1
|
Nawaz A, Taj MB, Tasleem M, Ahmad Z, Ihsan A. Study of factors affecting cellulose derivatives composite in anticancer drug delivery: A comprehensive review. Int J Biol Macromol 2025; 310:143220. [PMID: 40250680 DOI: 10.1016/j.ijbiomac.2025.143220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The targeted distribution of therapeutic molecules in cancer cells poses several challenges for biomedical applications. Drug delivery systems (DDS) are primarily designed to target cancer cells effectively to achieve maximum therapeutic effects. Cellulose is a well-known organic molecule owing to its biodegradability, biocompatibility, low toxicity, prolonged stability, and superior loading characteristics. However, cellulose composites have faced numerous drawbacks, such as higher molecular size, non-covalent interactions, poor mechanical strength, and limited water solubility. In contrast, cellulose derivatization has enhanced drug loading and release efficiency, improved mechanical strength, and mitigated drug solubility issues. This review summarized the recent advancement in cellulose-based composites such as DDS for cancer cell treatment and discussed responsive factors. The pH, temperature, magnetic nanoparticles, solubility, porosity, mechanical strength, nanoparticle size, increased time of drug release, crosslinking efficiency, etc., are major responsive assays that influence the therapeutic potential of anticancer drugs. Furthermore, overviewed the cellulose nanoformulations in sustained anticancer drug release and successfully illustrated the synthesizing methodologies as well as challenges in efficient DDS applications. Moreover, a brief overview of the interdisciplinary industrial uses of cellulose composites, including paper, textiles, and nanotechnology, is presented. Finally, cellulose-based composites provide a novel way of producing excellent DDS with enhanced therapeutic properties.
Collapse
Affiliation(s)
- Aamir Nawaz
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Tasleem
- Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Zia Ahmad
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Aaysha Ihsan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment. Int J Biol Macromol 2024; 282:136696. [PMID: 39437958 DOI: 10.1016/j.ijbiomac.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Colorectal cancer (CRC) ranks as the second deadliest cancer globally and the third most common malignant tumor. While surgery remains the primary treatment for CRC, alternative therapies such as chemotherapy, molecular targeted therapy, and immunotherapy are also commonly used. The significant side effects and toxicity of conventional drugs drive the search for novel targeted therapies, including the design of advanced drug delivery systems. Polysaccharide-based biopolymers, with their low toxicity, non-immunogenic behavior, synergistic interactions with other biopolymers, and tissue and cell compatibility, emerge as excellent drug carriers for this application. This review aims to provide an in-depth overview of recent advancements in developing polysaccharide-based biopolymeric carriers for anticancer compounds in the treatment of CRC. We highlight the multifunctional nature of polysaccharides, showcasing their potential as standalone drug carriers or as integral components of intelligent robotic devices for biomedical therapeutic applications. In addition to exploring the opportunities for using carbohydrate polymers in CRC treatment, we address the challenges and failures that may limit their applicability in biomedical research, as well as summarize the recent preclinical and clinical trials, resulting in several commercialization attempts. This comprehensive overview critically summarizes the potential of polysaccharide-based biomaterials in CRC treatment.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
3
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
4
|
Opriș O, Mormile C, Lung I, Stegarescu A, Soran ML, Soran A. An Overview of Biopolymers for Drug Delivery Applications. APPLIED SCIENCES 2024; 14:1383. [DOI: 10.3390/app14041383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nowadays, drug delivery has an important role in medical therapy. The use of biopolymers in developing drug delivery systems (DDSs) is increasingly attracting attention due to their remarkable and numerous advantages, in contrast to conventional polymers. Biopolymers have many advantages (biodegradability, biocompatibility, renewability, affordability, and availability), which are extremely important for developing materials with applications in the biomedical field. Additionally, biopolymers are appropriate when they improve functioning and have a number of positive effects on human life. Therefore, this review presents the most used biopolymers for biomedical applications, especially in drug delivery. In addition, by combining different biopolymers DDSs with tailored functional properties (e.g., physical properties, biodegradability) can be developed. This review summarizes and provides data on the progress of research on biopolymers (chitosan, alginate, starch, cellulose, albumin, silk fibroin, collagen, and gelatin) used in DDSs, their preparation, and mechanism of action.
