ray diffraction. The cell culture demonstrated that both the nanocomposites showed no detectable cytotoxicity with relative cell viability all above 85%. The pharmacological bioavailability after oral administration of insulin-SCG-PAC at a dose of 100 IU/kg was found to be 6.98 ± 1.20% in diabetic rats without any sharp fluctuations in 8 h.
Collapse
Affiliation(s)
- Na Ji
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Yan Hong
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Li Cheng
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, and ‡School of Food Science and Technology, Jiangnan University , Wuxi 214122, People's Republic of China
| |
Collapse
|
12
|
Mansouri A, Mousavi M, Attar F, Saboury AA, Falahati M. Interaction of manganese nanoparticle with cytochrome c: A multi-spectroscopic study. Int J Biol Macromol 2017; 106:78-86. [PMID: 28818722 DOI: 10.1016/j.ijbiomac.2017.07.175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
Abstract
In this paper, the conformational changes of cytochrome c (cyt c) upon interaction with manganese nanoparticle (Mn-NP) were examined using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), zeta potential, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy methods. DLS and TEM analysis exhibited the structure of Mn-NP was less than 50nm. FTIR bands were similar to those reported for Mn-NP. Zeta potential measurements showed positive charge distribution for Mn-NP (4.71±0.71mV) at pH 7.8. It was revealed that the mechanism of fluorescence quenching incorporated both dynamic and static quenching. Also, binding site and binding constant increased as the temperature is raised. The positive sign of ΔH° and ΔS° suggested that hydrophobic forces are indicative forces in the interaction between cyt c and Mn-NP. Synchronous fluorescence spectra revealed that the conformation of protein was not perturbed around tryptophan (Trp) and tyrosine (Tyr) residues. CD analysis suggested that there was a conformational change at tertiary structure levels of cyt c in the vicinity of phenylalanine (Phe) residues, while the secondary structure of protein was not altered. This study facilitates a deeper insight on the interaction mechanisms between NPs and biological macromolecules.
Collapse
Affiliation(s)
- Anali Mansouri
- Department of Cell and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Mina Mousavi
- Department of Cell and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran.
| |
Collapse
|
13
|
A R, Jagadeesan S, Cho YJ, Lim JH, Choi KH. Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:551-560. [PMID: 28888009 DOI: 10.1016/j.msec.2017.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
Current trends in therapeutic research are the application of nanomaterial carriers for cancer therapy. One such molecule, ZnO, originally used in diagnosis and as a drug carrier, is gaining importance for its biological properties. Here, we report for the first time, the scope of ZnO QDs for enhanced cytotoxicity against MCF-7 and metastatic MDA-MB-231 human breast cancer cells. Unlike other ZnO nanostructures, ZnO QDs are dispersed and small sized (8-10nm) which is believed to greatly increase the cellular uptake. Furthermore, the acidic tumor microenvironment attracts ZnO QDs enhancing targeted therapy while leaving normal cells less affected. Results from MTT assay demonstrated that ZnO QDs induced cytotoxicity to MCF-7 and metastatic MDA-MB-231 breast cancer cells at very low concentrations (10 and 15μg/ml) as compared to other reported ZnO nanostructures. HEK-293 cells showed less toxicity at these concentrations. Confocal microscope images from DAPI staining and TUNEL assay demonstrated that ZnO QDs induced nuclear fragmentation and apoptosis in MCF-7 and MDA-MB-231. FACS results suggested ZnO QDs treatment induced cell cycle arrest at the G0/G1 phase in these cells. ZnO QDs drastically decreased the proliferation and migration of MCF-7 and MDA-MB-231 as seen from the results of the clonogenic and wound healing assays respectively. Furthermore, our data suggested that ZnO QDs regulated apoptosis via Bax and Bcl-2 proteins as validated by immunofluorescence and western blot. Taken together, our findings demonstrate that these ultra-small sized ZnO QDs destabilize cancer cells by using its acidic tumor microenvironment thereby inducing apoptosis and controlling the cell proliferation and migration at low dosages.
Collapse
Affiliation(s)
- Roshini A
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Srikanth Jagadeesan
- Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 13620, Republic of Korea
| | - Jong-Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, 63243, Republic of Korea; Department of Advanced Convergence Technology and Science, Jeju National University, 63243, Republic of Korea.
| |
Collapse
|
14
|
Hosseinzadeh G, Maghari A, Farniya SMF, Keihan AH, Moosavi-Movahedi AA. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:836-845. [DOI: 10.1016/j.msec.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
|
15
|
Garcia I, Leitune V, Kist T, Takimi A, Samuel S, Collares F. Quantum Dots as Nonagglomerated Nanofillers for Adhesive Resins. J Dent Res 2016; 95:1401-1407. [DOI: 10.1177/0022034516656838] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nanoparticles used in adhesive resins are prone to agglomeration, turning the material susceptible to physical failure. Quantum dots are nonagglomerated inorganic nanoparticles (1 to 10 nm) when in equilibrium. The aim of the present study was to synthesize and characterize zinc oxide quantum dots (ZnOQDs) and to develop and evaluate an adhesive resin with the addition of ZnOQDs. ZnOQDs were formulated by self-organization in chemical reaction with isopropanol and added to 2-hydroxyethyl methacrylate (HEMA). HEMA containing ZnOQDs was used for the experimental group and neat HEMA for the control group. Mean ZnOQD diameter was evaluated in isopropanol and in HEMA by ultraviolet-visible spectroscopy. The adhesives were evaluated for degree of conversion ( n = 5), softening in solvent ( n = 5), ultimate tensile strength ( n = 5), microtensile bond strength ( n = 20) at 24 h and after 6 mo, SEM-EDS (scanning electron microscopy–energy-dispersive x-ray spectroscopy; n = 3), and superresolution confocal microscopy ( n = 3). Data of microtensile bond strength after 6 mo and Knoop hardness after solvent immersion were evaluated by paired t test with a 0.05 level of significance. The other data were evaluated by independent t test with a 0.05 level of significance. Ultraviolet-visible spectroscopy indicated that the mean ZnOQD diameter remained stable in isopropanol and in HEMA (1.19 to 1.24 nm). Fourier transform infrared spectroscopy analysis showed the peak corresponding to zinc and oxygen bond (440 cm-1). The experimental group achieved a higher degree of conversion as compared with the control group and presented dentin/adhesive interface stability after 6 mo without altering other properties tested. SEM-EDS indicated 1.54 ± 0.46 wt% of zinc, and the superresolution confocal microscopy indicated nonagglomerated nanoparticles with fluorescence blinking in the polymerized adhesive. The findings of this study showed a possible and reliable method to formulate composites with nonagglomerated nanoscale fillers, shedding light on the nanoparticle agglomeration concern.
Collapse
Affiliation(s)
- I.M. Garcia
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - V.C.B. Leitune
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - T.L. Kist
- Laboratory of Methods, Biophysics Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - A. Takimi
- School of Metallurgic Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - S.M.W. Samuel
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - F.M. Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|