Collapse
Affiliation(s)
- Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Chemistry, University of Rome La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Nath PC, Sharma R, Debnath S, Nayak PK, Roy R, Sharma M, Inbaraj BS, Sridhar K. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. Int J Biol Macromol 2024; 259:129129. [PMID: 38181913 DOI: 10.1016/j.ijbiomac.2023.129129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Food Technology, Shri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Rupak Roy
- SHRM Biotechnologies Pvt Ltd., Kolkata 700155, India
| | | | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
6
|
Kuperkar K, Atanase LI, Bahadur A, Crivei IC, Bahadur P. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel) 2024; 16:206. [PMID: 38257005 PMCID: PMC10818796 DOI: 10.3390/polym16020206] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Degradable polymers (both biomacromolecules and several synthetic polymers) for biomedical applications have been promising very much in the recent past due to their low cost, biocompatibility, flexibility, and minimal side effects. Here, we present an overview with updated information on natural and synthetic degradable polymers where a brief account on different polysaccharides, proteins, and synthetic polymers viz. polyesters/polyamino acids/polyanhydrides/polyphosphazenes/polyurethanes relevant to biomedical applications has been provided. The various approaches for the transformation of these polymers by physical/chemical means viz. cross-linking, as polyblends, nanocomposites/hybrid composites, interpenetrating complexes, interpolymer/polyion complexes, functionalization, polymer conjugates, and block and graft copolymers, are described. The degradation mechanism, drug loading profiles, and toxicological aspects of polymeric nanoparticles formed are also defined. Biomedical applications of these degradable polymer-based biomaterials in and as wound dressing/healing, biosensors, drug delivery systems, tissue engineering, and regenerative medicine, etc., are highlighted. In addition, the use of such nano systems to solve current drug delivery problems is briefly reviewed.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Piplod, Surat 395007, Gujarat, India;
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Anita Bahadur
- Department of Zoology, Sir PT Sarvajanik College of Science, Surat 395001, Gujarat, India;
| | - Ioana Cristina Crivei
- Department of Public Health, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 700449 Iasi, Romania;
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395007, Gujarat, India;
| |
Collapse
|
7
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
8
|
Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW. Reinvention of starch for oral drug delivery system design. Int J Biol Macromol 2023; 241:124506. [PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
Collapse
Affiliation(s)
- NorulNazilah Ab'lah
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Centre of Foundation Studies, Universiti Teknologi MARA Selangor, Dengkil 43800, Dengkil, Malaysia
| | - Chong Yu Lok Yusuf
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin, 77300, Merlimau, Melaka, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, 10330 Bangkok, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Gao X, Du J, Cheng L, Li Z, Li C, Ban X, Gu Z, Hong Y. Modification of Octenyl Succinic Anhydride Starch by Grafting Folic Acid and its Potential as an Oral Colonic Delivery Carrier. STARCH-STARKE 2023. [DOI: 10.1002/star.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Xiang Gao
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Jing Du
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Xiaofeng Ban
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University Wuxi Jiangsu Province 214122 China
- Collaborative Innovation Center for Food Safety and Quality Control Jiangnan University Wuxi Jiangsu Province 214122 China
| |
Collapse
|
10
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
11
|
Aldana Porras AE, Montoya Yepes DF, Murillo Arango W, Méndez Arteaga JJ, Jiménez Rodríguez ÁA. Physicochemical, functional, and digestibility properties of rice starches esterified with gulupa seed oil ( Passiflora edulis Sims. f. edulis). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2148167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Walter Murillo Arango
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | - John Jairo Méndez Arteaga
- GIPRONUT, Chemistry Department, Basic Sciences School, Universidad Del Tolima, Ibagué-Tolima, Colombia
| | | |
Collapse
|
12
|
Sivamaruthi BS, Nallasamy PK, Suganthy N, Kesika P, Chaiyasut C. Pharmaceutical and biomedical applications of starch-based drug delivery system: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
14
|
Xiao H, Yang F, Lin Q, Zhang L, Sun S, Zhou W, Liu GQ. Preparation of fluorescent nanoparticles based on broken-rice starch for live-cell imaging. Int J Biol Macromol 2022; 217:88-95. [PMID: 35817234 DOI: 10.1016/j.ijbiomac.2022.06.205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Native broken-rice starch was used to create starch nanoparticles (StNPs) with particle sizes ranging from 100 nm to 800 nm. The fluorescent isothiocyanate poly-l-lysine StNPs (FITC-PLL-StNPs) were created in two steps. First, the StNPs were electrostatically modified by poly-l-lysine (PLL) molecules rich in amino acids. Second, fluorescein isothiocyanate reacted with some amino groups on PLL molecules (FITC). Fluorescence spectrophotometry was used to determine the degree of substitution (DS) and fluorescent properties of fluorescent starches. The study found that FITC-PLL-StNP-200 has higher fluorescence stability, more phagocytic cells, and a better and clearer fluorescence detecting effect than FITC-PLL-St, FITC-PLL-StNP-100, FITC-PLL-StNP-400, and FITC-PLL-StNP-800. The biological evaluation results showed that FITC-PLL-StNP-200 did not affect the viability of HeLa cells at the lysosome labeling concentration. These findings suggest that FITC-PLL-StNP-200 has strong and stable fluorescence, indicating that FITC-PLL-StNP-200 can be used as a fluorescent probe and lysosome marker in a variety of applications, particularly in biomedicine.
Collapse
Affiliation(s)
- Huaxi Xiao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha 410111, China
| | - Fan Yang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Shanxi Technology and Business College, Taiyuan 030006, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Shuguo Sun
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Wenhua Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology, International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
15
|
Torres FG, De-la-Torre GE. Synthesis, characteristics, and applications of modified starch nanoparticles: A review. Int J Biol Macromol 2022; 194:289-305. [PMID: 34863968 DOI: 10.1016/j.ijbiomac.2021.11.187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, starch nanoparticles (SNPs) are drawing attention to the scientific community due to their versatility and wide range of applications. Although several works have extensively addressed the SNP production routes, not much is discussed about the SNPs modification techniques, as well as the use of modified SNPs in typical and unconventional applications. Here, we focused on the SNP modification strategies and characteristics and performance of the resulting products, as well as their practical applications, while pointing out the main limitations and recommendations. We aim to guide researchers by identifying the next steps in this emerging line of research. SNPs esterification and oxidation are preferred chemical modifications, which result in changes in the functional groups. Moreover, additional polymers are incorporated into the SNP surface through copolymer grafting. Physical modification of starch has demonstrated similar changes in the functional groups without the need for toxic chemicals. Modified SNPs rendered differentiated properties, such as size, shape, crystallinity, hydrophobicity, and Zeta-potential. For multiple applications, tailoring the aforementioned properties is key to the performance of nanoparticle-based systems. However, the number of studies focusing on emerging applications is fairly limited, while their applications as drug delivery systems lack in vivo studies. The main challenges and prospects were discussed.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru.
| | | |
Collapse
|
16
|
Surface-charged starch nanocrystals from glutinous rice: Preparation, crystalline properties and cytotoxicity. Int J Biol Macromol 2021; 192:557-563. [PMID: 34653438 DOI: 10.1016/j.ijbiomac.2021.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
The high-amylopectin glutinous rice is used in this study for the preparation of starch nanocrystals (SNCs) with the acid hydrolysis and enzymatic treatment. The fabricated SNC is carried out the surface modifications by phosphorylation and cationization to produce the nanocrystals with the charged surface. Four kinds of SNCs are obtained with the different surface charges involving the varied negative charges, positive charge and no charge. The chemical structures, morphologies and crystalline properties of four SNCs were investigated, together with the effect of surface charges to their cytotoxicity for two cell lines RAW267.4 and CAL27 by the cell proliferation and cell migration assay. The sulfuric acid-hydrolyzed SNC and phosphorylated SNC have more ordered regions and therefore display the higher crystallinities than the enzymatic treated SNC. Four obtained SNCs all exhibited weak cytotoxicity, indicating their good biocompatibility in the potential biomedical application.
Collapse
|
17
|
Amaraweera SM, Gunathilake C, Gunawardene OHP, Fernando NML, Wanninayaka DB, Dassanayake RS, Rajapaksha SM, Manamperi A, Fernando CAN, Kulatunga AK, Manipura A. Development of Starch-Based Materials Using Current Modification Techniques and Their Applications: A Review. Molecules 2021; 26:6880. [PMID: 34833972 PMCID: PMC8625705 DOI: 10.3390/molecules26226880] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity. Therefore, native starch needs to be modified before its use. Major starch modification techniques include genetic, enzymatic, physical, and chemical. Among those, chemical modification techniques are widely employed in industries. This review presents comprehensive coverage of chemical starch modification techniques and genetic, enzymatic, and physical methods developed over the past few years. In addition, the current applications of chemically modified starch in the fields of packaging, adhesives, pharmaceuticals, agriculture, superabsorbent and wastewater treatment have also been discussed.
Collapse
Affiliation(s)
- Sumedha M. Amaraweera
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Chamila Gunathilake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
- Department of Material & Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka;
| | - Oneesha H. P. Gunawardene
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| | - Nimasha M. L. Fernando
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Drashana B. Wanninayaka
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| | - Rohan S. Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka
| | - Suranga M. Rajapaksha
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama 10200, Sri Lanka;
| | - Asanga Manamperi
- Materials Engineering Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Chakrawarthige A. N. Fernando
- Department of Material & Nanoscience Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya 60200, Sri Lanka;
| | - Asela K. Kulatunga
- Department of Manufacturing and Industrial Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (S.M.A.); (N.M.L.F.); (A.K.K.)
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (O.H.P.G.); (D.B.W.); (A.M.)
| |
Collapse
|
18
|
Caldonazo A, Almeida SL, Bonetti AF, Lazo REL, Mengarda M, Murakami FS. Pharmaceutical applications of starch nanoparticles: A scoping review. Int J Biol Macromol 2021; 181:697-704. [PMID: 33766602 DOI: 10.1016/j.ijbiomac.2021.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Starch nanoparticles (SNPs) have been applied to different areas of material sciences, especially in pharmaceuticals due to their characteristics such as small particle size, high surface ratio-volume, and biological compatibility. However, in pharmaceutical sciences, there are no records of a scoping review that had extensively mapped all available information about SNPs. A scoping review was performed here by searching electronic databases (Pubmed and Science Direct) to identify studies published previous to June 2020. From 699 total records, 37 matched the criteria for inclusion. The findings showed that SNPs have been used, not only for the development of different active pharmaceutical ingredient delivery systems, but also as an enzyme inhibitor, adsorption, and DNA precipitation agent. In conclusion, by combining different starch sources and methods SNPs show a remarkable diversity in pharmaceutical applications. Future studies should explore SNPs safety and provide information about variables that may affect important properties for this kind of application.
Collapse
Affiliation(s)
- Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil.
| | - Susana Leao Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Aline F Bonetti
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| | - Fabio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba 80210-170, PR, Brazil
| |
Collapse
|
19
|
Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int J Biol Macromol 2021; 184:218-234. [PMID: 34144062 DOI: 10.1016/j.ijbiomac.2021.06.077] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022]
Abstract
Starch derivatives are versatile compounds that are widely used in the pharmaceutical industry. This article reviews the advances in the research on hydrophilic and hydrophobic starch derivatives used to develop drug delivery systems over the last ten years, specifically microparticles, nanoparticles, nanocrystals, hydrogels, and scaffolds using these materials. The fundamentals of drug delivery systems, regulatory aspects, and chemical modifications are also discussed, along with the synthesis of starch derivatives via oxidation, etherification, acid hydrolysis, esterification, and cross-linking. The chemical modification of starch as a means to overcome the challenges in obtaining solid dosage forms is also reviewed. In particular, dialdehyde starches are potential derivatives for direct drug attachment; carboxymethyl starches are used for drug encapsulation and release, giving rise to pH-sensitive devices through electrostatic interactions; and starch nanocrystals have high potential as hydrogel fillers to improve mechanical properties and control drug release through hydrophilic interactions. Starch esterification with alginate and acidic drugs could be very useful for site-specific, controlled release. Starch cross-linking with other biopolymers such as xanthan gum is promising for obtaining novel polyelectrolyte hydrogels with improved functional properties. Surface modification of starch nanoparticles by cross-linking and esterification reactions is a potential approach to obtain novel, smart solid dosages.
Collapse
|
20
|
Si Y, Luo H, Zhou F, Bai X, Han L, Sun H, Cha R. Advances in polysaccharide nanocrystals as pharmaceutical excipients. Carbohydr Polym 2021; 262:117922. [DOI: 10.1016/j.carbpol.2021.117922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
|
21
|
Hu N, Li L. Optimization of chestnut starch acetate synthesis by response surface methodology and its effect on dough properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Hu
- Asset and Laboratory Management Office Hebei University of Science and Technology Shijiazhuang PR China
| | - Luning Li
- Assets Equipment Management Office Shijiazhuang University Shijiazhuang PR China
| |
Collapse
|
22
|
Khatami MH, Barber W, de Haan HW. Using geometric criteria to study helix-like structures produced in molecular dynamics simulations of single amylose chains in water. RSC Adv 2021; 11:11992-12002. [PMID: 35423775 PMCID: PMC8697119 DOI: 10.1039/d1ra00071c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Abstract
Amylose is a linear polymer chain of α-d-glucose units connected through α(1 → 4) glycosidic bonds. Experimental studies show that in non-polar solvents, single amylose chains form helical structures containing precise H-bond patterns. However, both experimental and computational studies indicate that these perfectly H-bonded helices are not stable in pure water. Nevertheless, amylose chains are observed to form helix-like structures in molecular dynamics (MD) simulations that exhibit imperfect H-bond patterns. In this paper, we study the structure of amylose chains in water using MD simulations to identify and characterize these “imperfect” helical structures. To this end we devise geometry-based criteria to define imperfect helical structures in amylose chains. Using this approach, the propensity of amylose chains to form these structures is quantified as a function of chain length and solvent temperature. This analysis also uncovers both short and long time helix-breaking mechanisms such as band-flips and kinks in the chain. This geometric approach to defining imperfect helices thus allows us to give new insight into the secondary structure of single amylose chains in spite of imperfect H-bond patterns. We introduce a geometrical approach to capture and study helix-like structures in MD simulations of single amylose chains in water.![]()
Collapse
Affiliation(s)
| | - William Barber
- Ontario Tech University, Department of Physics 2000 Simcoe St N Oshawa ON L1H 7K4. Canada
| | - Hendrick W de Haan
- Ontario Tech University, Department of Physics 2000 Simcoe St N Oshawa ON L1H 7K4. Canada
| |
Collapse
|
23
|
Liu C, Li K, Li X, Zhang M, Li J. Formation and structural evolution of starch nanocrystals from waxy maize starch and waxy potato starch. Int J Biol Macromol 2021; 180:625-632. [PMID: 33766589 DOI: 10.1016/j.ijbiomac.2021.03.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 11/15/2022]
Abstract
The formation and structural evolution of starch nanocrystals from waxy maize starch (WMS) and waxy potato starch (WPS) by acid hydrolysis were studied. The relative crystallinity, the short-range molecular order, and the double-helix content of WMS and WPS increased significantly during the initial stage of acid hydrolysis, indicating that acid preferentially eroded the amorphous regions of starch granules. With time, there was increased destruction of lamellar structures, causing the granules to completely disintegrate to form nanocrystals. WMS and WPS displayed different hydrolysis mechanisms. WPS was more susceptible to acid hydrolysis than WMS, and WMS exhibited an endo-corrosion pattern and WPS showed an exo-corrosion pattern. WMS nanocrystals had a parallelepiped shape, and WPS nanocrystals were round. This difference in shape is likely due to the different packing configuration of double helices in native starches.
Collapse
Affiliation(s)
- Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China.
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning 530004, China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, China.
| |
Collapse
|
24
|
Awg Suhai AAK, Chin S. Green Synthesis and Characterization of Amine‐Modified Starch Nanoparticles. STARCH-STARKE 2021. [DOI: 10.1002/star.202000020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Suk‐Fun Chin
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
25
|
Xiao H, Yang F, Lin Q, Zhang Q, Zhang L, Sun S, Han W, Liu GQ. Preparation and characterization of broken-rice starch nanoparticles with different sizes. Int J Biol Macromol 2020; 160:437-445. [DOI: 10.1016/j.ijbiomac.2020.05.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
26
|
Torlopov MA, Drozd NN, Tarabukin DV, Udoratina EV. Synthesis and hemocompatibility of amino (di-)butyldeoxy modified hydroxyethyl starch. Int J Biol Macromol 2020; 145:936-943. [DOI: 10.1016/j.ijbiomac.2019.09.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/22/2023]
|
27
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
28
|
Preparation and Characterization of Succinylated Nanoparticles from High-Amylose Starch via the Extrusion Process Followed by Ultrasonic Energy. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02328-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Xiao H, Yang F, Lin Q, Zhang Q, Tang W, Zhang L, Xu D, Liu GQ. Preparation and properties of hydrophobic films based on acetylated broken-rice starch nanocrystals for slow protein delivery. Int J Biol Macromol 2019; 138:556-564. [PMID: 31336116 DOI: 10.1016/j.ijbiomac.2019.07.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 07/19/2019] [Indexed: 12/30/2022]
Abstract
Native and acetylated broken-rice starches (nanocrystals) with different degrees of substitution (DS) and their corresponding films were individually prepared, and the drug release profiles, weight loss, solubility and dispersion and surface morphology were comparatively studied. Bovine serum albumin (BSA) was used as a model drug. Acetylated native starch (ANS) DS 2.58, acetylated starch nanocrystals (ASN) DS 0.98, ASN DS 1.86, and ASN DS 2.72 were observed to be very soluble in chloroform. BSA was released rapidly from the native rice starch (NS) and ANS DS 2.58 films. ASN with high DS significantly slowed down the release of BSA from films, the percentages of BSA released from film ASN DS 2.72 only reached to 13% after 3.5 weeks release, and the release data followed Korsmeyer-Peppas equation. Further studies reveal that the particle size of ASN DS 2.72 was smallest, and the weight loss of ASN DS 2.72 film was lowest. The results demonstrate that acetylation and nanometer particle form of rice starch film can effectively retard protein drug release, and the prepared films based on ASN with high DS from broken rice may be suitable for the controlled protein delivery.
Collapse
Affiliation(s)
- Huaxi Xiao
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry & Technology, Changsha 410004, China; College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Fan Yang
- College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry & Technology, Changsha 410004, China; College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Qian Zhang
- College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Weize Tang
- College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Lin Zhang
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry & Technology, Changsha 410004, China; College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Dong Xu
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry & Technology, Changsha 410004, China; College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry & Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
30
|
Odeniyi MA, Adepoju AO, Jaiyeoba KT. Native and Modified
Digitaria exilis
Starch Nanoparticles as a Carrier System for the Controlled Release of Naproxen. STARCH-STARKE 2019. [DOI: 10.1002/star.201900067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael A. Odeniyi
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan200022 IbadanNigeria
| | - Adewale O. Adepoju
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan200022 IbadanNigeria
| | - Kolawole T. Jaiyeoba
- Department of Pharmaceutics and Industrial Pharmacy, University of Ibadan200022 IbadanNigeria
| |
Collapse
|
31
|
Chan SY, Goh CF, Lau JY, Tiew YC, Balakrishnan T. Rice starch thin films as a potential buccal delivery system: Effect of plasticiser and drug loading on drug release profile. Int J Pharm 2019; 562:203-211. [DOI: 10.1016/j.ijpharm.2019.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
32
|
Tang H, Fan S, Li Y, Dong S. Amylose: Acetylation, Optimization, and Characterization. J Food Sci 2019; 84:738-745. [PMID: 30829409 DOI: 10.1111/1750-3841.14487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
Amylose, as a polymeric carbohydrate, is a very attractive raw material owing to its performances. However, the acetylation of amylose separated from high amylose corn starch (HACS) will be beneficial to further improve its functional characteristics so that acetylated amylose (AA) is able to be well applied for some special situations. In this work, we chiefly discuss the optimization of acetylation conditions by a response surface methodology, property, and characterization of AA. The experimental results indicated that the acetylation of amylose was affected by some factors, such as reaction temperature, reaction time, amount of acetic anhydride, and pH. The blue value of amylose was changed by acetylation. Maltese crosses on the separated amylose particles disappeared owing to the separation. The crystalline structure of HACS was C-type, whereas the structure of AA was the immediate between B- and V-type. The acetylation lowered the onset temperature, peak temperature, and end temperature of amylose, but raised its melting enthalpy. PRACTICAL APPLICATION: Although inherent functional diversity of starch extracted from different biological sources adds to the range of applications, acetylated amylose, as an additive, will be better control the consistency and texture of some foods, enhance the strength of edible films, and improve the slow-release of drugs. It will also provide options for extending the scope of desired functional characteristics.
Collapse
Affiliation(s)
- Hongbo Tang
- Science School, Shenyang University of Technology, Shenyang, 110870, China
| | - Shaofeng Fan
- Science School, Shenyang University of Technology, Shenyang, 110870, China
| | - Yanping Li
- Science School, Shenyang University of Technology, Shenyang, 110870, China
| | - Siqing Dong
- Science School, Shenyang University of Technology, Shenyang, 110870, China
| |
Collapse
|
33
|
Bio-inspired keratin-based core-crosslinked micelles for pH and reduction dual-responsive triggered DOX delivery. Int J Biol Macromol 2019; 123:1150-1156. [DOI: 10.1016/j.ijbiomac.2018.11.178] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022]
|
34
|
Alwaan IM, Jafar MMRM, Allebban ZSM. Development of biodegradable starch nanocrystals/gum Arabic hydrogels for controlled drug delivery and cancer therapy. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafc14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Gayathri D, Jayakumari LS. Evaluation of commercial arrowroot starch/CMC film for buccal drug delivery of glipizide. POLIMEROS 2019. [DOI: 10.1590/0104-1428.06619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
- Chemical Faculty; Gdansk University of Technology; Gdańsk Poland
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| | - Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
| | | | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| |
Collapse
|
37
|
A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed Pharmacother 2018; 107:96-108. [PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023] Open
Abstract
Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
Collapse
|
38
|
Lima MR, Paula HC, Abreu FO, da Silva RB, Sombra FM, de Paula RC. Hydrophobization of cashew gum by acetylation mechanism and amphotericin B encapsulation. Int J Biol Macromol 2018; 108:523-530. [DOI: 10.1016/j.ijbiomac.2017.12.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
|
39
|
Yang J, Li F, Li M, Zhang S, Liu J, Liang C, Sun Q, Xiong L. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr Polym 2017; 173:223-232. [DOI: 10.1016/j.carbpol.2017.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
40
|
Sadeghi R, Daniella Z, Uzun S, Kokini J. Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2017.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Dadkhah Tehrani A, Parsamanesh M. Preparation, characterization and drug delivery study of a novel nanobiopolymeric multidrug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:516-524. [DOI: 10.1016/j.msec.2016.12.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
|
42
|
A novel starch-based stimuli-responsive nanosystem for theranostic applications. Int J Biol Macromol 2017; 97:654-661. [DOI: 10.1016/j.ijbiomac.2017.01.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/21/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022]
|
43
|
Masina N, Choonara YE, Kumar P, du Toit LC, Govender M, Indermun S, Pillay V. A review of the chemical modification techniques of starch. Carbohydr Polym 2017; 157:1226-1236. [DOI: 10.1016/j.carbpol.2016.09.094] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
44
|
Wang XL, Ding ZY, Liu GQ, Yang H, Zhou GY. Improved Production and Antitumor Properties of Triterpene Acids from Submerged Culture of Ganoderma lingzhi. Molecules 2016; 21:molecules21101395. [PMID: 27775633 PMCID: PMC6273529 DOI: 10.3390/molecules21101395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/09/2016] [Accepted: 10/16/2016] [Indexed: 11/16/2022] Open
Abstract
Triterpene acids (TAs) are the major bioactive constituents in the medicinal fungus Ganoderma lingzhi. However, fermentative production of TAs has not been optimized for commercial use, and whether the TAs isolated from G. lingzhi submerged culture mycelia possess antitumor activity needs to be further proven. In this study, enhanced TA yield and productivity were attained with G. lingzhi using response surface methodology. The interactions of three variables were studied using a Box-Benhnken design, namely initial pH, dissolved oxygen (DO) and fermentation temperature. The optimum conditions were an initial pH of 5.9, 20.0% DO and 28.6 °C. These conditions resulted in a TA yield of 308.1 mg/L in a 5-L stirred bioreactor. Furthermore, the optimized conditions were then successfully scaled up to a production scale of 200 L, and maximum TA production and productivity of 295.3 mg/L and 49.2 mg/L/day were achieved, which represented 80.9% and 111.5% increases, respectively, compared with the non-optimized conditions. Additionally, the triterpene acid extract (TAE) from G. lingzhi mycelia was found to be cytotoxic to the SMMC-7721 and SW620 cell lines in vitro, and the TAE exhibited dose-dependent antitumor activity against the solid tumor sarcoma 180 in vivo. Chemical analysis revealed that the key active triterpene compounds, ganoderic acid T and ganoderic acid Me, predominated in the extract.
Collapse
Affiliation(s)
- Xiao-Ling Wang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Zhong-Yang Ding
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.
| | - Gao-Qiang Liu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China.
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Guo-Ying Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, College of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China.
| |
Collapse
|
45
|
Gong B, Liu W, Tan H, Yu D, Song Z, Lucia LA. Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydr Polym 2016; 151:666-675. [DOI: 10.1016/j.carbpol.2016.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|